MATH1003

ASSIGNMENT 3

Suggested practice questions (the answers are in the back of the textbook):

- §2.3; 21, 27, 33, 37, 43, 55, 61.
- §2.5; 21, 35, 41, 45.

1. Calculate the following limits, if they exist:
(i) $\lim _{x \rightarrow 9} \frac{x^{2}-81}{\sqrt{x}-3}$,
(ii) $\lim _{x \rightarrow-1} \frac{|x|-1}{x+1}$.
2. Let $f(x)$ be the function given by:

$$
f(x)= \begin{cases}x^{2}-c^{2}, & \text { when } x<4 \\ x(5+c), & \text { when } x \geq 4\end{cases}
$$

For what values of the constant c is the function continuous?
3. Does the limit $\lim _{x \rightarrow \infty} \cos x$ exist? If not, why not?
4. Let $f(x)=(2+x)^{3}(1-x)(3-x)$. Calculate:

$$
\lim _{x \rightarrow-\infty} f(x) \quad \text { and } \quad \lim _{x \rightarrow \infty} f(x)
$$

Sketch a graph of $y=f(x)$, making sure that you label the points of intersection with the axes.
5. By using the Squeeze Theorem, show that:

$$
\lim _{x \rightarrow 0}\left(\sqrt{x^{5}+3 x} \cos \frac{\pi}{x}\right)=0 .
$$

6. Is there a constant a such that

$$
\lim _{x \rightarrow-3} \frac{x^{2}+a x+a+3}{x^{2}+2 x-3}
$$

exists? If so, find the value of a and the corresponding value of the limit.

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

