MATH1003
 ASSIGNMENT 9 ANSWERS

1. Let $f:[0,2] \rightarrow \mathbb{R}$ be given by $f(x)=x^{3}+x-1$. This is continuous on the given interval and, since f is a polynomial, differentiable on (0,2). Hence it satisfies the conditions of the Mean Value Theorem.

The Mean Value Theorem tells us that there exists some $c \in(0,2)$ such that:

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(2)-f(0)}{2-0} \\
& =\frac{9-(-1)}{2} \\
& =5 .
\end{aligned}
$$

Since $f^{\prime}(x)=3 x^{2}+1$, we see that $3 c^{2}+1=5$ and so $c=2 / \sqrt{3}$.
2. Proposition. Let f and g be continuous on $[a, b]$ and differentiable on (a, b). Suppose also that $f(a)=g(a)$ and $f^{\prime}(x)<g^{\prime}(x)$ for $a<x<b$. Then $f(b)<g(b)$.
Proof. Let $h=f-g$. Then, since both f and g are continuous on $[a, b], h$ is continuous on $[a, b]$. Because f and g are differentiable on (a, b), so h is differentiable on (a, b). Hence h satisfied the conditions on the Mean Value Theorem, and there exists some $c \in(a, b)$ such that:

$$
\begin{aligned}
h^{\prime}(c) & =\frac{h(b)-h(a)}{b-a} \\
\Rightarrow \quad f^{\prime}(c)-g^{\prime}(c) & =\frac{f(b)-g(b)-f(a)+g(a)}{b-a}
\end{aligned}
$$

By hypothesis $f^{\prime}(c)<g^{\prime}(c)$, and so $f^{\prime}(c)-g^{\prime}(c)<0$. Since $f(a)=g(a)$ we obtain that:

$$
\begin{aligned}
& \frac{f(b)-g(b)}{b-a}<0 \\
& \Rightarrow \quad f(b)-g(b)<0 \\
& \Rightarrow \quad f(b)<g(b),
\end{aligned}
$$

as required.

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

3. (i) f is increasing when the derivative f^{\prime} is positive. This occurs in the intervals $(2,4)$ and $(6,9]$.
(ii) f has a local minimum when f^{\prime} changes from negative sign to positive sign. This occurs at $x=2$ and $x=6$. There is a local maximum when f^{\prime} changes from positive sign to negative sign. This occurs at $x=4$. We must also consider the endpoints $x=0$ and $x=9$. Close to $x=0$ the gradient is negative, hence we have a local maximum there. Close to $x=9$ the gradient is positive, and we see that this is also a local maximum.
(iii) By the Concavity Test, f is concave upwards in the regions where $f^{\prime \prime}$ is positive. Thus we require f^{\prime} to have a positive gradient. This occurs in the intervals $(1,3),(5,7)$ and $(8,9] . f$ is concave downwards when $f^{\prime \prime}$ is negative. We thus require f^{\prime} to have negative gradient. This occurs in the intervals $[0,1),(3,5)$ and $(7,8)$.
(iv) By definition a point of inflection is when f swaps from being concave upwards to concave downwards, or vice versa. This occurs when $x=1, x=3$, $x=5, x=7$, and $x=8$.
4. Let $B(x)=3 x^{2 / 3}-x$. Then $B^{\prime}(x)=2 x^{-1 / 3}-1$ and $B^{\prime \prime}(x)=-(2 / 3) x^{-4 / 3}$.
(i) B is increasing when B^{\prime} is positive. This occurs when $2 x^{-1 / 3}-1>0$; i.e. when $2>\sqrt[3]{x}$. Hence when $x<8 . B$ is decreasing when B^{\prime} is negative. We see that this occurs when $x>8$.
(ii) Local maxima or minima occur when B^{\prime} changes sign, or at the boundary of the domain on which the function is defined. B^{\prime} changes sign once, when $x=8$, from positive to negative. This implies that B has a local maximum at the point $(8,4)$. Since B is defined only on $[0, \infty)$, we need to consider the point $x=0$. Close to $x=0 B$ has positive gradient. Hence there is a local minimum at the origin $(0,0)$.
(iii) By the Concavity Test, B is concave upwards in the regions where $B^{\prime \prime}$ is positive, and is concave downwards when $B^{\prime \prime}$ is negative. Hence B is concave upwards when $-(2 / 3) x^{-4 / 3}>0$, but since $x \geq 0$ this never occurs. On the other hand, $-(2 / 3) x^{-4 / 3}<0$ for all $x \geq 0$, and so B is concave downwards for all points in its domain.
By definition a point of inflection is when B swaps from being concave upwards to concave downwards, or vice versa. Since B is never concave upwards, there can be no points of inflection.
(iv) Sketching the graph is easy.
5. Consider $y=\left(x^{2}-2\right) / x^{4}$. This has domain $\mathbb{R} \backslash\{0\}$. Since:

$$
\frac{(-x)^{2}-2}{(-x)^{4}}=\frac{x^{2}-2}{x^{4}},
$$

the function is even. Hence the graph is symmetric about the y-axis.
(i) The roots $y=0$ occur when $x^{2}-2=0$; i.e. when $x= \pm \sqrt{2}$.
(ii) We consider the behaviour of the graph close to $x=0$:

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2}-2}{x^{4}}=-\infty
$$

By symmetry,

$$
\lim _{x \rightarrow 0^{-}} \frac{x^{2}-2}{x^{4}}=-\infty
$$

Hence we have a vertical asymptote at $x=0$.
(iii) For large values of x,

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-2}{x^{4}}=0
$$

By symmetry,

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}-2}{x^{4}}=0
$$

(iv) Now we consider the derivatives.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x^{5}-4 x^{3}\left(x^{2}-2\right)}{x^{8}} \\
& =2\left(\frac{x^{2}-2\left(x^{2}-2\right)}{x^{5}}\right) \\
& =2\left(\frac{4-x^{2}}{x^{5}}\right)
\end{aligned}
$$

Hence $d y / d x=0$ when $x= \pm 2$. Since $d y / d x$ is defined for all x in the domain of our function, these are the only critical points.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=2\left(\frac{-2 x^{6}-5 x^{4}\left(4-x^{2}\right)}{x^{10}}\right) \\
&=2\left(\frac{-2 x^{2}-5\left(4-x^{2}\right)}{x^{6}}\right) \\
&=2\left(\frac{3 x^{2}-20}{x^{6}}\right) \\
& 3
\end{aligned}
$$

Since $x^{6}>0$ for all x in the domain, the sign of $d^{2} y / d x^{2}$ depends solely on the sign of $3 x^{2}-20$. Thus:

$$
\frac{d^{2} y}{d x^{2}} \begin{cases}=0, & \text { if } x= \pm 2 \sqrt{5 / 3} \\ <0, & \text { if }|x|<2 \sqrt{5 / 3} \\ >0, & \text { otherwise }\end{cases}
$$

Hence, since $\sqrt{5 / 3}>1$, we see that $d^{2} y / d x^{2}<0$ when $x= \pm 2$. Hence we have a local maximum at $x= \pm 2$. Since the sign of $d^{2} y / d x^{2}$ changes at $x= \pm 2 \sqrt{5 / 3}$ we see that the graph has a point of inflection at these points. (v) This is enough information with which to sketch the graph.

