## MATH1003 <br> ASSIGNMENT 10 ANSWERS

1. Let $x$ and $d$ denote the lengths of the sides, in meters, of the rectangle. Then:

$$
\begin{aligned}
x d & =1000, \\
\Rightarrow \quad d & =\frac{1000}{x} .
\end{aligned}
$$

The perimeter is given by $P(x)=2 x+2 d=2(x+1000 / x)$. We wish to minimise $P(x)$.

$$
\frac{d P}{d x}=2-\frac{2000}{x^{2}}
$$

The derivative is zero when $x= \pm 10 \sqrt{10}$. Since $x$ is a length, $x$ must be positive. We shall investigate the behaviour of $P(x)$ as $x$ tends to zero, and as $x$ grows very large.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} 2\left(x+\frac{1000}{x}\right)=\infty \\
& \lim _{x \rightarrow \infty} 2\left(x+\frac{1000}{x}\right)=\infty
\end{aligned}
$$

Hence the global minimum value of $P(x)$ occurs when $x=10 \sqrt{10}$. So the desired dimensions are $10 \sqrt{10} \mathrm{~m} \times 10 \sqrt{10} \mathrm{~m}$.
2. Let $x$ and $h$ denote the lengths, in meters, of the sides of the box, where the square base has sides of length $x \mathrm{~m}$. Then:

$$
\begin{aligned}
x \times x \times h & =12, \\
\Rightarrow \quad h & =\frac{12}{x^{2}} .
\end{aligned}
$$

Let $C(x)$ denote the cost, in dollars, of the materials. Then:

$$
\begin{aligned}
C(x) & =2 \times x^{2}+1 \times\left(x^{2}+4 h x\right) \\
& =3 x^{2}+\frac{48}{x} \\
& =3\left(x^{2}+\frac{16}{x}\right)
\end{aligned}
$$

[^0]Since $x$ is a length we require that $x>0$. As $x$ approaches zero, and as $x$ grows very large, we see that:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} 3\left(x^{2}+\frac{16}{x}\right)=\infty \\
& \lim _{x \rightarrow \infty} 3\left(x^{2}+\frac{16}{x}\right)=\infty
\end{aligned}
$$

Differentiating $C(x)$ we obtain:

$$
\frac{d C}{d x}=3\left(2 x-\frac{16}{x^{2}}\right)
$$

This is zero when $2 x^{3}=16$, i.e. when $x=2$. Hence $C(x)$ must have a global minimum when $x=2$. Thus in order to minimise the cost of materials, the box should have dimensions $2 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}$.
3. Let $x$ denote the number of members over 100. Then $0 \leq x \leq 160$. Let $R(x)$ denote the revenue. Then:

$$
R(x)=(100+x)(200-x)
$$

This is a quadratic with roots when $x=-100$ and when $x=200$. Differentiating we obtain:

$$
\begin{aligned}
\frac{d R}{d x} & =200-x-100-x \\
& =100-2 x
\end{aligned}
$$

Hence $d R / d x$ is zero when $x=50$. Since $R(50)=150^{2}$ we know that this is the global maximum value of $R$. Hence the revenue is maximised when there are 150 members.
4. Let $P$ denote the profit. Then:

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
& =x^{2}+50 x-2 x^{3}-x^{2}+100 x-200 \\
& =-2 x^{3}+150 x-200 .
\end{aligned}
$$

We have that $0 \leq x \leq 8$. At the end points,

$$
\begin{aligned}
& P(0)=-200 \\
& P(8)=-24
\end{aligned}
$$

Differentiating $P(x)$ we obtain:

$$
\frac{d P}{d x}=-6 x^{2}+150
$$

This is zero when $x= \pm 5$. From the shape of the graph of $y=P(x)$ we see that there is a global maximum value when $x=5$. Hence the manufacturer should produce five shovels per day.
5. Let $C(x)$ denote the total cost of producing $x$ bicycles, where $x \geq 0$. Then:

$$
C(x)=1000+10 x+\frac{25000}{x}
$$

Investigating the behaviour of $C(x)$ as $x$ tends to zero and as $x$ tends to infinity we see that:
$\lim _{x \rightarrow 0^{+}}\left(1000+10 x+\frac{25000}{x}\right)=\infty, \quad \lim _{x \rightarrow \infty}\left(1000+10 x+\frac{25000}{x}\right)=\infty$.
Differentiating $C(x)$ gives:

$$
\frac{d C}{d x}=10-\frac{25000}{x^{2}} .
$$

This is zero when $x= \pm 50$. We thus see that $y=C(x)$ has a global minimum when $x=50$, and so the manufacturer should produce fifty bicycles in order to minimise the total cost.


[^0]:    http://erdos.math.unb.ca/~kasprzyk/
    kasprzyk@unb.ca.

