
M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY

SOLUTIONS 5

(1) (a) Let I =
(
x3 − y2, 3x2, 2y

)
⊂ k2. This has lex Gröbner basis

G = {x2, y}.

Hence V(I) = {(0, 0)} and so (0, 0) is the only singular point of x3 = y2.

(b) Let I =
(
x3 − cx2 + y2, 3x2 − 2cx, 2y

)
⊂ k2. To calculate the lex Gröbner basis

of this using a computer, I’m going to regard c as a variable and use the order

c > x > y. Using Magma:

> R<c,x,y>:=PolynomialRing(Rationals(),3);

> I:=ideal<R|[x^3-c*x^2+y^2,3*x^2-2*c*x,2*y]>;

> GroebnerBasis(I);

[

c*x - 3/2*x^2,

x^3,

y

]

Again, we see that (0, 0) is the only singular point. (Of course we can solve this

without using a computer – or even calculating a Gröbner basis. See the solution I

offer for the next question.)

(c) Since we’re told that x2 +y2 = a2 is a circle, we have that a 6= 0. Let I = (x2 +y2−
a2, 2x, 2y). Notice that x ∈ I and y ∈ I, hence V(I) ⊂ V(x) ∩ V(y) = {(0, 0)}. But

(0, 0) is not a solution to x2 + y2 = a2 except in the case a = 0 (which has already

been excluded). Hence there are no singular points.

(2) (a) Let I1 = (y−x2, z−x3) and I2 = ((y−x2)2+(z−x3)2). Since I2 ⊂ I1, we have that

V(I1) ⊂ V(I2). Conversely let (a, b, c) ∈ V(I2) ⊂ R3, so that (b−a2)2+(c−a3)2 = 0.

The only possibility is that both b − a2 = 0 and c − a3 = 0 (since we’re working

over R), hence (a, b, c) ∈ V(I1). Hence V(I1) = V(I2).

(b) Let I = (f1, . . . , fm) ⊂ R[x1, . . . , xn] be an ideal, and set

g = f2
1 + . . . + f2

m.

The ideal I ′ = (g) is contained in I, and so V(I) ⊂ V(I ′). Conversely let (a1, . . . , an) ∈
V(I ′), so that

f1(a1, . . . , an)2 + . . . + fm(a1, . . . , an)2 = 0.
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Since we’re working over R, it much be that fi(a1, . . . , an) = 0 for each 1 ≤ i ≤ m.

Hence (a1, . . . , an) ∈ V(I) and so V(I ′) ⊂ V(I). We conclude that V(I) = V(I ′), as

required.

(3) Let I = (x2, y2). Then x, y ∈
√
I, and so (x, y) ⊂

√
I. Suppose that there exists some

f ∈
√
I such that f 6∈ (x, y). We have that

f =
∑

i≥0,j≥0
cijx

iyj , where cij ∈ k,

where finitely many of the cij are non-zero. Rewriting this in the form

f = c00 + x
∑

i>0,j≥0
cijx

i−1yj + y
∑
j>0

c0jy
j−1

we see that f 6∈ (x, y) implies that c00 6= 0. In particular, c00 ∈
√
I and so 1 ∈

√
I. By

definition of radical this implies that 1 ∈ I, which is a contradiction.

Notice that the same argument works if we start with I = (xn, ym) for any n,m ∈ Z>0.

(4) (a) Set I =
(
x3, y3, xy(x + y)

)
⊂ k[x, y] and consider Ĩ =

(
x3, y3, xy(x + y), 1− z(x + y)

)
⊂

k[x, y, z]. Using lex order, this has Gröbner basis {1}, so we conclude that x + y ∈√
I.

The lex-ordered Gröbner basis for I is G = {x3, x2y + xy2, y3}. By calculating

(x + y)n
G

for successive powers of n, we find that n = 3 is the smallest power

contained in I. [By looking at G, do you see how you could have deduced this

without having to calculate the remainders?]

(b) We have Ĩ =
(
x + z, x2y, x− z2, 1− w(x2 + 3xz)

)
∈ k[x, y, z, w]. Using lex order,

this has Gröbner basis G = {x− 1, y, z + 1, w + 1/2}. This tells us that 1 6∈ Ĩ, and

so x2 + 3xz 6∈
√
I.

(5) Let J be a prime ideal containing I. If f ∈ C[x1, . . . , xn] is such that fk ∈ I for some

k > 0, then fk ∈ J . But J is prime, so f ∈ J . Hence
√
I ⊆

⋂
J.

Conversely, suppose that f ∈ C[x1, . . . , xn] is such that f 6∈
√
I. We shall show that

the difference V(I) \ V(f) is non-empty. Hence there exists some point (a1, . . . , an) ∈
V(I) \ V(f), and this corresponds (since C is algebraically closed) to a maximal ideal

(x1−a1, . . . , xn−an) ⊂ C[x1, . . . , xn] containing I (since I is proper) but not containing

f . Since maximal ideals are always prime, we conclude that f 6∈
⋂
J .

It remains to show that V(I)\V(f) 6= ∅. Suppose for a contradiction that V(I) ⊆ V(f).

By the Nullstellensatz we have that
√

(f) ⊆
√
I, and so f ∈

√
f . But this contradicts

our choice of f .

[Those of you who have taken a course in commutative algebra should be able to

provide a more direct proof of this result.]

(6) Let I = (xz − y2, z3 − x5) ⊂ C[x, y, z]. Using lex order, this has Gröbner basis

G = {x5 − z3, x4y2 − z4, x3y4 − z5, x2y6 − z6, xy8 − z7, xz − y2, y10 − z8}.
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From y10 = z8 we see that

V(I1) =
(
(±t4, t5) | t ∈ C

)
.

Extending we have that

V(I) =
(
(t3,±t4, t5) | t ∈ C

)
.

(To see this I used the first equation, x5 = z3, and then checked that the parameterisa-

tions satisfied the remaining equations.) Thus we have expressed V(I) as the union of

two components:

V(I) =
(
(t3, t4, t5) | t ∈ C

)
∪
(
(t3,−t4, t5) | t ∈ C

)
.

The fact that these components are irreducible is an immediate consequence of them

being defined parametrically.

(7) Let V,W ⊂ kn be two affine varieties such that V ⊂ W , and let Z be an irreducible

component of V . Let W = W1 ∪ . . . ∪Wm be a decomposition of W into irreducible

components. We will proceed by induction on the number of components m.

First suppose that m = 1. Since Z ⊂ V ⊂ W = W1, we are done. Suppose now that

m > 1. Since Z ⊂ V ⊂W ,

Z =
m⋃
i=1

Z ∩Wi,

where each of the affine varieties Z ∩Wi is disjoint. Without loss of generality we may

assume that Z ∩W1 6= ∅. Set

Z1 := Z ∩W1, Z2 :=
m⋃
i=2

Z ∩Wi.

Notice that Z2, as the finite union of (m − 1) affine varieties, is also an affine variety.

We have that Z = Z1 ∪ Z2, and since Z is irreducible either Z = Z1 or Z = Z2. In the

first case we conclude that Z ⊂ W1, and so are done. In the second case we can apply

our inductive hypothesis to the (m− 1) components W2 ∪ . . . ∪Wm, and so are done.

3


