M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY EXAM 2013

(1) (i) State clearly the definition of a Gröbner basis. State Buchberger's Criterion for determining when a generating set $G=\left\{g_{1}, \ldots, g_{m}\right\}$ for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner basis.
(ii) Find a Gröbner basis for the ideal $I=\left(y^{2}-x, z^{4}-y^{2}\right) \subset \mathbb{C}[x, y, z]$ using lex order.
(iii) Recall that a Gröbner basis G is said to be reduced if, for all $g \in G, \mathrm{LC}(g)=1$ and no monomial of g lies in $(\operatorname{LT}(G \backslash\{g\}))$. Is the basis you found in (ii) reduced? If not, make it reduced.
(iv) A computer program outputs $\left\{x-y^{2}, y^{3}-z^{4}\right\}$ as a Gröbner basis for the ideal I defined in (ii). What conclusions can you draw?
(2) (i) Assuming the Ascending Chain Condition for ideals, prove that for any descending chain of affine varieties

$$
V_{1} \supseteq V_{2} \supseteq \ldots
$$

there exists some positive integer N such that $V_{N}=V_{N+1}=\ldots$.
(ii) Recall that an affine variety $V \subset k^{n}$ is said to be irreducible if whenever $V=U \cup W$ for two affine varieties $U, W \subset k^{n}$, then either $V=U$ or $V=W$. By using the result of (i), show that any affine variety V can be written as a finite union of irreducible varieties:

$$
V=V_{1} \cup \ldots \cup V_{m}
$$

(iii) Show that if $g \in k\left[x_{1}, \ldots, x_{n}\right]$ factors as $g=g_{1} g_{2}$ then, for any $f \in k\left[x_{1}, \ldots, x_{n}\right]$ we have that $\mathbb{V}(f, g)=\mathbb{V}\left(f, g_{1}\right) \cup \mathbb{V}\left(f, g_{2}\right)$.
(iv) Write $\mathbb{V}\left(y^{2}-x^{2}, x(z-y)+z(z-y)\right) \subset \mathbb{C}^{3}$ as a finite union of irreducible varieties. [Hint: You may assume that any variety $V \subset \mathbb{C}^{3}$ that can be defined parametrically is irreducible.]
(i) Let $f \in \mathbb{C}[x]$ be a non-zero polynomial. We can express f as a product of linear factors

$$
f=c \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}}
$$

where $c, a_{i} \in \mathbb{C}, c \neq 0$. Define the reduction of f to be

$$
f_{\text {red }}=c \prod_{i=1}^{d}\left(x-a_{i}\right) \in \mathbb{C}[x]
$$

Compute $\mathbb{V}(f)$ and show directly that $\mathbb{I}(\mathbb{V}(f))=\left(f_{\text {red }}\right) \subset \mathbb{C}[x]$.
(ii) Define the radical \sqrt{I} of a polynomial ideal I and state a version of the Nullstellensatz relating $\mathbb{I}(\mathbb{V}(I))$ and \sqrt{I}.
(iii) Let $I=(x y, x(x-y)) \subset \mathbb{C}[x, y]$. Describe $\mathbb{V}(I)$ and find \sqrt{I}.
(4) (i) Prove that if

$$
I=\left(x^{\alpha} \mid \alpha \in A\right), \quad A \subset \mathbb{Z}_{\geq 0}^{n}
$$

is a monomial ideal, then a monomial x^{β} is an element of I if and only if x^{β} is divisible by some $\alpha \in A$.
(ii) Recall that, given an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, we define the leading term ideal of I to be the ideal generated by the leading terms of the elements in I, i.e.

$$
\operatorname{LT}(I)=(\operatorname{LT}(f) \mid f \in I)
$$

Let $I=\left(x^{3}-2 x y, x^{2} y-2 y^{2}+x\right) \subset k[x, y]$. Using graded lex order, show that $x^{2} \in$ $\operatorname{LT}(I)$. Is it the case that when $I=\left(f_{1}, \ldots, f_{m}\right)$ we have $\operatorname{LT}(I)=\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{m}\right)\right)$?
(iii) Suppose that $I=\left(f_{1}, \ldots, f_{m}\right)$ is a polynomial ideal such that

$$
\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{m}\right)\right) \varsubsetneqq \operatorname{LT}(I) .
$$

Prove that there exists some $f \in I$ whose remainder on division by f_{1}, \ldots, f_{m} is non-zero.
(5) Mastery Question. Fix a monomial order and let $G=\left\{g_{1}, \ldots, g_{m}\right\} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a set of polynomials. Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$, we say that f reduces to zero modulo G, and write $f \rightarrow_{G} 0$, if f can be expressed in the form

$$
f=a_{1} g_{1}+\ldots+a_{m} g_{m}
$$

such that whenever $a_{i} g_{i} \neq 0$ we have that

$$
\operatorname{multideg}(f) \geq \operatorname{multideg}\left(a_{i} g_{i}\right)
$$

(i) By using the Division Algorithm, prove that $\bar{f}^{G}=0$ implies that $f \rightarrow_{G} 0$.
(ii) Let $f=x(y+1)(y-1)$ and $G=\left\{x y+1, y^{2}-1\right\}$. Using lex order, show that the converse to (i) does not hold.
(iii) Let $f, g \in G$ be such that the leading monomials of f and g are coprime, i.e.

$$
\operatorname{lcm}\{\operatorname{LM}(f), \operatorname{LM}(g)\}=\operatorname{LM}(f) \operatorname{LM}(g)
$$

Prove that $S(f, g) \rightarrow_{G} 0$.
[Hint: Without loss of generality you may assume that $\mathrm{LC}(f)=\mathrm{LC}(g)=1$. It may also be helpful to write $f=\mathrm{LM}(f)+p$ and $g=\mathrm{LM}(g)+q$ for some polynomials $\left.p, q \in k\left[x_{1}, \ldots, x_{n}\right].\right]$
Recall that Buchberger's Criterion states that a set of generators $G=\left\{g_{1}, \ldots, g_{m}\right\}$ for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner basis if and only if the remainder $\overline{S\left(g_{i}, g_{j}\right)}{ }^{G}$
is zero for all $i \neq j$. The proof relies on the fact that we can express S-polynomials in the form

$$
S\left(g_{i}, g_{j}\right)=\sum_{r=1}^{m} a_{r i j} g_{r}, \quad \text { where multideg }\left(a_{r i j} g_{r}\right) \leq \operatorname{multideg}\left(S\left(g_{i}, g_{j}\right)\right)
$$

More generally, we can restate Buchberger's Criterion as follows: $G=\left\{g_{1}, \ldots, g_{m}\right\}$ is a Gröbner basis for a polynomial ideal I if and only if $S\left(g_{i}, g_{j}\right) \rightarrow_{G} 0$ for all $i \neq j$.
(iv) Explain briefly how your result in (iii) can be used to simplify the calculations involved when applying Buchberger's Criterion.
(v) Using graded lex order, determine whether $G=\left\{x^{3}+y, y(1+z), z^{4}\right\}$ is a Gröbner basis for the polynomial ideal $I=\left(x^{3}+y, y(1+z), z^{4}\right)$.

