## MATH1003

## ASSIGNMENT 4

Suggested practice questions (the answers are in the back of the textbook):

- §3.1; 33, 35, 53, 61.
- §3.2, 13, 27, 35, 45.

1. If $f$ is a differentiable function, find an expression for the derivative of each of the following functions:
(i) $y=x f(x)$,
(ii) $y=\frac{f(x)}{x}$,
(iii) $y=\frac{x^{2}}{f(x)}$,
(iv) $y=\frac{1+x f(x)}{\sqrt{x}}$.
2. (i) Use the Product Rule twice to prove that if $f, g$, and $h$ are differentiable then:

$$
(f g h)^{\prime}=f^{\prime} g h+f g^{\prime} h+f g h^{\prime} .
$$

(ii) Hence or otherwise, show that:

$$
\frac{d}{d x} f(x)^{3}=3 f(x)^{2} f^{\prime}(x)
$$

(iii) Calculate the derivative of $y=\tan ^{3} x$.
3. (i) Let $g$ be a differentiable function. By using the Quotient Rule, prove that:

$$
\frac{d}{d x} \frac{1}{g(x)}=-\frac{g^{\prime}(x)}{(g(x))^{2}}
$$

(ii) Using the result given in (i), calculate the derivative of:

$$
y=\frac{1}{x^{4}+x^{2}+1}
$$

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

(iii) Prove that the Power Rule is valid for all negative integers. That is, prove that

$$
\frac{d}{d x} x^{-n}=-n x^{-n-1}
$$

for all positive integers $n$. (Hint: Use (i).)
4. A tangent line is drawn to the hyperbola $x y=c$ at a point $P$.
(i) Show that the midpoint of the line segment cut from this tangent line by the coordinate axes is $P$.
(ii) Show that the triangle formed by the tangent line and the coordinate axes always has the same area, no matter where $P$ is located on the hyperbola.
(Hint: Sketch the hyperbola, mark a point $P$ and draw the tangent line.)

