Suggested practice questions (the answers are in the back of the textbook):

- §2.3; 21, 27, 33, 37, 43, 55, 61.
- §2.5; 21, 35, 41, 45.

1. Calculate the following limits, if they exist:

 (i) \(\lim_{x \to 9} \frac{x^2 - 81}{\sqrt{x} - 3} \),

 (ii) \(\lim_{x \to -1} \frac{|x| - 1}{x + 1} \).

2. Let \(f(x) \) be the function given by:

 \[
 f(x) = \begin{cases}
 x^2 - c^2, & \text{when } x < 4; \\
 x(5 + c), & \text{when } x \geq 4.
 \end{cases}
 \]

 For what values of the constant \(c \) is the function continuous?

3. Does the limit \(\lim_{x \to \infty} \cos x \) exist? If not, why not?

4. Let \(f(x) = (2 + x)^3(1 - x)(3 - x) \). Calculate:

 \[
 \lim_{x \to -\infty} f(x) \quad \text{and} \quad \lim_{x \to \infty} f(x).
 \]

 Sketch a graph of \(y = f(x) \), making sure that you label the points of intersection with the axes.

5. By using the Squeeze Theorem, show that:

 \[
 \lim_{x \to 0} \left(\sqrt{x^5 + 3x} \cos \frac{\pi}{x} \right) = 0.
 \]

6. Is there a constant \(a \) such that

 \[
 \lim_{x \to -3} \frac{x^2 + ax + a + 3}{x^2 + 2x - 3}
 \]

 exists? If so, find the value of \(a \) and the corresponding value of the limit.

http://erdos.math.unb.ca/~kasprzyk/

kasprzyk@unb.ca.