MATH1003
 ASSIGNMENT 6 ANSWERS

1. Let $g(x)+x \sin g(x)=x^{2}$, and $g(1)=0$. Differentiating both sides we obtain:

$$
g^{\prime}(x)+\sin g(x)+x g^{\prime}(x) \cos g(x)=2 x
$$

Setting $x=1$ gives:

$$
g^{\prime}(1)+\sin 0+g^{\prime}(1)=2 \text {. }
$$

Rearranging we see that $g^{\prime}(1)=1$. Differentiating a second time gives:

$$
\begin{aligned}
g^{\prime \prime}(x)+g^{\prime}(x) \cos g(x)+g^{\prime}(x) \cos g(x) & +x g^{\prime \prime}(x) \cos g(x) \\
& -x\left(g^{\prime}(x)\right)^{2} \sin g(x)=2 .
\end{aligned}
$$

We see that:

$$
g^{\prime \prime}(1)+1+1+g^{\prime \prime}(1)-0=2
$$

and so $g^{\prime \prime}(1)=0$.
2. (i) Differentiating both sides implicitly gives:

$$
\begin{aligned}
\frac{d y}{d x} \sin x^{2}+2 x y \cos x^{2} & =\sin y^{2}+2 x y \frac{d y}{d x} \cos y^{2} \\
\Rightarrow \quad \frac{d y}{d x} \sin x^{2}-2 x y \frac{d y}{d x} \cos y^{2} & =\sin y^{2}-2 x y \cos x^{2} \\
\Rightarrow \quad\left(\sin x^{2}-2 x y \cos y^{2}\right) \frac{d y}{d x} & =\sin y^{2}-2 x y \cos x^{2} \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{\sin y^{2}-2 x y \cos x^{2}}{\sin x^{2}-2 x y \cos y^{2}}
\end{aligned}
$$

(ii) Recall that:

$$
\frac{d}{d z} \cot z=-\csc ^{2} z
$$

Hence, via implicit differentiation of both sides:

$$
\begin{aligned}
y+x \frac{d y}{d x} & =-\left(y+x \frac{d y}{d x}\right) \csc ^{2}(x y) \\
\Rightarrow \quad x \frac{d y}{d x}+x \frac{d y}{d x} \csc ^{2}(x y) & =-y \csc ^{2}(x y)-y \\
\Rightarrow \quad x\left(1+\csc ^{2}(x y)\right) \frac{d y}{d x} & =-y\left(1+\csc ^{2}(x y)\right) \\
\Rightarrow \quad \frac{d y}{d x} & =-\frac{y}{x} .
\end{aligned}
$$

(iii) First we consider the right-hand side. Let $u=x y^{2}$. Then $\sin \left(x y^{2}\right)=\sin u$, and by the Chain Rule:

$$
\begin{aligned}
\frac{d}{d x} \sin \left(x y^{2}\right) & =\frac{d}{d u} \sin u \times \frac{d u}{d x} \\
& =\cos u \times\left(y^{2}+2 x y \frac{d y}{d x}\right) \\
& =\cos \left(x y^{2}\right)\left(y^{2}+2 x y \frac{d y}{d x}\right) .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
1+x & =\sin \left(x y^{2}\right) \\
\Rightarrow \quad 1 & =\cos \left(x y^{2}\right)\left(y^{2}+2 x y \frac{d y}{d x}\right) \\
\Rightarrow \quad 2 x y \cos \left(x y^{2}\right) \frac{d y}{d x} & =1-y^{2} \cos \left(x y^{2}\right) \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{1-y^{2} \cos \left(x y^{2}\right)}{2 x y \cos \left(x y^{2}\right)} \\
& =\frac{1}{2 x y} \sec \left(x y^{2}\right)-\frac{y}{2 x} .
\end{aligned}
$$

3. (i) Let $y=\tan ^{-1} x$. Then $\tan y=x$. Differentiating both sides we obtain:

$$
\begin{aligned}
\sec ^{2} y \frac{d y}{d x} & =1 \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{1}{\sec ^{2} y} \\
& =\frac{1}{1+\tan ^{2} y} \\
& =\frac{1}{1+x^{2}} .
\end{aligned}
$$

