M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SOLUTIONS 2

(1) (a) Let $f \in \mathbb{C}[x], f \neq 0$. The f factorises completely as

$$
f=\beta \prod_{i=1}^{\operatorname{deg} f}\left(x-\alpha_{i}\right)
$$

for some $\beta, \alpha_{i} \in \mathbb{C}, \beta \neq 0$. In particular, if $\operatorname{deg} f>0$ then $f\left(\alpha_{1}\right)=0$ and so $\alpha_{1} \in \mathbb{V}(f) \neq \emptyset$. Conversely if $\operatorname{deg} f=0$ then $f=\beta$, and since $\beta \neq 0$ we have that $\mathbb{V}(f)=\mathbb{V}(\beta)=\emptyset$.
(b) Let $f_{1}, \ldots, f_{s} \in \mathbb{C}[x], f_{i} \neq 0$. We have that $\left(f_{1}, \ldots, f_{s}\right)=(f)$, where $f=$ $\operatorname{gcd}\left\{f_{1}, \ldots, f_{s}\right\}$, hence $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\emptyset$ if and only if $\mathbb{V}(f)=\emptyset$. By the previous result we see that this happens if and only if f is a constant. Since the gcd is unique up to non-zero scalar multiplication, we have our result.
(c) \mathbb{R} is not an algebraically closed field, so we don't expect (1a) to hold. For example, $x^{2}+1 \in \mathbb{R}[x]$ is a non-zero, non-constant polynomial, but $\mathbb{V}\left(x^{2}+1\right)=\emptyset$.
(2) Let

$$
f=c \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}} \in \mathbb{C}[x]
$$

where $c, a_{i} \in \mathbb{C}, c \neq 0$, and the a_{i} distinct. Then $f=0$ if and only if at least one of the factors $\left(x-a_{i}\right)^{r_{i}}$ vanishes. But $\left(x-a_{i}\right)^{r_{i}}=0$ if and only if $x=a_{i}$, hence $\mathbb{V}(f)=\left\{a_{1}, \ldots, a_{d}\right\}$.

Let

$$
f_{\text {red }}=c \prod_{i=1}^{d}\left(x-a_{i}\right)
$$

Then $\mathbb{V}\left(f_{\text {red }}\right)=\mathbb{V}(f)$ (since the zero-sets coincide). Hence $\mathbb{I}(\mathbb{V}(f))=\mathbb{I}\left(\mathbb{V}\left(f_{\text {red }}\right)\right) \supseteq\left(f_{\text {red }}\right)$. Conversely suppose that $g \in \mathbb{I}(\mathbb{V}(f))$. In particular, $g\left(a_{i}\right)=0$ for all $1 \leq a_{i} \leq d$. hence we can factor g as

$$
g=h \prod_{i=1}^{d}\left(x-a_{i}\right)
$$

for some $h \in \mathbb{C}[x]$. In particular $g=\frac{1}{c} h f_{\text {red }}$, so $g \in\left(f_{\text {red }}\right)$. Hence $\mathbb{I}(\mathbb{V}(f))=\left(f_{\text {red }}\right)$.
(3) (a) Let $f=(x-a)^{r} h \in \mathbb{C}[x]$, where $h(a) \neq 0$. Differentiating, we get

$$
\begin{aligned}
f^{\prime} & =r(x-a)^{r-1} h+(x-a)^{r} h^{\prime} \\
& =(x-a)^{r-1}\left(r h+(x-a) h^{\prime}\right) .
\end{aligned}
$$

[^0]Set $h_{1}=r h+(x-a) h^{\prime} \in \mathbb{C}[x]$. Notice that $h_{1}(a)=r h(a)+0 \neq 0$.
(b) Suppose that

$$
f=c \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}}
$$

We proceed by induction on d. When $d=1$ the result follows from (3a), where $h=c$ is a constant. Suppose that $d>1$. We can write

$$
f=\left(x-a_{d}\right)^{r_{d}}\left(c \prod_{i=1}^{d-1}\left(x-a_{i}\right)^{r_{i}}\right)
$$

By the proof of (3a), setting

$$
h=c \prod_{i=1}^{d-1}\left(x-a_{i}\right)^{r_{i}}
$$

we have

$$
f^{\prime}=\left(x-a_{d}\right)^{r_{d}-1}\left(r_{d} h+\left(x-a_{d}\right) h^{\prime}\right) .
$$

