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SOLUTIONS 3

(1) Let S := {β | xβ ∈ I} ⊂ Zn≥0. SInce we are using a monomial order, S has a smallest

element γ ∈ S. Then xγ ∈ I, so there exists some α ∈ A such that xα | xγ . Hence α ≤ γ.

But α ∈ S by construction, so α = γ.

(2) First we show existence. By Dickson’s Lemma we can write I = (xα1 , . . . , xαs) for some

finite set of generators A = {α1, . . . , αs} ⊂ Zn≥0. Suppose that there exist αi, αj ∈ A,

i 6= j, such that xαi | xαj . Then A′ := A \ {αj} is such that (xα | α ∈ A′) = I.

Proceeding by induction we see that this process must terminate (since A is finite) with

a minimal generating set.

Now for uniqueness. Suppose for a contradiction that {xα1 , . . . , xαs} and {xβ1 , . . . , xβr}
are two different minimal generating sets. Without loss of generality we may take

xβ1 6∈ {xα1 , . . . , xαs}. Since xβ1 ∈ (xα1 , . . . , xαs), so there exists some αi such that

xαi | xβ1 . But xαi ∈ (xβ1 , . . . , xβr), so there exists some βj such that xβj | xαi . Hence

xβj | xβ1 . By minimality j = 1, hence αi = β1.

(3) Suppose that f ∈ I. Then f =
∑s

i=1 hix
αi for some hi ∈ k[x1, . . . , xn]. So each term of f

is divisible by some xαi . Hence f̄x
α1 ,...,xαs = 0. Conversely suppose that f̄x

α1 ,...,xαs = 0.

This means (by the Division Algorithm) that there exist hi ∈ k[x1, . . . , xn] such that

f =
∑s

i=1 hix
αi , and so f ∈ I.

(4) (a)

x2yz2

4x2z
(4x2z − 7y2)− x2yz2

xyz2
(xyz2 + 3xz4) = x2yz2 − 7

4
y3z − x2yz2 − 3x2z4

= −3x2z4 − 7

4
y3z.

(b)

x4yz2

x4y
(x4y − z2)− x4yz2

3xyz2
(3xyz2 − y) = x4yz2 − z4 − x4yz2 +

1

3
x3y

=
1

3
x3y − z4.

(c)

xyz2

xy
(xy + z3)− xyz2

z2
(z2 − 3z) = xyz2 + z3 − xyz2 + 3xyz

= 3xyz + z3.
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(5) We use Buchberger’s Criterion.

S(x4y2 − z5, x3y3 − 1) =
x4y3

x4y2
(x4y2 − z5)− x4y3

x3y3
(x3y3 − 1)

= x4y3 − yz5 − x4y3 + x

= −yz5 + x.

But −yz5 + x
G

= −yz5 + x, so this is not a Gröbner basis.

(6)

S(xαf, xβg) =
xδ

xαLT(F )
xαf − xδ

xβLT(g)
xβg

where δ := lcm
{
xαLM(f) , xβLM(g)

}
=

xδ

LT(F )
f − xδ

LT(g)
g

= xδ−ε
(

xε

LT(f)
f − xε

LT(g)
g

)
where ε := lcm{LM(f) ,LM(g)}

= xδ−εS(f, g).

(7) (a) Let I1 = I(V ) and I2 = I(W ). Since V and W are both affine varieties, V(I1) = V

and V(I2) = W . By the Hilbert Basis Theorem there exists f1, . . . , fs ∈ k[x1, . . . , xn]

such that I1 = (f1, . . . , fs).

Suppose that V ⊆ W . Then for any f ∈ I2 we have that f(a1, . . . , an) = 0 for all

(a1, . . . , an) ∈ W ⊇ V , so f ∈ I1. Hence I2 ⊆ I1. Now suppose V ( W , so that

there exists some (a1, . . . , an) ∈W \ V . Then fi(a1, . . . , an) 6= 0 for some 1 ≤ i ≤ s
(since otherwise (a1, . . . , an) ∈ V ), hence fi 6∈ I2, so I2 ( I1.

Conversely suppose first that I2 ⊆ I1. Then for every (a1, . . . , an) ∈ V we have that

f(a1, . . . , an) = 0 for all f ∈ I1. Since I2 ⊆ I1 we see that (a1, . . . , an) ∈ W and so

V ⊆W . Suppose now that I2 ( I1. Then fi 6∈ I2 for some 1 ≤ i ≤ s (since otherwise

I1 = I2). But if V = W then fi(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V = W , so

fi ∈ I2. Hence V (W .

(b) Let V1 ⊇ V2 ⊇ . . . be a descending chain of affine varieties. Then I(V1) ⊆ I(V2) ⊆ . . .
is a ascending chain of ideals. But we saw in the proof of the Hilbert Basis Theorem

that any such chain stabilises, so that I(VN ) = I(VN+1) = . . . for some N ≥ 1. By

out previous result, so VN = VN+1 = . . ..

(c) Let Ii := (f1, . . . , fi). Then we have an ascending chain of ideals I1 ⊆ I2 ⊆ . . .. As

observed above, this must eventually stabilise, giving (f1, f2, . . .) = (f1, . . . , fN ).

(d) Let Vi := V(f1, . . . , fi) ⊂ kn. Then V1 ⊇ V2 ⊇ . . . is a descending chain of affine

varieties. By above this stabilises, giving V(f1, f2, . . .) = V(f1, . . . , fN ).
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