
M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY

SOLUTIONS 2

(1) (a) Let f ∈ C[x], f 6= 0. The f factorises completely as

f = β

deg f∏
i=1

(x− αi)

for some β, αi ∈ C, β 6= 0. In particular, if deg f > 0 then f(α1) = 0 and so

α1 ∈ V(f) 6= ∅. Conversely if deg f = 0 then f = β, and since β 6= 0 we have that

V(f) = V(β) = ∅.
(b) Let f1, . . . , fs ∈ C[x], fi 6= 0. We have that (f1, . . . , fs) = (f), where f =

gcd{f1, . . . , fs}, hence V(f1, . . . , fs) = ∅ if and only if V(f) = ∅. By the previ-

ous result we see that this happens if and only if f is a constant. Since the gcd is

unique up to non-zero scalar multiplication, we have our result.

(c) R is not an algebraically closed field, so we don’t expect (1a) to hold. For example,

x2 + 1 ∈ R[x] is a non-zero, non-constant polynomial, but V(x2 + 1) = ∅.
(2) Let

f = c
d∏

i=1

(x− ai)ri ∈ C[x],

where c, ai ∈ C, c 6= 0, and the ai distinct. Then f = 0 if and only if at least one

of the factors (x − ai)
ri vanishes. But (x − ai)

ri = 0 if and only if x = ai, hence

V(f) = {a1, . . . , ad}.
Let

fred = c
d∏

i=1

(x− ai).

Then V(fred) = V(f) (since the zero-sets coincide). Hence I(V(f)) = I(V(fred)) ⊇ (fred).

Conversely suppose that g ∈ I(V(f)). In particular, g(ai) = 0 for all 1 ≤ ai ≤ d. hence

we can factor g as

g = h

d∏
i=1

(x− ai)

for some h ∈ C[x]. In particular g = 1
chfred, so g ∈ (fred). Hence I(V(f)) = (fred).

(3) (a) Let f = (x− a)rh ∈ C[x], where h(a) 6= 0. Differentiating, we get

f ′ = r(x− a)r−1h+ (x− a)rh′

= (x− a)r−1
(
rh+ (x− a)h′

)
.
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Set h1 = rh+ (x− a)h′ ∈ C[x]. Notice that h1(a) = rh(a) + 0 6= 0.

(b) Suppose that

f = c
d∏

i=1

(x− ai)ri .

We proceed by induction on d. When d = 1 the result follows from (3a), where

h = c is a constant. Suppose that d > 1. We can write

f = (x− ad)rd

(
c

d−1∏
i=1

(x− ai)ri
)
.

By the proof of (3a), setting

h = c
d−1∏
i=1

(x− ai)ri

we have

f ′ = (x− ad)rd−1
(
rdh+ (x− ad)h′

)
.

By the inductive hypothesis we have that

h′ = Hd−1

d−1∏
i=1

(x− ai)ri−1

for some Hd−1 ∈ C[x] not vanishing at any ai, 1 ≤ i ≤ d− 1. Hence

f ′ = (x− ad)rd−1

(
rdh+ (x− ad)Hd−1

d−1∏
i=1

(x− ai)ri−1
)

=

(
rd

d−1∏
i=1

(x− ai) + (x− ad)Hd−1

)
d∏

i=1

(x− ai)ri−1.

Set

Hd = rd

d−1∏
i=1

(x− ai) + (x− ad)Hd−1 ∈ C[x]

and notice that when x = ai, 1 ≤ i ≤ d− 1, we have that

Hd(ai) = 0 + (x− ad)Hd−1(ai) 6= 0

(by assumption on Hd−1), and when x = ad we have

Hd(ad) = rd

d−1∏
i=1

(ad − ai) + 0 6= 0

(since the ai are distinct).
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(c)

gcd
{
f, f ′

}
= gcd

{
c

d∏
i=1

(x− ai)ri , H
d∏

i=1

(x− ai)ri−1
}

=

(
d∏

i=1

(x− ai)ri−1
)

gcd

{
c

d∏
i=1

(x− ai), H

}
.

Now V
(
c
∏d

i=1(x− ai)
)

= {a1, . . . , ad}, and by (3b) we know that H doesn’t vanish

at any of the ai. Hence

V

(
c

d∏
i=1

(x− ai), H

)
= V

(
c

d∏
i=1

(x− ai)

)
∩ V (H) = ∅.

By (1b) this implies that

gcd

{
c

d∏
i=1

(x− ai), H

}
= 1,

so gcd{f, f ′} =
∏d

i=1(x− ai)ri−1 as required. In particular,

f

gcd{f, f ′}
= c

d∏
i=1

(x− ai)ri
(x− ai)ri−1

= c
d∏

i=1

(x− ai)

= fred.

(d) We will use the fact that

I(V(f)) = (fred) =

(
f

gcd{f, f ′}

)
⊂ C[x].

(i) f = x5 + x4 − 2x3 − 2x2 + x+ 1 and f ′ = 5x4 + 4x3 − 6x2 − 4x+ 1.

By Euclid’s algorithm we see that

gcd
{
f, f ′

}
= x3 + x2 − x− 1.

By long division we have that

f = (x2 − 1)(x3 + x2 − x− 1).

Hence I(V(f)) = (x2 − 1).

(ii) f = x6 + 14x5 + 80x4 + 238x3 + 387x2 + 324x+ 108 and

f ′ = 6x5 + 70x4 + 320x3 + 714x2 + 774x+ 324.

By Euclid’s algorithm we see that

gcd
{
f, f ′

}
= x3 + 8x2 + 21x+ 18.
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By long division we have that

f = (x3 + 6x2 + 11x+ 6)(x3 + 8x2 + 21x+ 18).

Hence I(V(f)) = (x3 + 6x2 + 11x+ 6).
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