M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SOLUTIONS 5

(1) (a) Let $I=\left(x^{3}-y^{2}, 3 x^{2}, 2 y\right) \subset k^{2}$. This has lex Gröbner basis

$$
G=\left\{x^{2}, y\right\} .
$$

Hence $\mathbb{V}(I)=\{(0,0)\}$ and so $(0,0)$ is the only singular point of $x^{3}=y^{2}$.
(b) Let $I=\left(x^{3}-c x^{2}+y^{2}, 3 x^{2}-2 c x, 2 y\right) \subset k^{2}$. To calculate the lex Gröbner basis of this using a computer, I'm going to regard c as a variable and use the order $c>x>y$. Using Magma:
$>\mathrm{R}\langle\mathrm{c}, \mathrm{x}, \mathrm{y}\rangle:=$ PolynomialRing(Rationals(),3);
$>\mathrm{I}:=$ ideal<R|[x^3-c*x^2+y^2,3*x^2-2*C*x,2*y]>;
> GroebnerBasis(I);
[
$c * x-3 / 2 * x^{\wedge} 2$,
$\mathrm{x}^{\wedge} 3$,
y
]
Again, we see that $(0,0)$ is the only singular point. (Of course we can solve this without using a computer - or even calculating a Gröbner basis. See the solution I offer for the next question.)
(c) Since we're told that $x^{2}+y^{2}=a^{2}$ is a circle, we have that $a \neq 0$. Let $I=\left(x^{2}+y^{2}-\right.$ $\left.a^{2}, 2 x, 2 y\right)$. Notice that $x \in I$ and $y \in I$, hence $\mathbb{V}(I) \subset \mathbb{V}(x) \cap \mathbb{V}(y)=\{(0,0)\}$. But $(0,0)$ is not a solution to $x^{2}+y^{2}=a^{2}$ except in the case $a=0$ (which has already been excluded). Hence there are no singular points.
(2) (a) Let $I_{1}=\left(y-x^{2}, z-x^{3}\right)$ and $I_{2}=\left(\left(y-x^{2}\right)^{2}+\left(z-x^{3}\right)^{2}\right)$. Since $I_{2} \subset I_{1}$, we have that $\mathbb{V}\left(I_{1}\right) \subset \mathbb{V}\left(I_{2}\right)$. Conversely let $(a, b, c) \in \mathbb{V}\left(I_{2}\right) \subset \mathbb{R}^{3}$, so that $\left(b-a^{2}\right)^{2}+\left(c-a^{3}\right)^{2}=0$. The only possibility is that both $b-a^{2}=0$ and $c-a^{3}=0$ (since we're working over \mathbb{R}), hence $(a, b, c) \in \mathbb{V}\left(I_{1}\right)$. Hence $\mathbb{V}\left(I_{1}\right)=\mathbb{V}\left(I_{2}\right)$.
(b) Let $I=\left(f_{1}, \ldots, f_{m}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and set

$$
g=f_{1}^{2}+\ldots+f_{m}^{2}
$$

The ideal $I^{\prime}=(g)$ is contained in I, and so $\mathbb{V}(I) \subset \mathbb{V}\left(I^{\prime}\right)$. Conversely let $\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{V}\left(I^{\prime}\right)$, so that

$$
f_{1}\left(a_{1}, \ldots, a_{n}\right)^{2}+\ldots+f_{m}\left(a_{1}, \ldots, a_{n}\right)^{2}=0
$$

[^0]Since we're working over \mathbb{R}, it much be that $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$ for each $1 \leq i \leq m$. Hence $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}(I)$ and so $\mathbb{V}\left(I^{\prime}\right) \subset \mathbb{V}(I)$. We conclude that $\mathbb{V}(I)=\mathbb{V}\left(I^{\prime}\right)$, as required.
(3) Let $I=\left(x^{2}, y^{2}\right)$. Then $x, y \in \sqrt{I}$, and so $(x, y) \subset \sqrt{I}$. Suppose that there exists some $f \in \sqrt{I}$ such that $f \notin(x, y)$. We have that

$$
f=\sum_{i \geq 0, j \geq 0} c_{i j} x^{i} y^{j}, \quad \text { where } c_{i j} \in k
$$

where finitely many of the $c_{i j}$ are non-zero. Rewriting this in the form

$$
f=c_{00}+x \sum_{i>0, j \geq 0} c_{i j} x^{i-1} y^{j}+y \sum_{j>0} c_{0 j} y^{j-1}
$$

we see that $f \notin(x, y)$ implies that $c_{00} \neq 0$. In particular, $c_{00} \in \sqrt{I}$ and so $1 \in \sqrt{I}$. By definition of radical this implies that $1 \in I$, which is a contradiction.

