MATH1003

ASSIGNMENT 4 ANSWERS

1. (i)

$$
\begin{aligned}
\frac{d y}{d x} & =1 \times f(x)+x \times f^{\prime}(x) \\
& =f(x)+x f^{\prime}(x)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{f^{\prime}(x) \times x-f(x) \times 1}{x^{2}} \\
& =\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}
\end{aligned}
$$

(iii)

$$
\frac{d y}{d x}=2 x f(x)+x^{2} f^{\prime}(x)
$$

(iv)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(f(x)+x f^{\prime}(x)\right) \sqrt{x}-(1 / 2)(1+x f(x)) x^{-1 / 2}}{x} \\
& =\frac{\left(f(x)+x f^{\prime}(x)\right) x-(1 / 2)(1+x f(x))}{x^{3 / 2}} \\
& =\frac{2 x^{2} f^{\prime}(x)+x f(x)-1}{2 x^{3 / 2}}
\end{aligned}
$$

2. (i)

$$
\begin{aligned}
(f g h)^{\prime} & =(f(g h))^{\prime} \\
& =f^{\prime} \times(g h)+f \times(g h)^{\prime} \\
& =f^{\prime} \times(g h)+f \times\left(g^{\prime} \times h+g \times h^{\prime}\right) \\
& =f^{\prime} g h+f g^{\prime} h+f g h^{\prime} .
\end{aligned}
$$

(ii) This is immediate from (i), setting $f=g=h$.
(iii) We know that:

$$
\frac{d}{d x} \tan (x)=\sec ^{2}(x)
$$

Hence from our answer to (ii) we obtain:

$$
\frac{d y}{d x}=3 \tan ^{2}(x) \sec ^{2}(x)
$$

3. (i) By the Quotient Rule we have:

$$
\begin{aligned}
\frac{d}{d x} \frac{1}{g(x)} & =\frac{0 \times g(x)-1 \times g^{\prime}(x)}{g(x)^{2}} \\
& =-\frac{g^{\prime}(x)}{g(x)^{2}}
\end{aligned}
$$

(ii) Setting $g(x)=x^{4}+x^{2}+1$ we obtain:

$$
\frac{d}{d x} \frac{1}{x^{4}+x^{2}+1}=-\frac{4 x^{3}+2 x}{\left(x^{4}+x^{2}+1\right)^{2}}
$$

(iii) If we set $g(x)=1 / x^{n}$ we see that:

$$
\begin{aligned}
\frac{d}{d x} \frac{1}{x^{n}} & =-\frac{n x^{n-1}}{x^{2 n}} \\
& =-n x^{n-1-2 n} \\
& =-n x^{-n-1}
\end{aligned}
$$

This verifies the Power Rule for negative integers.
4. (i) Consider the hyperbola $x y=c$. This has derivative:

$$
\begin{aligned}
& y+x \frac{d y}{d x}=0, \\
& \Rightarrow \quad \frac{d y}{d x}=-\frac{y}{x} .
\end{aligned}
$$

Let P be the point $(a, c / a)$ on this hyperbola. The tangent line at P has equation:

$$
\begin{aligned}
y-\frac{c}{a} & =-\frac{c}{a^{2}}(x-a), \\
\Rightarrow \quad y & =\frac{c}{a^{2}}(2 a-x) .
\end{aligned}
$$

This tangent intersects the x-axis when $y=0$. Hence $x=2 a$. It intersects the y-axis when $x=0$, giving $y=2 c / a$. The line segment connecting $(2 a, 0)$ and ($0,2 c / a$) has midpoint:

$$
\frac{1}{2}\left(2 a, \frac{2 c}{a}\right)=\left(a, \frac{c}{a}\right)=P .
$$

(ii) The triangle formed by the coordinate axes and the tangent has vertices at $(0,0),(2 a, 0)$, and $(0,2 c / a)$. This has width $2 a$ and height $2 c / a$, and so has area:

$$
\frac{1}{2} \times 2 a \times \frac{2 c}{a}=2 c
$$

Hence the area is independent of the value of a, and so does not depend on our choice of P.

