M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY EXAM SOLUTIONS 2014

(1) (i) Let $G=\left\{g_{1}, \ldots, g_{m}\right\}$ be a set of generators for the ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, and fix a monomial order. Then G is a Gröbner basis for I if

$$
(\operatorname{LT}(I))=\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{m}\right)\right) .
$$

Buchberger's Criterion states that G is a Gröbner basis if and only if the remainder $\overline{S\left(g_{i}, g_{j}\right)}{ }^{G}$ is zero for all $i \neq j$.
(ii) We split the calculation up into four cases.
$a \neq 0, b \neq 0$: The S-polynomial is $S\left(-a x^{2}+y,-b y^{3}+z\right)=\frac{x^{2} z}{b}-\frac{y^{4}}{a}$. The remainder upon division by $\left\{y-a x^{2}, z-b y^{3}\right\}$ is 0 , hence this is a Gröbner basis.
$a=0, b \neq 0$: The S-polynomial is $S\left(y,-b y^{3}+z\right)=\frac{z}{b}$. The remainder is $\frac{z}{b}$, hence this is not a Gröbner basis.
$a \neq 0, b=0$: The S-polynomial is $S\left(-a x^{2}+y, z\right)=-\frac{y z}{a}$. The remainder is 0 , hence this is a Gröbner basis.
$a=0, b=0$: The S-polynomial is $S(y, z)=0$, so this is a Gröbner basis.
Thus $\left\{y-a x^{2}, z-b y^{3}\right\}$ is a Gröbner basis for all values a, b except when $a=0, b \neq 0$.
(iii) A Gröbner basis G is said to be reduced if, for all $g \in G, \mathrm{LC}(g)=1$ and no monomial of g lies in $(\operatorname{LT}(G \backslash\{g\}))$.
Using our results in (ii) we know that the set is a Gröbner basis in all cases except when $a=0, b \neq 0$, which is easy enough to fix. We have the reduced Gröbner bases:

$$
\begin{array}{ll}
\left\{x-y / a, y^{3}-z / b\right\} & \text { when } a \neq 0, b \neq 0 \\
\{y, z\} & \text { when } a=0, b \neq 0 \\
\{x-y / a, z\} & \text { when } a \neq 0, b=0 \\
\{y, z\} & \text { when } a=0, b=0 .
\end{array}
$$

(iv) For a given monomial order, the reduced Gröbner basis is unique. Thus we make use of our results in (iii) and see that the two ideals are equal iff $a_{1}=a_{2}$ and $b_{1}=b_{2}$, or $a_{1}=a_{2}=0$ and b_{1}, b_{2} free.
(i) (a) Let $f, g \in I_{l}$. Then $f, g \in I$ and $f, g \in \mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$. Hence $f+g \in I$ and $f+g \in \mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$, and so $f+g \in I_{l}$. Now suppose that $f \in I_{l}$, $g \in \mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$. Then $f \in I$ and $g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, hence $g f \in I$. Since $f \in \mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$ we have $g f \in \mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$, and so $g f \in I_{l}$.
(b)

$$
\begin{aligned}
f \in I_{l+1} & \Longleftrightarrow f \in I \cap \mathbb{C}\left[x_{l+2}, \ldots, x_{n}\right] \\
& \Longleftrightarrow f \in\left(I \cap \mathbb{C}\left[x_{l+1}, x_{l+2}, \ldots, x_{n}\right]\right) \cap \mathbb{C}\left[x_{l+2}, \ldots, x_{n}\right] \\
& \Longleftrightarrow f \in I_{l} \cap \mathbb{C}\left[x_{l+2}, \ldots, x_{n}\right]
\end{aligned}
$$

(ii) Extension Theorem: Let $I=\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. For each $1 \leq i \leq s$, write f_{i} in the form

$$
f_{i}=g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{N_{i}}+\text { terms in which } x_{1} \text { has degree }<N_{i},
$$

where $N_{i} \geq 0$ and $g_{i} \in \mathbb{C}\left[x_{2}, \ldots, x_{n}\right]$ is non-zero. Let $\left(a_{2}, \ldots, a_{n}\right) \in \mathbb{V}\left(I_{1}\right)$ be a partial solution. If $\left(a_{2}, \ldots, a_{n}\right) \notin \mathbb{V}\left(g_{1}, \ldots, g_{s}\right)$ then there exists $a_{1} \in \mathbb{C}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{V}(I)$.
The result follows immediately from the Extension Theorem: Since $g_{i}=c \neq 0$ implies $\mathbb{V}\left(g_{1}, \ldots, g_{s}\right)=\emptyset$, we have $\left(a_{2}, \ldots, a_{n}\right) \notin \mathbb{V}\left(g_{1}, \ldots, g_{s}\right)$ for all partial solutions.
(iii) Let $G=\left\{x^{2}-x z+1, y-z^{2}+1\right\}$ be the lex-ordered Gröbner basis. The Elimination Theorem tells us that $G \cap \mathbb{C}[y, z]=\left\{y-z^{2}+1\right\}$ is a Gröbner basis for I_{1}, and $G \cap \mathbb{C}[z]=\varnothing$ is a Gröbner basis for I_{2}. Hence $\mathbb{V}\left(I_{2}\right)=\mathbb{C}$ and every partial solution can be extended via a trivial application of (ii). Continuing, we have $\mathbb{V}\left(I_{1}\right)=\left\{\left(t^{2}-2, t\right) \mid t \in \mathbb{C}\right\}$, and once more (ii) tells us that every partial solution can be extended. Finally, we have that

