M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SOLUTIONS 1

(1) We proceed by induction on n. Let $f \in \mathbb{R}[x]$, and assume $f(a)=0$ for all $a \in \mathbb{R}$. If $f \neq 0$ then f has at most $\operatorname{deg} f$ roots, contradicting the assumption. Hence $f=0$.

Suppose $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$, and $f\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in$ \mathbb{R}^{n+1}. For any $\alpha \in \mathbb{R}$, define $g_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}, \alpha\right)$. Then $g_{\alpha} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ vanishes for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, so by the inductive hypothesis $g_{\alpha}=0$. Since α was arbitrary, it follows that $f=0$.
(2) (a) First notice that $0^{2}=0$ and $1^{2}=1$. Thus if either x or y is 0 , so $x^{2} y+y^{2} x$ vanishes. The only remaining possibility is $x=y=1$, but then we have $1 \cdot 1+1 \cdot 1=0$.
(b) $x^{2} y z+x y z^{2}$ vanishes at all points in \mathbb{F}_{2}^{3}. More generally, for $n \geq 2$,

$$
\left(x_{1}+x_{n}\right) \prod_{i=1}^{n} x_{i} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]
$$

vanishes at all points in \mathbb{F}_{2}^{n}.
(3) First suppose that $f_{1}, \ldots, f_{m} \in I$, and let $g \in\left(f_{1}, \ldots, f_{m}\right)$. Then

$$
g=\sum_{i=1}^{m} h_{i} f_{i}, \quad \text { for some } h_{i} \in k\left[x_{1}, \ldots, x_{n}\right]
$$

Since $f_{i} \in I$, so $h_{i} f_{i} \in I$, and hence $g \in I$. So $\left(f_{1}, \ldots, f_{m}\right) \subseteq I$.
Conversely, suppose that $\left(f_{1}, \ldots, f_{m}\right) \subseteq I$. Then $f_{i} \in\left(f_{1}, \ldots, f_{m}\right) \subseteq I$ for each $1 \leq i \leq m$ and we're done.
(4) $\mathbb{V}\left(x^{n}, y^{m}\right)=\left\{(a, b) \in k^{2} \mid a^{n}=0\right.$ and $\left.b^{m}=0\right\}$. But k is an integral domain, so $a^{n}=0$ iff $a=0$, and $b^{m}=0$ iff $b=0$. Hence $\mathbb{V}\left(x^{n}, y^{m}\right)=\{(0,0)\}=\mathbb{V}(x, y)$, and so

$$
\mathbb{I}\left(\mathbb{V}\left(x^{n}, y^{m}\right)\right)=\mathbb{I}(\mathbb{V}(x, y)) \supseteq(x, y)
$$

Conversely, consider any $f \in \mathbb{I}(\mathbb{V}(x, y))$. Then $f(0,0)=0$, and so the constant term of f must be zero. Hence either $f=x^{l} g$ for some $l>0, g \in k[x, y]$, in which case $f \in(x) \subset(x, y)$, or $f=y^{l^{\prime}} g^{\prime}$ for some $l^{\prime}>0, g^{\prime} \in k[x, y]$, in which case $f \in(y) \subset(x, y)$. In either case $f \in(x, y)$, and so

$$
\mathbb{I}\left(\mathbb{V}\left(x^{n}, y^{m}\right)\right)=\mathbb{I}(\mathbb{V}(x, y)) \subseteq(x, y)
$$

(5) (a) $x^{2}-x=x(x-1)$. Clearly this vanishes at 0 and at 1 . Similarly for $y^{2}-y$. Hence $\left(x^{2}-x, y^{2}-y\right) \subseteq I$.
(b) Let $f \in \mathbb{F}_{2}[x, y]$. We can write

$$
f=\sum_{i \in S} p_{i}(x) y^{i}, \quad \text { where } p_{i} \in \mathbb{F}_{2}[x] \text { are non-zero. }
$$

Applying the division algorithm to the p_{i}, we see

$$
p_{i}=q_{i}\left(x^{2}-x\right)+r_{i}
$$

where $r_{i}=0$ or $\operatorname{deg} r_{i}<\operatorname{deg}\left(x^{2}-2\right)=2$. Hence

$$
f=\left(x^{2}-x\right) \sum_{i \in S} q_{i}(x) y^{i}+\sum_{i \in S} r_{i}(x) y^{i} .
$$

Since each r_{i} is either 0 or $\operatorname{deg} r_{i} \leq 1$, we can write

$$
\sum_{i \in S} r_{i}(x) y^{i}=g(y) x+h(y), \quad \text { for some } g, h \in \mathbb{F}_{2}[y]
$$

Hence

$$
f=A(x, y)\left(x^{2}-x\right)+g(y) x+h(y), \quad \text { for some } A \in \mathbb{F}_{2}[x, y] .
$$

Now we apply the division algorithm to g and h :

$$
\begin{aligned}
& g=q_{1}\left(y^{2}-y\right)+r_{1}, \text { where } r_{1}=0 \text { or } \operatorname{deg} r_{1}<2, \\
& h=q_{2}\left(y^{2}-y\right)+r_{2}, \text { where } r_{2}=0 \text { or } \operatorname{deg} r_{2}<2 .
\end{aligned}
$$

