
M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY

SOLUTIONS 1

(1) We proceed by induction on n. Let f ∈ R[x], and assume f(a) = 0 for all a ∈ R. If

f 6= 0 then f has at most deg f roots, contradicting the assumption. Hence f = 0.

Suppose f ∈ R[x1, . . . , xn, xn+1], and f(a1, . . . , an, an+1) = 0 for all (a1, . . . , an, an+1) ∈
Rn+1. For any α ∈ R, define gα(x1, . . . , xn) = f(x1, . . . , xn, α). Then gα ∈ R[x1, . . . , xn]

vanishes for all (a1, . . . , an) ∈ Rn, so by the inductive hypothesis gα = 0. Since α was

arbitrary, it follows that f = 0.

(2) (a) First notice that 02 = 0 and 12 = 1. Thus if either x or y is 0, so x2y+y2x vanishes.

The only remaining possibility is x = y = 1, but then we have 1 · 1 + 1 · 1 = 0.

(b) x2yz + xyz2 vanishes at all points in F3
2. More generally, for n ≥ 2,

(x1 + xn)

n∏
i=1

xi ∈ F2[x1, . . . , xn]

vanishes at all points in Fn2 .

(3) First suppose that f1, . . . , fm ∈ I, and let g ∈ (f1, . . . , fm). Then

g =

m∑
i=1

hifi, for some hi ∈ k[x1, . . . , xn].

Since fi ∈ I, so hifi ∈ I, and hence g ∈ I. So (f1, . . . , fm) ⊆ I.

Conversely, suppose that (f1, . . . , fm) ⊆ I. Then fi ∈ (f1, . . . , fm) ⊆ I for each

1 ≤ i ≤ m and we’re done.

(4) V(xn, ym) = {(a, b) ∈ k2 | an = 0 and bm = 0}. But k is an integral domain, so an = 0

iff a = 0, and bm = 0 iff b = 0. Hence V(xn, ym) = {(0, 0)} = V(x, y), and so

I(V(xn, ym)) = I(V(x, y)) ⊇ (x, y).

Conversely, consider any f ∈ I(V(x, y)). Then f(0, 0) = 0, and so the constant term

of f must be zero. Hence either f = xlg for some l > 0, g ∈ k[x, y], in which case

f ∈ (x) ⊂ (x, y), or f = yl
′
g′ for some l′ > 0, g′ ∈ k[x, y], in which case f ∈ (y) ⊂ (x, y).

In either case f ∈ (x, y), and so

I(V(xn, ym)) = I(V(x, y)) ⊆ (x, y).

(5) (a) x2 − x = x(x− 1). Clearly this vanishes at 0 and at 1. Similarly for y2 − y. Hence

(x2 − x, y2 − y) ⊆ I.
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(b) Let f ∈ F2[x, y]. We can write

f =
∑
i∈S

pi(x)yi, where pi ∈ F2[x] are non-zero.

Applying the division algorithm to the pi, we see

pi = qi(x
2 − x) + ri

where ri = 0 or deg ri < deg (x2 − 2) = 2. Hence

f = (x2 − x)
∑
i∈S

qi(x)yi +
∑
i∈S

ri(x)yi.

Since each ri is either 0 or deg ri ≤ 1, we can write∑
i∈S

ri(x)yi = g(y)x+ h(y), for some g, h ∈ F2[y].

Hence

f = A(x, y)(x2 − x) + g(y)x+ h(y), for some A ∈ F2[x, y].

Now we apply the division algorithm to g and h:

g = q1(y
2 − y) + r1, where r1 = 0 or deg r1 < 2,

h = q2(y
2 − y) + r2, where r2 = 0 or deg r2 < 2.

Finally, we see that

f = A(x2 − x) +B(y2 − y) + r1x+ r2

= A(x2 − x) +B(y2 − y) + axy + bx+ cy + d.

(c) Consider r(x, y) = axy+ bx+ cy+ d, and suppose that r vanishes at every point in

F2
2. Then:

r(0, 0) = d ⇒ d = 0

r(0, 1) = c+ d ⇒ c = 0

r(1, 0) = b+ d ⇒ b = 0

r(1, 1) = a+ b+ c+ d ⇒ a = 0

Hence r is the zero polynomial.

(d) Let f ∈ I. Since f ∈ F2[x, y] we can write

f = A(x2 − x) +B(y2 − y) + axy + bx+ cy + d.

We have already seen that x2 − x, y2 − y ∈ I, hence

f −A(x2 − x)−B(y2 − y) = axy + bx+ cy + d ∈ I.

Since this vanishes at every point in F2
2, by our previous result we have that a =

b = c = d = 0. Hence f = A(x2 − x) +B(y2 − y) ∈ (x2 − x, y2 − y). It follows that

I = (x2 − x, y2 − y).
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(e) x2y + y2x = y(x2 − x) + x(y2 − y) since 2xy = 0xy = 0.

(6) Suppose that (x, y) = (f) for some f ∈ k[x, y]. In particular, f | x and so f is either a

constant – which implies that (f) = k[x, y] and so is impossible – or f = cx for some

c ∈ k. Similarly since f | y we see that f = dy for some d ∈ k. It follows that c = d = 0

and so (f) = (0), a contradiction.

(7) We proceed by induction onm. Whenm = 2 the result is trivial. Let h = gcd{f2, . . . , fm}.
Since h | fi, 2 ≤ i ≤ m, we have that fi ∈ (f1, h) and so (f1, h) ⊇ (f1, . . . , fm).

Conversely set h′ = gcd{f3, . . . , fm}. By the inductive hypothesis, (f2, h
′) = (f2, f3, . . . , fm).

Since h = gcd{f2, h′}, so (h) = (f2, h
′) = (f2, . . . , fm). Now let f ∈ (f1, h). Then

f = k1f1 + k2h for some k1, k2 ∈ k[x]. Then – since (h) = (f2, . . . , fm) – there exist

gi ∈ k[x] such that f = k1f1 + k2g2f2 + . . .+ k2gmfm, and so f ∈ (f1, f2, . . . , fm) and so

(f1, h) ⊆ (f1, . . . , fm). The result follows.

(8) Use a computer.

(9) Notice that 2 is a root of all three generators:

x3 + x2 − 4x− 4 = (x− 2)(x2 + 3x+ 2)

x3 − x2 − 4x+ 4 = (x− 2)(x2 + x− 2)

x3 − 2x2 − x+ 2 = (x− 2)(x2 − 1) = (x− 2)(x− 1)(x+ 1).

Now 1 is a root of x2 + x− 2 but not of x2 + 3x+ 2, and −1 is a root of x2 + 3x+ 2 but

not of x2 + x− 2. Hence

gcd
{
x3 + x2 − 4x− 4, x3 − x2 − 4x+ 4, x3 − 2x2 − x+ 2

}
= x2 − 2

and so

(x3 + x2 − 4x− 4, x3 − x2 − 4x+ 4, x3 − 2x2 − x+ 2) = (x− 2).

Finally, notice that x2 − 4 = (x− 2)(x+ 2), hence x2 − 4 ∈ (x− 2).
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