MATH1003
 ASSIGNMENT 8 ANSWERS

1. Be careful! Since $1-\sin \theta \rightarrow 0$ and $\csc \theta \rightarrow 1$ as $\theta \rightarrow \pi / 2$, L'Hôpital's Rule does not apply. But this isn't a problem, since we need only use the Laws of Limits:

$$
\begin{aligned}
\lim _{\theta \rightarrow \pi / 2} \frac{1-\sin \theta}{\csc \theta} & =\frac{0}{1} \\
& =0
\end{aligned}
$$

2. Proposition. For any $\rho>0$,

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{\rho}}=0
$$

Proof. Observe that both $\ln x \rightarrow \infty$ and $x^{\rho} \rightarrow \infty$ as $x \rightarrow \infty$. Hence we can apply L'Hôpital's Rule to obtain that:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{\rho}} & =\lim _{x \rightarrow \infty} \frac{1 / x}{\rho x^{\rho-1}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\rho x^{\rho}} \\
& =0 .
\end{aligned}
$$

3. (i) Let $f(x)=x^{3}+x^{2}-x$. Then:

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2}+2 x-1 \\
& =(3 x-1)(x+1)
\end{aligned}
$$

which is defined everywhere, and equals zero when $x=-1$ or $x=1 / 3$. Hence the critical numbers are $x=-1$ and $x=1 / 3$.
(ii) Let $g(\theta)=4 \theta-\tan \theta$. This is undefined when $\theta=(2 k+1) \pi / 2$, where $k \in \mathbb{Z}$. The derivative is given by:

$$
g^{\prime}(\theta)=4-\sec ^{2} \theta
$$

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

This is defined whenever g is defined, and is zero when:

$$
\begin{aligned}
\sec ^{2} \theta & =4 \\
\Rightarrow \quad \cos ^{2} \theta & =\frac{1}{4} \\
\Rightarrow \quad \cos \theta & = \pm \frac{1}{2} \\
\Rightarrow \quad \theta & =2 k \pi \pm \frac{\pi}{3},(2 k+1) \pi \pm \frac{\pi}{3}, \quad \text { where } k \in \mathbb{Z} \\
\Rightarrow \quad \theta & =k \pi \pm \frac{\pi}{3}
\end{aligned}
$$

Hence the critical numbers are at $k \pi \pm \pi / 3$, for all $k \in \mathbb{Z}$.
4. (i) First note that f is continuous on this interval. We have that:

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 x+9 \\
& =3(x-1)(x-3)
\end{aligned}
$$

This is defined for all x in $(-1,4)$, and is zero when $x=3$ or $x=1$. Hence the critical values are $x=3$ and $x=1$. The Closed Interval Method tells us that the global minimum and global maximum values of f on $[-1,4]$ are given by one of the critical values or by the end points.

x	$f(x)$
-1	-14
1	6
3	2
4	6

Hence the global maximum value is given by 6 , and occurs when $x=1$ and when $x=4$. The global minimum value is -14 , and occurs when $x=-1$.
(ii) Differentiating f gives:

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-6 x-12 \\
& =6\left(x^{2}-x-2\right) \\
& =6(x+1)(x-2) .
\end{aligned}
$$

This is zero when $x=-1$ and when $x=2$; these are the critical values. The global maximum and global minimum values of f occur at the critical values,
or at the end points of the domain. Hence we need to calculate:

x	$f(x)$
-2	-3
-1	8
2	-19
3	-8

The global maximum value is 8 (when $x=-1$), and the global minimum value is -19 (when $x=2$).
(iii) Differentiating f gives:

$$
\begin{aligned}
f^{\prime}(x) & =3 \times 2 x \times\left(x^{2}-1\right)^{2} \\
& =6 x\left(x^{2}-1\right)^{2} .
\end{aligned}
$$

This is zero when $x=0$ and when $x= \pm 1$; these are the critical values. The global maximum and global minimum values of f occur at the critical values, or at the end points of the domain. Hence we need to calculate:

x	$f(x)$
-1	0
0	1
1	0
2	9

The global maximum value is 9 (when $x=2$), and the global minimum value is 0 (when $x=-1$ and when $x=1$).
(iv) Differentiating f gives:

$$
\begin{aligned}
f^{\prime}(x) & =e^{-x}-x e^{-x} \\
& =(1-x) e^{-x} .
\end{aligned}
$$

This is zero when $x=1$; this is the only critical value. The global maximum and global minimum values of f occur at a critical value, or at the end points of the domain. Hence we need to calculate:

$$
\begin{array}{c|c}
x & f(x) \\
\hline 0 & 0 \\
1 & e^{-1} \\
2 & 2 e^{-2} \\
& 3
\end{array}
$$

The global minimum value is 0 (when $x=0$). Observe that:

$$
\begin{array}{rlrl}
& & e^{-1} & <2 e^{-2} \\
\Rightarrow & e & e<2
\end{array}
$$

which is a contradiction. Hence $e^{-1}>2 e^{-2}$ and so the global maximum value is $e^{-1}($ when $x=1)$.