By the inductive hypothesis we have that

$$
h^{\prime}=H_{d-1} \prod_{i=1}^{d-1}\left(x-a_{i}\right)^{r_{i}-1}
$$

for some $H_{d-1} \in \mathbb{C}[x]$ not vanishing at any $a_{i}, 1 \leq i \leq d-1$. Hence

$$
\begin{aligned}
f^{\prime} & =\left(x-a_{d}\right)^{r_{d}-1}\left(r_{d} h+\left(x-a_{d}\right) H_{d-1} \prod_{i=1}^{d-1}\left(x-a_{i}\right)^{r_{i}-1}\right) \\
& =\left(r_{d} \prod_{i=1}^{d-1}\left(x-a_{i}\right)+\left(x-a_{d}\right) H_{d-1}\right) \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}-1}
\end{aligned}
$$

Set

$$
H_{d}=r_{d} \prod_{i=1}^{d-1}\left(x-a_{i}\right)+\left(x-a_{d}\right) H_{d-1} \in \mathbb{C}[x]
$$

and notice that when $x=a_{i}, 1 \leq i \leq d-1$, we have that

$$
H_{d}\left(a_{i}\right)=0+\left(x-a_{d}\right) H_{d-1}\left(a_{i}\right) \neq 0
$$

(by assumption on H_{d-1}), and when $x=a_{d}$ we have

$$
H_{d}\left(a_{d}\right)=r_{d} \prod_{i=1}^{d-1}\left(a_{d}-a_{i}\right)+0 \neq 0
$$

(since the a_{i} are distinct).
(c)

$$
\begin{aligned}
\operatorname{gcd}\left\{f, f^{\prime}\right\} & =\operatorname{gcd}\left\{c \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}}, H \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}-1}\right\} \\
& =\left(\prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}-1}\right) \operatorname{gcd}\left\{c \prod_{i=1}^{d}\left(x-a_{i}\right), H\right\} .
\end{aligned}
$$

Now $\mathbb{V}\left(c \prod_{i=1}^{d}\left(x-a_{i}\right)\right)=\left\{a_{1}, \ldots, a_{d}\right\}$, and by (3b) we know that H doesn't vanish at any of the a_{i}. Hence

$$
\mathbb{V}\left(c \prod_{i=1}^{d}\left(x-a_{i}\right), H\right)=\mathbb{V}\left(c \prod_{i=1}^{d}\left(x-a_{i}\right)\right) \cap \mathbb{V}(H)=\emptyset .
$$

By (1b) this implies that

$$
\operatorname{gcd}\left\{c \prod_{i=1}^{d}\left(x-a_{i}\right), H\right\}=1
$$

so $\operatorname{gcd}\left\{f, f^{\prime}\right\}=\prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}-1}$ as required. In particular,

$$
\begin{aligned}
\frac{f}{\operatorname{gcd}\left\{f, f^{\prime}\right\}} & =c \prod_{i=1}^{d} \frac{\left(x-a_{i}\right)^{r_{i}}}{\left(x-a_{i}\right)^{r_{i}-1}} \\
& =c \prod_{i=1}^{d}\left(x-a_{i}\right) \\
& =f_{\text {red }} .
\end{aligned}
$$

(d) We will use the fact that

$$
\mathbb{I}(\mathbb{V}(f))=\left(f_{\text {red }}\right)=\left(\frac{f}{\operatorname{gcd}\left\{f, f^{\prime}\right\}}\right) \subset \mathbb{C}[x] .
$$

(i) $f=x^{5}+x^{4}-2 x^{3}-2 x^{2}+x+1$ and $f^{\prime}=5 x^{4}+4 x^{3}-6 x^{2}-4 x+1$.

By Euclid's algorithm we see that

$$
\operatorname{gcd}\left\{f, f^{\prime}\right\}=x^{3}+x^{2}-x-1
$$

By long division we have that

$$
f=\left(x^{2}-1\right)\left(x^{3}+x^{2}-x-1\right) .
$$

Hence $\mathbb{I}(\mathbb{V}(f))=\left(x^{2}-1\right)$.
(ii) $f=x^{6}+14 x^{5}+80 x^{4}+238 x^{3}+387 x^{2}+324 x+108$ and $f^{\prime}=6 x^{5}+70 x^{4}+320 x^{3}+714 x^{2}+774 x+324$.
By Euclid's algorithm we see that

$$
\operatorname{gcd}\left\{f, f^{\prime}\right\}=x^{3}+8 x^{2}+21 x+18 .
$$

By long division we have that

$$
f=\left(x^{3}+6 x^{2}+11 x+6\right)\left(x^{3}+8 x^{2}+21 x+18\right) .
$$

Hence $\mathbb{I}(\mathbb{V}(f))=\left(x^{3}+6 x^{2}+11 x+6\right)$.

[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