$$
\begin{aligned}
\mathbb{V}(I)=\left\{\left(\frac{t}{2}+\frac{1}{2} \sqrt{t^{2}-4},\right.\right. & \left.\left.t^{2}-2, t\right) \mid t \in \mathbb{C}\right\} \cup \\
& \left\{\left.\left(\frac{t}{2}-\frac{1}{2} \sqrt{t^{2}-4}, t^{2}-2, t\right) \right\rvert\, t \in \mathbb{C}\right\}
\end{aligned}
$$

is the set of solutions to the system of equations.
Since any paramaterisable variety is irreducible, we see that $\mathbb{V}(I)$ has two components.
(i) $\mathbb{V}(I):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for all $\left.f \in I\right\}$.

Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}\left(I_{2}\right)$. Then $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $f \in I_{2}$. But $I_{1} \subseteq I_{2}$ by assumption, hence $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $f \in I_{1}$, and so $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}\left(I_{1}\right)$.
(ii) Let $I_{1}=\left(y-x^{2}, z-x^{3}\right)$ and $I_{2}=\left(\left(y-x^{2}\right)^{2}+\left(z-x^{3}\right)^{2}\right)$. Since $I_{2} \subset I_{1}$, we have that $\mathbb{V}\left(I_{1}\right) \subset \mathbb{V}\left(I_{2}\right)$. Conversely let $(a, b, c) \in \mathbb{V}\left(I_{2}\right) \subset \mathbb{R}^{3}$, so that $\left(b-a^{2}\right)^{2}+\left(c-a^{3}\right)^{2}=0$. The only possibility is that both $b-a^{2}=0$ and $c-a^{3}=0$ (since we're working over \mathbb{R}), hence $(a, b, c) \in \mathbb{V}\left(I_{1}\right)$. Hence $\mathbb{V}\left(I_{1}\right)=\mathbb{V}\left(I_{2}\right)$.
(iii) Let $I=\left(f_{1}, \ldots, f_{m}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and set

$$
g=f_{1}^{2}+\ldots+f_{m}^{2} .
$$

The ideal $I^{\prime}=(g)$ is contained in I, and so $\mathbb{V}(I) \subset \mathbb{V}\left(I^{\prime}\right)$. Conversely let $\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{V}\left(I^{\prime}\right)$, so that

$$
f_{1}\left(a_{1}, \ldots, a_{n}\right)^{2}+\ldots+f_{m}\left(a_{1}, \ldots, a_{n}\right)^{2}=0
$$

Since we're working over \mathbb{R}, it much be that $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$ for each $1 \leq i \leq m$. Hence $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}(I)$ and so $\mathbb{V}\left(I^{\prime}\right) \subset \mathbb{V}(I)$. We conclude that $\mathbb{V}(I)=\mathbb{V}\left(I^{\prime}\right)$, as required.
(iv) If $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\mathbb{V}(g)$ then $\sqrt{\left(f_{1}, \ldots, f_{s}\right)}=\sqrt{(g)}$ by the Nullstellensatz. Consider the radical ideal (x, y), and suppose that $(x, y)=\sqrt{(g)}$ for some $g \in \mathbb{C}[x, y]$. Then $x^{n}=h g$ for some $n \in \mathbb{Z}_{>0}$ and $h \in \mathbb{C}[x, y]$, and we see that g is a power of x. Similarly $y^{m}=h^{\prime} g$, and so g is a power of y. Hence $g \in \mathbb{C}$, which is a contradiction.
(i) Given an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ we define

$$
\begin{equation*}
\sqrt{I}:=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f^{m} \in I \text { for some } m>0\right\} . \tag{4}
\end{equation*}
$$

Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Then $\mathbb{I}(\mathbb{V}(I))=\sqrt{I}$.
(ii) Let $I=\left(x^{2}-x-2, x\left(y^{2}-1\right)\right) \subset \mathbb{C}[x, y]$. We see that $\mathbb{V}(I)=\mathbb{V}\left(x^{2}-x-2\right) \cap$ $\mathbb{V}\left(x\left(y^{2}-1\right)\right) \subset \mathbb{C}^{2}$. Now $\mathbb{V}\left(x^{2}-x-2\right)=\mathbb{V}(x-2) \cup \mathbb{V}(x+1)$ is given by the union of the two lines $x=2$ and $x=-1 \mathbb{V}\left(x\left(y^{2}-1\right)\right)=\mathbb{V}(x) \cup \mathbb{V}(y-1) \cup \mathbb{V}(y+1)$ is the union of the three lines $x=0$ and $y= \pm 1$. Hence $\mathbb{V}(I)$ equals the four points $\{(-1, \pm 1),(2, \pm 1)\}$. The Nullstellensatz tells us that