(ii) Let $u=\sqrt{x}$, so that $y=\tan ^{-1} u$. By the Chain Rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} .
$$

Hence, using our answer to (i), we obtain:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2 \sqrt{x}} \times \frac{1}{1+u^{2}} \\
& =\frac{1}{2 \sqrt{x}} \times \frac{1}{1+(\sqrt{x})^{2}} \\
& =\frac{1}{2 \sqrt{x}(1+x)} .
\end{aligned}
$$

(iii) First we calculate the derivative of $\cos ^{-1} x$. Let $u=\cos ^{-1} x$. Then $\cos u=x$. Differentiating gives:

$$
\begin{aligned}
-\sin u \frac{d u}{d x} & =1 \\
\Rightarrow \quad \frac{d u}{d x} & =-\frac{1}{\sin u} \\
& =-\frac{1}{\sqrt{1-\cos ^{2} u}} \\
& =-\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Using our answer to (i) we see that:

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}-\frac{1}{\sqrt{1-x^{2}}} .
$$

4. From the graph of $x^{2}-x y+y^{2}=3$ we see that the minimum and maximum values of y occur when the tangent is parallel to the x-axis. The minimum and maximum values of x occur when the tangent is parallel to the y-axis. Differentiating implicitly we find that:

$$
\begin{aligned}
2 x-y-x \frac{d y}{d x}+2 y \frac{d y}{d x} & =0 \\
\Rightarrow(2 y-x) \frac{d y}{d x} & =y-2 x \\
\Rightarrow \frac{d y}{d x} & =\frac{y-2 x}{2 y-x}
\end{aligned}
$$

The tangent is parallel to the x-axis when $y-2 x=0$, i.e. when $y=2 x$. Substituting this back into the equation of the tilted ellipse gives:

$$
\begin{aligned}
x^{2}-x(2 x)+(2 x)^{2} & =3 \\
\Rightarrow x^{2}-2 x^{2}+4 x^{2} & =3 \\
\Rightarrow x^{2} & =1 \\
\Rightarrow x & = \pm 1
\end{aligned}
$$

Thus the minimum value of y is -2 and the maximum value of y is 2 .
The tangent is parallel to the y-axis when $2 y-x=0$, i.e. when $x=2 y$. Substituting this back into the equation gives:

$$
\begin{aligned}
(2 y)^{2}-(2 y) y & +y^{2}
\end{aligned}=3 .
$$

We see that the minimum value of x is -2 and the maximum value of x is 2 .
5. Differentiating $\left(x^{2}+y^{2}\right)^{2}=2\left(x^{2}-y^{2}\right)$ gives:

$$
2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=4\left(x-y \frac{d y}{d x}\right) .
$$

Setting $\frac{d y}{d x}=0$, we obtain:

$$
4 x\left(x^{2}+y^{2}\right)=4 x
$$

Hence either $x=0$ or $x^{2}+y^{2}=1$. Let us consider the second possibility.
Substituting into the equation of the leminscate we obtain:

$$
\begin{aligned}
1^{2} & =2\left(x^{2}-\left(1-x^{2}\right)\right) \\
\Rightarrow \frac{1}{2} & =2 x^{2}-1 \\
\Rightarrow x^{2} & =\frac{3}{4} \\
\Rightarrow x & = \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

When $x^{2}=\frac{3}{4}$ we see that $y^{2}=1-\frac{3}{4}=\frac{1}{4}$.
We have found that $\frac{d y}{d x}=0$ at five points: when (x, y) is equal to

$$
(0,0), \quad\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right), \quad\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right), \quad\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \quad\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) .
$$

Consulting the graph we see that we have a slight problem. There should be only four points where the tangent line is parallel to the x-axis. Somehow the extra point $(0,0)$ has appeared.

This is because the graph is rather unusual at $(0,0)$. Close to the origin the graph looks like an \times. It is what we call a singularity. It is because of this singularity that we are getting our extra point; we should simply ignore the solution $(0,0)$ as not relevant to the answer.