Finally, we see that

$$
\begin{aligned}
f & =A\left(x^{2}-x\right)+B\left(y^{2}-y\right)+r_{1} x+r_{2} \\
& =A\left(x^{2}-x\right)+B\left(y^{2}-y\right)+a x y+b x+c y+d .
\end{aligned}
$$

(c) Consider $r(x, y)=a x y+b x+c y+d$, and suppose that r vanishes at every point in \mathbb{F}_{2}^{2}. Then:

$$
\begin{array}{ll}
r(0,0)=d & \Rightarrow d=0 \\
r(0,1)=c+d & \Rightarrow c=0 \\
r(1,0)=b+d & \Rightarrow b=0 \\
r(1,1)=a+b+c+d & \Rightarrow a=0
\end{array}
$$

Hence r is the zero polynomial.
(d) Let $f \in I$. Since $f \in \mathbb{F}_{2}[x, y]$ we can write

$$
f=A\left(x^{2}-x\right)+B\left(y^{2}-y\right)+a x y+b x+c y+d
$$

We have already seen that $x^{2}-x, y^{2}-y \in I$, hence

$$
f-A\left(x^{2}-x\right)-B\left(y^{2}-y\right)=a x y+b x+c y+d \in I
$$

Since this vanishes at every point in \mathbb{F}_{2}^{2}, by our previous result we have that $a=$ $b=c=d=0$. Hence $f=A\left(x^{2}-x\right)+B\left(y^{2}-y\right) \in\left(x^{2}-x, y^{2}-y\right)$. It follows that $I=\left(x^{2}-x, y^{2}-y\right)$.
(e) $x^{2} y+y^{2} x=y\left(x^{2}-x\right)+x\left(y^{2}-y\right)$ since $2 x y=0 x y=0$.
(6) Suppose that $(x, y)=(f)$ for some $f \in k[x, y]$. In particular, $f \mid x$ and so f is either a constant - which implies that $(f)=k[x, y]$ and so is impossible - or $f=c x$ for some $c \in k$. Similarly since $f \mid y$ we see that $f=d y$ for some $d \in k$. It follows that $c=d=0$ and so $(f)=(0)$, a contradiction.
(7) We proceed by induction on m. When $m=2$ the result is trivial. Let $h=\operatorname{gcd}\left\{f_{2}, \ldots, f_{m}\right\}$. Since $h \mid f_{i}, 2 \leq i \leq m$, we have that $f_{i} \in\left(f_{1}, h\right)$ and so $\left(f_{1}, h\right) \supseteq\left(f_{1}, \ldots, f_{m}\right)$.

Conversely set $h^{\prime}=\operatorname{gcd}\left\{f_{3}, \ldots, f_{m}\right\}$. By the inductive hypothesis, $\left(f_{2}, h^{\prime}\right)=\left(f_{2}, f_{3}, \ldots, f_{m}\right)$. Since $h=\operatorname{gcd}\left\{f_{2}, h^{\prime}\right\}$, so $(h)=\left(f_{2}, h^{\prime}\right)=\left(f_{2}, \ldots, f_{m}\right)$. Now let $f \in\left(f_{1}, h\right)$. Then $f=k_{1} f_{1}+k_{2} h$ for some $k_{1}, k_{2} \in k[x]$. Then - since $(h)=\left(f_{2}, \ldots, f_{m}\right)$ - there exist $g_{i} \in k[x]$ such that $f=k_{1} f_{1}+k_{2} g_{2} f_{2}+\ldots+k_{2} g_{m} f_{m}$, and so $f \in\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ and so $\left(f_{1}, h\right) \subseteq\left(f_{1}, \ldots, f_{m}\right)$. The result follows.
(8) Use a computer.
(9) Notice that 2 is a root of all three generators:

$$
\begin{aligned}
& x^{3}+x^{2}-4 x-4=(x-2)\left(x^{2}+3 x+2\right) \\
& x^{3}-x^{2}-4 x+4=(x-2)\left(x^{2}+x-2\right) \\
& x^{3}-2 x^{2}-x+2=(x-2)\left(x^{2}-1\right)=(x-2)(x-1)(x+1)
\end{aligned}
$$

Now 1 is a root of $x^{2}+x-2$ but not of $x^{2}+3 x+2$, and -1 is a root of $x^{2}+3 x+2$ but not of $x^{2}+x-2$. Hence

$$
\operatorname{gcd}\left\{x^{3}+x^{2}-4 x-4, x^{3}-x^{2}-4 x+4, x^{3}-2 x^{2}-x+2\right\}=x^{2}-2
$$

and so

$$
\left(x^{3}+x^{2}-4 x-4, x^{3}-x^{2}-4 x+4, x^{3}-2 x^{2}-x+2\right)=(x-2)
$$

Finally, notice that $x^{2}-4=(x-2)(x+2)$, hence $x^{2}-4 \in(x-2)$.