$$
\sqrt{I}=\mathbb{I}(\mathbb{V}(I))=\left((x+1)(x-2), y^{2}-1\right) .
$$

That $y^{2}-1 \in \sqrt{I}$ is immediate.
(iii) If $f \in \sqrt{\cap_{i} I_{i}}$ then $f^{m} \in \cap_{i} I_{i}$ for some integer $m>0$. Since $f^{m} \in I_{i}$, we have that $f \in \sqrt{I_{i}}$. Hence $f \in \cap_{i} \sqrt{I_{i}}$.
Conversely let $f \in \cap_{i} \sqrt{I_{i}}$. Then, for each $i \in \Gamma$, there exist $m_{i}>0$ such that $f^{m_{i}} \in I_{i}$. Let $m:=\max \left\{m_{i} \mid i \in \Gamma\right\}$. Then $f^{m} \in I_{i}$ for all $i \in \Gamma$, and hence $f \in \sqrt{\cap_{i} I_{i}}$.
(iv) Notice that

$$
(f)=\bigcap_{i=1}^{d}\left(\left(x-a_{i}\right)^{r_{i}}\right) .
$$

Since $\sqrt{\left(\left(x-a_{i}\right)^{r_{i}}\right)}=\left(x-a_{i}\right)$, the result follows immediately from (iii).
(5) Mastery Question.
(i) Let $g_{1}, g_{2} \in I:\left(f^{\infty}\right)$. Then there exists $m_{1}, m_{2} \in \mathbb{Z}_{>0}$ such that $f^{m_{1}} g_{1} \in I$ and $f^{m_{2}} g_{2} \in I$. Setting $m:=\max \left\{m_{1}, m_{2}\right\}$ we see that $f^{2 m} g_{1} g_{2}=f^{m} g_{1} \cdot f^{m} g_{2} \in I$, and so $g_{1} g_{2} \in I:\left(f^{\infty}\right)$. Now let $g \in I:\left(f^{\infty}\right), h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Then $f^{m} g \in I$ and so $f^{m} g h \in I$, hence $g h \in I:\left(f^{\infty}\right)$.
(ii) Given two ideals $I, J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, the colon ideal is the set

$$
I: J:=\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid f g \in I \text { for all } f \in J\right\}
$$

Since $\left(f^{m}\right)$ is principal, we have that $I:\left(f^{m}\right)=\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid f^{m} g \in I\right\}$. Suppose that $g \in I:\left(f^{m}\right)$. Then $f^{m} g \in I$, and so $f^{m+1} g \in I$. Hence $g \in I:\left(f^{m+1}\right)$, and we have an ascending chain of ideals.
By the Ascending Chain Condition there exists some $N \in \mathbb{Z}_{>0}$ such that this stabilises, i.e. such that $I:\left(f^{m}\right)=I:\left(f^{m+1}\right)$ for all $m \geq N$. We will show that
$I:\left(f^{\infty}\right)=I:\left(f^{N}\right)$. Clearly $I:\left(f^{N}\right) \subseteq I:\left(f^{\infty}\right)$ by definition of the saturation. Let $g \in I:\left(f^{\infty}\right)$. Then there exists some $m \in \mathbb{Z}_{>0}$ such that $f^{m} g \in I$, hence $g \in I:\left(f^{m}\right)$, hence $g \in I:\left(f^{N}\right)$.
(iii) Let $g \in I:\left(f^{\infty}\right)$. By (ii) we have that $f^{N} g \in I \subset \tilde{I}$. Write
$1=f^{N} y^{N}+\left(1-f^{N} y^{N}\right)=f^{N} y^{N}+(1-f y)\left(1+f y+\ldots+f^{N-1} y^{N-1}\right)$.
Multiplying through by g we obtain

$$
g=f^{N} g y^{N}+(1-f y)\left(1+f y+\ldots+f^{N-1} y^{N-1}\right) g
$$

Since $f^{N} g, 1-f y \in \tilde{I}$ and $g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ we conclude that $g \in \tilde{I} \cap \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Conversely suppose that $g \in \tilde{I} \cap \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
g=\sum_{i=1}^{s} p_{i} f_{i}+q(1-y f)
$$

for some $p_{i}, q \in \mathbb{C}\left[x_{1}, \ldots, x_{n}, y\right]$. Setting $y=1 / f$ gives $g=\sum_{i=1}^{s} p_{i}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{i}$. Clearing out the denominators by multiplying through by a sufficiently large power m of f gives $f^{m} g=\sum_{i=1}^{s} P_{i}\left(x_{1}, \ldots, x_{n}\right) f_{i}$, where the $P_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Hence $f^{m} g \in I$, and so $g \in I:\left(f^{\infty}\right)$.

