M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SOLUTIONS 3

(1) Let $S:=\left\{\beta \mid x^{\beta} \in I\right\} \subset \mathbb{Z}_{\geq 0}^{n}$. SInce we are using a monomial order, S has a smallest element $\gamma \in S$. Then $x^{\gamma} \in I$, so there exists some $\alpha \in A$ such that $x^{\alpha} \mid x^{\gamma}$. Hence $\alpha \leq \gamma$. But $\alpha \in S$ by construction, so $\alpha=\gamma$.
(2) First we show existence. By Dickson's Lemma we can write $I=\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right)$ for some finite set of generators $A=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subset \mathbb{Z}_{\geq 0}^{n}$. Suppose that there exist $\alpha_{i}, \alpha_{j} \in A$, $i \neq j$, such that $x^{\alpha_{i}} \mid x^{\alpha_{j}}$. Then $A^{\prime}:=A \backslash\left\{\alpha_{j}\right\}$ is such that $\left(x^{\alpha} \mid \alpha \in A^{\prime}\right)=I$. Proceeding by induction we see that this process must terminate (since A is finite) with a minimal generating set.

Now for uniqueness. Suppose for a contradiction that $\left\{x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right\}$ and $\left\{x^{\beta_{1}}, \ldots, x^{\beta_{r}}\right\}$ are two different minimal generating sets. Without loss of generality we may take $x^{\beta_{1}} \notin\left\{x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right\}$. Since $x^{\beta_{1}} \in\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right)$, so there exists some α_{i} such that $x^{\alpha_{i}} \mid x^{\beta_{1}}$. But $x^{\alpha_{i}} \in\left(x^{\beta_{1}}, \ldots, x^{\beta_{r}}\right)$, so there exists some β_{j} such that $x^{\beta_{j}} \mid x^{\alpha_{i}}$. Hence $x^{\beta_{j}} \mid x^{\beta_{1}}$. By minimality $j=1$, hence $\alpha_{i}=\beta_{1}$.
(3) Suppose that $f \in I$. Then $f=\sum_{i=1}^{s} h_{i} x^{\alpha_{i}}$ for some $h_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$. So each term of f is divisible by some $x^{\alpha_{i}}$. Hence $\bar{f}^{x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}}=0$. Conversely suppose that $\bar{f}^{x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}}=0$. This means (by the Division Algorithm) that there exist $h_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $f=\sum_{i=1}^{s} h_{i} x^{\alpha_{i}}$, and so $f \in I$.
(4) (a)

$$
\begin{aligned}
\frac{x^{2} y z^{2}}{4 x^{2} z}\left(4 x^{2} z-7 y^{2}\right)-\frac{x^{2} y z^{2}}{x y z^{2}}\left(x y z^{2}+3 x z^{4}\right) & =x^{2} y z^{2}-\frac{7}{4} y^{3} z-x^{2} y z^{2}-3 x^{2} z^{4} \\
& =-3 x^{2} z^{4}-\frac{7}{4} y^{3} z
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{x^{4} y z^{2}}{x^{4} y}\left(x^{4} y-z^{2}\right)-\frac{x^{4} y z^{2}}{3 x y z^{2}}\left(3 x y z^{2}-y\right) & =x^{4} y z^{2}-z^{4}-x^{4} y z^{2}+\frac{1}{3} x^{3} y \\
& =\frac{1}{3} x^{3} y-z^{4}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{x y z^{2}}{x y}\left(x y+z^{3}\right)-\frac{x y z^{2}}{z^{2}}\left(z^{2}-3 z\right) & =x y z^{2}+z^{3}-x y z^{2}+3 x y z \\
& =3 x y z+z^{3}
\end{aligned}
$$

[^0](5) We use Buchberger's Criterion.
\[

$$
\begin{aligned}
S\left(x^{4} y^{2}-z^{5}, x^{3} y^{3}-1\right) & =\frac{x^{4} y^{3}}{x^{4} y^{2}}\left(x^{4} y^{2}-z^{5}\right)-\frac{x^{4} y^{3}}{x^{3} y^{3}}\left(x^{3} y^{3}-1\right) \\
& =x^{4} y^{3}-y z^{5}-x^{4} y^{3}+x \\
& =-y z^{5}+x .
\end{aligned}
$$
\]

