MATH1003

ASSIGNMENT 3

ANSWERS

1. (i) We can factorise the numerator:

$$
x^{2}-81=(x-9)(x+9)=(\sqrt{x}-3)(\sqrt{x}+3)(x+9)
$$

Hence:

$$
\frac{x^{2}-81}{\sqrt{x}-3}=(\sqrt{x}+3)(x+9)
$$

Thus the limit is $(3+3) \times(9+9)=108$.
(ii) Recall that:

$$
|x|= \begin{cases}x, & \text { when } x \geq 0 \\ -x, & \text { when } x<0\end{cases}
$$

Since $x \rightarrow-1$ we can insist that $x<0$. Hence we wish to calculate:

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{-x-1}{x+1} & =\lim _{x \rightarrow-1}-\frac{x+1}{x+1} \\
& =-1
\end{aligned}
$$

2. In order for the function to be continuous, we need the two parts of the function to "meet" at the point $x=4$. Thus we require:

$$
4^{2}-c^{2}=4(5+c)
$$

Rearranging gives:

$$
c^{2}+4 c+4=0
$$

Hence we see that $c=-2$.
3. The limit as $x \rightarrow \infty$ of $\cos x$ does not exist. For example, we have that $\cos 2 k \pi=1$ for all $k \in \mathbb{N}$, but $\cos 2(k+1) \pi=-1$ for all $k \in \mathbb{N}$.
4. Let $f(x)=(2+x)^{3}(1-x)(3-x)$. Since f is a polynomial, it is continuous for all $x \in \mathbb{R}$. Clearly $f(x)=0$ when $x=-2$ (where we have a root with multiplicity three), and when $x=1$ or 3 . For large x, both $1-x$ and $3-x$ are negative, thus

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

$f(x)$ is positive (+'ve $\times-$ 've $\times-$ 've $=+$ 've). Hence $\lim _{x \rightarrow \infty} f(x)=\infty$. For very negative x, both $1-x$ and $3-x$ are positive, and $(2+x)^{3}$ is negative. Hence:

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

Using this information we can draw an approximate sketch of $y=f(x)$.
5. Observe that, for all values of $x \neq 0$:

$$
-1 \leq \cos \frac{\pi}{x} \leq 1
$$

Hence:

$$
-\sqrt{x^{5}+3 x} \leq \sqrt{x^{5}+3 x} \cos \frac{\pi}{x} \leq \sqrt{x^{5}+3 x}
$$

Now, clearly:

$$
\lim _{x \rightarrow 0}-\sqrt{x^{5}+3 x}=0 \quad \text { and } \quad \lim _{x \rightarrow 0} \sqrt{x^{5}+3 x}=0
$$

Hence by the Squeeze Theorem we see that:

$$
\lim _{x \rightarrow 0}\left(\sqrt{x^{5}+3 x} \cos \frac{\pi}{x}\right)=0
$$

6. Notice that $x^{2}+2 x-3=(x+3)(x-1)$, so in order for the limit to exist, we need to cancel the term $x+3$ in the denominator with the numerator. Hence we require that $x+3$ divides $x^{2}+a x+a+3$. By long division, or otherwise, we obtain:

$$
\begin{array}{r}
x+(a-3) \\
x+3 \begin{array}{r}
x^{2}+\quad a x+a+3 \\
x^{2}+\quad 3 x
\end{array} \\
\frac{(a-3) x+(a+3)}{(a-3) x+3(a-3)} \\
-2 a+12
\end{array}
$$

Hence it must be that the remainder is zero. In other words, we require that:

$$
-2 a+12=0 .
$$

Solving gives $a=6$. When this is the case,

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+6 x+9}{x^{2}+2 x-3} & =\lim _{x \rightarrow-3} \frac{(x+3)(x+3)}{(x+3)(x-1)} \\
& =\lim _{x \rightarrow-3} \frac{x+3}{x-1} \\
& =0
\end{aligned}
$$

