M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY
SOLUTIONS 5

(1) (a) Let I = (2® —y? 322, 2y) C k?. This has lex Grobner basis

G = {z* y}.

Hence V(I) = {(0,0)} and so (0,0) is the only singular point of x3 = y?.

(b) Let I = (2% — ca? 4 y?,32% — 2cz,2y) C k% To calculate the lex Grébner basis
of this using a computer, I'm going to regard c as a variable and use the order
c >z > y. Using MAGMA:
> R<c,x,y>:=PolynomialRing(Rationals(),3);
> I:=ideal<R| [x"3-c*x"2+y"2,3*%x"2-2%c*x,2%y]>;

> GroebnerBasis(I);

[
ckx - 3/2%x°2,
x~3,
y

]

Again, we see that (0,0) is the only singular point. (Of course we can solve this
without using a computer — or even calculating a Grébner basis. See the solution 1
offer for the next question.)

(c) Since we're told that x2 4 y? = a? is a circle, we have that a # 0. Let I = (22 +y% —
a?,2x,2y). Notice that 2 € I and y € I, hence V(I) C V(x) N V(y) = {(0,0)}. But
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(0,0) is not a solution to 22 + y? = a® except in the case a = 0 (which has already

been excluded). Hence there are no singular points.
(2) (a) Let 1 = (y—2%,z—2%) and Iy = ((y—2?)?+ (2 —23)?). Since I C I, we have that
V(1) € V(I). Conversely let (a,b,c) € V(I3) C R3, so that (b—a?)?+(c—a?)? = 0.
The only possibility is that both b — a? = 0 and ¢ — a® = 0 (since we’re working
over R), hence (a,b,c) € V(I1). Hence V(I;) = V(I3).
(b) Let I = (f1,..., fm) C R[z1,...,2,] be an ideal, and set

g=fi+.. . +f2.

The ideal I' = (g) is contained in I, and so V(I) C V(I’). Conversely let (aq,...,a,) €
V(I'), so that

fl(al,...,an)2—|—...—|—fm(a1,...,an)2:O.
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Since we're working over R, it much be that f;(ai,...,a,) =0 for each 1 <i < m.
Hence (a1, ...,a,) € V(I) and so V(I') C V(I). We conclude that V(I) = V(I'), as
required.
(3) Let I = (22,y?). Then z,y € VI, and so (z,y) C VI. Suppose that there exists some
f € VI such that f ¢ (z,y). We have that
f= Z cijz'y’, where ¢;; € k,
i>0,j>0
where finitely many of the ¢;; are non-zero. Rewriting this in the form
f=coo+x Z cjr' Yy + yZCijj_l
i>0,5>0 7>0
we see that f ¢ (x,y) implies that cog # 0. In particular, cog € VI and so 1 € VI. By
definition of radical this implies that 1 € I, which is a contradiction.
Notice that the same argument works if we start with I = (z",y™) for any n,m € Z-o.
(4) (a) Set I = (29 zy(z +y)) C k[z,y] and consider I = (2°,°, zy(z +y),1 — 2(z +y)) C
k[x,y, z]. Using lex order, this has Grébner basis {1}, so we conclude that x + y €
V1.
The lex-ordered Grébner basis for I is G = {23, 2%y + 29%,y%}. By calculating
(z —I—y)”G for successive powers of n, we find that n = 3 is the smallest power
contained in I. [By looking at G, do you see how you could have deduced this
without having to calculate the remainders?|
(b) We have I = (x + 2z, 2%y, — 22,1 —w(zx? + sz)) € k[z,y, z,w|. Using lex order,
this has Grobner basis G = {x — 1,y,2z + 1,w + 1/2}. This tells us that 1 ¢ I, and
so 22 4 3z2 ¢ V.
(5) Let J be a prime ideal containing I. If f € Clzy,...,z,] is such that f¥ € I for some
k > 0, then f* € J. But J is prime, so f € J. Hence

vVIic()J

Conversely, suppose that f € C[zy,...,x,] is such that f ¢ V/I. We shall show that
the difference V(I) \ V(f) is non-empty. Hence there exists some point (ai,...,a,) €
V(I)\ V(f), and this corresponds (since C is algebraically closed) to a maximal ideal
(x1—a1,...,xn—an) C Clxy,...,zy] containing I (since I is proper) but not containing
f. Since maximal ideals are always prime, we conclude that f & () J.

It remains to show that V(I)\V(f) # 0. Suppose for a contradiction that V(I) C V(f).
By the Nullstellensatz we have that \/m C VI, and so f € /f. But this contradicts
our choice of f.

[Those of you who have taken a course in commutative algebra should be able to
provide a more direct proof of this result.]

(6) Let I = (zz —y?,2% — 2%) C C[x,y, 2]. Using lex order, this has Grébner basis

G = 2% — 23, aty? — 24, a8yt — 25 a0 — 28 wyB — 2T e — o2, yt0 — 28,
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8 we see that

V(L) = (£t %) |t C).

From y'0 = 2z

Extending we have that

V(I) = (£, £t t°) [t C).

5 = 23, and then checked that the parameterisa-

(To see this I used the first equation,
tions satisfied the remaining equations.) Thus we have expressed V(I) as the union of

two components:
V() = ((#3,t4,8°) | t € C) U ((£3, —t%,#°) | t € C) .

The fact that these components are irreducible is an immediate consequence of them
being defined parametrically.
Let V,W C k™ be two affine varieties such that V' € W, and let Z be an irreducible
component of V. Let W = Wy U...UW,, be a decomposition of W into irreducible
components. We will proceed by induction on the number of components m.
First suppose that m = 1. Since Z C V C W = W}, we are done. Suppose now that

m>1. Since ZCcV Cc W,

m

z=Jznw,

i=1
where each of the affine varieties Z N W; is disjoint. Without loss of generality we may
assume that Z N Wy # (). Set

m
Zy:=20Wi,  Zy:=|JZnWi
i=2
Notice that Zo, as the finite union of (m — 1) affine varieties, is also an affine variety.
We have that Z = Z7 U Z5, and since Z is irreducible either Z = Z7 or Z = Z5. In the
first case we conclude that Z C Wi, and so are done. In the second case we can apply
our inductive hypothesis to the (m — 1) components Wy U ... U W,,, and so are done.



