M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY EXAM 2014

(1) (i) State clearly the definition of a Gröbner basis. State Buchberger's Criterion for determining when a generating set $G=\left\{g_{1}, \ldots, g_{m}\right\}$ for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner basis.
(ii) Using lex order, for which values of a and b is the set $\left\{y-a x^{2}, z-b y^{3}\right\} \subset \mathbb{C}[x, y, z]$ a Gröbner basis?
(iii) State the definition of a reduced Gröbner basis. For every choice of a and b write down a lex-ordered reduced Gröbner basis for the set in (ii).
(iv) Hence or otherwise, for which values of a_{1}, b_{1}, and a_{2}, b_{2} are the ideals $\left(y-a_{1} x^{2}, z-\right.$ $\left.b_{1} y^{3}\right)$ and $\left(y-a_{2} x^{2}, z-b_{2} y^{3}\right)$ equal?
(2) (i) Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Recall that the l-th elimination ideal I_{l} is defined by $I_{l}:=I \cap \mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$.
(a) Prove that I_{l} is an ideal in $\mathbb{C}\left[x_{l+1}, \ldots, x_{n}\right]$.
(b) Prove that I_{l+1} is the first elimination ideal of I_{l}.
(ii) Let $I=\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and assume that, for some $1 \leq i \leq s, f_{i}$ can be written in the form

$$
f_{i}=c x_{1}^{N}+\text { terms in which } x_{1} \text { has degree }<N
$$

where $c \in \mathbb{C} \backslash\{0\}$ and $N>0$. Prove that given a partial solution $\left(a_{2}, \ldots, a_{n}\right) \in \mathbb{V}\left(I_{1}\right)$ there exists some $a_{1} \in \mathbb{C}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{V}(I)$.
[Hint: You may wish to make use of the Extension Theorem, which you should quote.]
(iii) Find all solutions in \mathbb{C}^{3} to the system of equations:

$$
x^{2}+\frac{1}{x^{2}}=y, \quad x+\frac{1}{x}=z
$$

You may assume that a lex-ordered Gröbner basis for the corresponding ideal is $\left\{x^{2}-x z+1, y-z^{2}+2\right\}$. What are the irreducible components of the resulting affine variety?
(3) (i) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. State clearly the definition of the affine variety $\mathbb{V}(I) \subset k^{n}$. Show that if I_{1}, I_{2} are two ideals such that $I_{1} \subseteq I_{2}$, then $\mathbb{V}\left(I_{1}\right) \supseteq \mathbb{V}\left(I_{2}\right)$.
(ii) The variety $\mathbb{V}\left(y-x^{2}, z-x^{3}\right) \subset \mathbb{R}^{3}$ is called the twisted cubic. Prove that $\mathbb{V}((y-$ $\left.\left.x^{2}\right)^{2}+\left(z-x^{3}\right)^{2}\right)$ is also the twisted cubic.
(iii) Let $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Show that any variety $\mathbb{V}(I) \subset \mathbb{R}^{n}$ can be defined by a single equation.
(iv) If we replace \mathbb{R} with \mathbb{C} in (iii) is the claim still true? Justify your answer with either a proof or a counter-example.
(4) (i) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. State the definition of the radical \sqrt{I} of I. State a version of the Nullstellensatz that connects radical ideals with affine varieties.
(ii) Consider the ideal $I=\left(x^{2}-x-2, x\left(y^{2}-1\right)\right) \subset \mathbb{C}[x, y]$. By computing $\mathbb{V}(I) \subset \mathbb{C}^{2}$, write down \sqrt{I}. Hence or otherwise show that $y^{2}-1 \in \sqrt{I}$.
(iii) Let $I_{i} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal for each i in some finite indexing set Γ. Prove that

$$
\sqrt{\bigcap_{i \in \Gamma} I_{i}}=\bigcap_{i \in \Gamma} \sqrt{I_{i}}
$$

(iv) By writing $f \in \mathbb{C}[x], f \neq 0$, as a product of distinct linear factors

$$
f=c \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}},
$$

where $c, a_{i} \in \mathbb{C}, c \neq 0$, use the result in (iii) to show that

$$
\sqrt{(f)}=\left(\prod_{i=1}^{d}\left(x-a_{i}\right)\right) .
$$

(5) Master Question. Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and fix a polynomial $f \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. We define the saturation of I with respect to f to be

$$
I:\left(f^{\infty}\right):=\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid f^{m} g \in I \text { for some } m>0\right\}
$$

(i) Prove that $I:\left(f^{\infty}\right)$ is an ideal.
(ii) State the definition of colon ideal and prove that we have an ascending chain of ideals

$$
I:(f) \subseteq I:\left(f^{2}\right) \subseteq I:\left(f^{3}\right) \subseteq \ldots
$$

Hence or otherwise show that there exists some $N \in \mathbb{Z}_{>0}$ such that $I:\left(f^{\infty}\right)=I$: $\left(f^{N}\right)$.
(iii) Given $I=\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, define

$$
\tilde{I}:=\left(f_{1}, \ldots, f_{s}, 1-f y\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}, y\right]
$$

where y is a new variable. Prove that $I:\left(f^{\infty}\right)=\tilde{I} \cap \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

