MATH1003

ASSIGNMENT 1

ANSWERS

1. Let $f(x)=\frac{x}{x+1}$. Then:
(i) $f(2+h)=\frac{2+h}{3+h}$
(ii) $f(x+h)=\frac{x+h}{x+h+1}$
(iii) $\frac{f(x+h)-f(x)}{h}=\frac{1}{(x+1)(x+h+1)}$.
2. As a rational function, the function is defined whenever the denominator is nonzero. Since $x^{2}+3 x+2=(x+2)(x+1)$, this is zero when $x=-2$ or -1 . The domain is $\mathbb{R} \backslash\{-2,-1\}$.
3. (i) This is a rational function whose denominator is zero when $t=2$. Hence it has domain $\mathbb{R} \backslash\{2\}$. By factorising the numerator, we see:

$$
H(t)=\frac{(2-t)(2+t)}{2-t}=2+t
$$

Drawing the graph is now elementary.
(ii) $g(x)$ is defined whenever the denominator is non-zero. Hence the domain is $\mathbb{R} \backslash 0$. To sketch the graph, we consider the cases when $x<0$ and $x>0$ separately. From the definition of $|x|$ we see that:

$$
g(x)= \begin{cases}-x / x^{2}=-1 / x, & \text { when } x<0 \\ x / x^{2}=1 / x, & \text { when } x>0\end{cases}
$$

Drawing this graph should cause no problems.
(iii) By sketching the graph, we see that the domain is \mathbb{R}.
4. (i) $x^{4}-16=\left(x^{2}-4\right)\left(x^{2}+4\right)=(x-2)(x+2)\left(x^{2}+4\right)$. Hence:

$$
\frac{x^{4}-16}{x-2}=(x+2)\left(x^{2}+4\right)
$$

Thus we see that the limit as $x \rightarrow 2$ is $4 \times 8=32$.

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

(ii) When $x<5$, so $x-5$ is negative. As $x \rightarrow 5$ from the left, so $x-5 \rightarrow 0$ from the left. Hence:

$$
\lim _{x \rightarrow 5^{-}} \frac{6}{x-5}=-\infty
$$

(iii) For x sufficiently close to zero, $x-1$ is negative, but $x^{2}(x+2)$ is positive. Hence:

$$
\lim _{x \rightarrow 0} \frac{x-1}{x^{2}(x+2)}=-\infty
$$