But $\overline{-y z^{5}+x}{ }^{G}=-y z^{5}+x$, so this is not a Gröbner basis.
(6)

$$
\begin{aligned}
& S\left(x^{\alpha} f, x^{\beta} g\right)= \frac{x^{\delta}}{x^{\alpha} \operatorname{LT}(F)} x^{\alpha} f-\frac{x^{\delta}}{x^{\beta} \operatorname{LT}(g)} x^{\beta} g \\
& \quad \text { where } \delta:=\operatorname{lcm}\left\{x^{\alpha} \operatorname{LM}(f), x^{\beta} \operatorname{LM}(g)\right\} \\
&= \frac{x^{\delta}}{\operatorname{LT}(F)} f-\frac{x^{\delta}}{\operatorname{LT}(g)} g \\
&= x^{\delta-\epsilon}\left(\frac{x^{\epsilon}}{\operatorname{LT}(f)} f-\frac{x^{\epsilon}}{\operatorname{LT}(g)} g\right) \\
& \quad \text { where } \epsilon:=\operatorname{lcm}\{\operatorname{LM}(f), \operatorname{LM}(g)\} \\
&= x^{\delta-\epsilon} S(f, g) . \quad . \quad
\end{aligned}
$$

(7) (a) Let $I_{1}=\mathbb{I}(V)$ and $I_{2}=\mathbb{I}(W)$. Since V and W are both affine varieties, $\mathbb{V}\left(I_{1}\right)=V$ and $\mathbb{V}\left(I_{2}\right)=W$. By the Hilbert Basis Theorem there exists $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $I_{1}=\left(f_{1}, \ldots, f_{s}\right)$.
Suppose that $V \subseteq W$. Then for any $f \in I_{2}$ we have that $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in W \supseteq V$, so $f \in I_{1}$. Hence $I_{2} \subseteq I_{1}$. Now suppose $V \subsetneq W$, so that there exists some $\left(a_{1}, \ldots, a_{n}\right) \in W \backslash V$. Then $f_{i}\left(a_{1}, \ldots, a_{n}\right) \neq 0$ for some $1 \leq i \leq s$ (since otherwise $\left.\left(a_{1}, \ldots, a_{n}\right) \in V\right)$, hence $f_{i} \notin I_{2}$, so $I_{2} \subsetneq I_{1}$.
Conversely suppose first that $I_{2} \subseteq I_{1}$. Then for every $\left(a_{1}, \ldots, a_{n}\right) \in V$ we have that $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $f \in I_{1}$. Since $I_{2} \subseteq I_{1}$ we see that $\left(a_{1}, \ldots, a_{n}\right) \in W$ and so $V \subseteq W$. Suppose now that $I_{2} \subsetneq I_{1}$. Then $f_{i} \notin I_{2}$ for some $1 \leq i \leq s$ (since otherwise $I_{1}=I_{2}$). But if $V=W$ then $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in V=W$, so $f_{i} \in I_{2}$. Hence $V \subsetneq W$.
(b) Let $V_{1} \supseteq V_{2} \supseteq \ldots$ be a descending chain of affine varieties. Then $\mathbb{I}\left(V_{1}\right) \subseteq \mathbb{I}\left(V_{2}\right) \subseteq \ldots$ is a ascending chain of ideals. But we saw in the proof of the Hilbert Basis Theorem that any such chain stabilises, so that $\mathbb{I}\left(V_{N}\right)=\mathbb{I}\left(V_{N+1}\right)=\ldots$ for some $N \geq 1$. By out previous result, so $V_{N}=V_{N+1}=\ldots$.
(c) Let $I_{i}:=\left(f_{1}, \ldots, f_{i}\right)$. Then we have an ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \ldots$. As observed above, this must eventually stabilise, giving $\left(f_{1}, f_{2}, \ldots\right)=\left(f_{1}, \ldots, f_{N}\right)$.
(d) Let $V_{i}:=\mathbb{V}\left(f_{1}, \ldots, f_{i}\right) \subset k^{n}$. Then $V_{1} \supseteq V_{2} \supseteq \ldots$ is a descending chain of affine varieties. By above this stabilises, giving $\mathbb{V}\left(f_{1}, f_{2}, \ldots\right)=\mathbb{V}\left(f_{1}, \ldots, f_{N}\right)$.

[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