Notice that the same argument works if we start with $I=\left(x^{n}, y^{m}\right)$ for any $n, m \in \mathbb{Z}_{>0}$.
(a) Set $I=\left(x^{3}, y^{3}, x y(x+y)\right) \subset k[x, y]$ and consider $\tilde{I}=\left(x^{3}, y^{3}, x y(x+y), 1-z(x+y)\right) \subset$ $k[x, y, z]$. Using lex order, this has Gröbner basis $\{1\}$, so we conclude that $x+y \in$ \sqrt{I}.
The lex-ordered Gröbner basis for I is $G=\left\{x^{3}, x^{2} y+x y^{2}, y^{3}\right\}$. By calculating ${\overline{(x+y)^{n}}}^{G}$ for successive powers of n, we find that $n=3$ is the smallest power contained in I. [By looking at G, do you see how you could have deduced this without having to calculate the remainders?]
(b) We have $\tilde{I}=\left(x+z, x^{2} y, x-z^{2}, 1-w\left(x^{2}+3 x z\right)\right) \in k[x, y, z, w]$. Using lex order, this has Gröbner basis $G=\{x-1, y, z+1, w+1 / 2\}$. This tells us that $1 \notin \tilde{I}$, and so $x^{2}+3 x z \notin \sqrt{I}$.
(5) Let J be a prime ideal containing I. If $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is such that $f^{k} \in I$ for some $k>0$, then $f^{k} \in J$. But J is prime, so $f \in J$. Hence

$$
\sqrt{I} \subseteq \bigcap J
$$

Conversely, suppose that $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is such that $f \notin \sqrt{I}$. We shall show that the difference $\mathbb{V}(I) \backslash \mathbb{V}(f)$ is non-empty. Hence there exists some point $\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{V}(I) \backslash \mathbb{V}(f)$, and this corresponds (since \mathbb{C} is algebraically closed) to a maximal ideal $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ containing I (since I is proper) but not containing f. Since maximal ideals are always prime, we conclude that $f \notin \bigcap J$.

It remains to show that $\mathbb{V}(I) \backslash \mathbb{V}(f) \neq \emptyset$. Suppose for a contradiction that $\mathbb{V}(I) \subseteq \mathbb{V}(f)$. By the Nullstellensatz we have that $\sqrt{(f)} \subseteq \sqrt{I}$, and so $f \in \sqrt{f}$. But this contradicts our choice of f.
[Those of you who have taken a course in commutative algebra should be able to provide a more direct proof of this result.]
(6) Let $I=\left(x z-y^{2}, z^{3}-x^{5}\right) \subset \mathbb{C}[x, y, z]$. Using lex order, this has Gröbner basis

$$
G=\left\{x^{5}-z^{3}, x^{4} y^{2}-z^{4}, x^{3} y^{4}-z^{5}, x_{2}^{2} y^{6}-z^{6}, x y^{8}-z^{7}, x z-y^{2}, y^{10}-z^{8}\right\}
$$

From $y^{10}=z^{8}$ we see that

$$
\mathbb{V}\left(I_{1}\right)=\left(\left(\pm t^{4}, t^{5}\right) \mid t \in \mathbb{C}\right)
$$

Extending we have that

$$
\mathbb{V}(I)=\left(\left(t^{3}, \pm t^{4}, t^{5}\right) \mid t \in \mathbb{C}\right) .
$$

(To see this I used the first equation, $x^{5}=z^{3}$, and then checked that the parameterisations satisfied the remaining equations.) Thus we have expressed $\mathbb{V}(I)$ as the union of two components:

$$
\mathbb{V}(I)=\left(\left(t^{3}, t^{4}, t^{5}\right) \mid t \in \mathbb{C}\right) \cup\left(\left(t^{3},-t^{4}, t^{5}\right) \mid t \in \mathbb{C}\right)
$$

The fact that these components are irreducible is an immediate consequence of them being defined parametrically.
(7) Let $V, W \subset k^{n}$ be two affine varieties such that $V \subset W$, and let Z be an irreducible component of V. Let $W=W_{1} \cup \ldots \cup W_{m}$ be a decomposition of W into irreducible components. We will proceed by induction on the number of components m.

First suppose that $m=1$. Since $Z \subset V \subset W=W_{1}$, we are done. Suppose now that $m>1$. Since $Z \subset V \subset W$,

$$
Z=\bigcup_{i=1}^{m} Z \cap W_{i}
$$

where each of the affine varieties $Z \cap W_{i}$ is disjoint. Without loss of generality we may assume that $Z \cap W_{1} \neq \emptyset$. Set

$$
Z_{1}:=Z \cap W_{1}, \quad Z_{2}:=\bigcup_{i=2}^{m} Z \cap W_{i} .
$$

Notice that Z_{2}, as the finite union of $(m-1)$ affine varieties, is also an affine variety. We have that $Z=Z_{1} \cup Z_{2}$, and since Z is irreducible either $Z=Z_{1}$ or $Z=Z_{2}$. In the first case we conclude that $Z \subset W_{1}$, and so are done. In the second case we can apply our inductive hypothesis to the $(m-1)$ components $W_{2} \cup \ldots \cup W_{m}$, and so are done.

[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

