M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SHEET 5

(1) Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Recall that a point $a=\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ such that $f(a)=0$ is said to be singular if the partial derivatives

$$
\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}
$$

simultaneously vanish at a.
(a) Show that $(0,0)$ is the only singular point of $y^{2}=x^{3}$.
(b) Find all singular points of the curve $y^{2}=c x^{2}-x^{3}$, where c is a constant.
(c) Show that the circle $x^{2}+y^{2}=a^{2}$ has no singular points.
(2) Recall that the variety $\mathbb{V}\left(y-x^{2}, z-x^{3}\right) \subset \mathbb{R}^{3}$ is called the twisted cubic.
(a) Prove that $\mathbb{V}\left(\left(y-x^{2}\right)^{2}+\left(z-x^{3}\right)^{2}\right)$ is also the twisted cubic.
(b) Let $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Show that any variety $\mathbb{V}(I) \subset \mathbb{R}^{n}$ can be defined by a single equation.
(3) Given a field k (not necessarily algebraically closed), show that $\sqrt{\left(x^{2}, y^{2}\right)}=(x, y)$. More generally, show that $\sqrt{\left(x^{n}, y^{m}\right)}=(x, y)$ for any positive integers n and m.
(4) For the following polynomials f and ideals I, determine whether $f \in \sqrt{I}$. If so, also determine the smallest positive power m such that $f^{m} \in I$.
(a) $f=x+y, I=\left(x^{3}, y^{3}, x y(x+y)\right)$.
(b) $f=x^{2}+3 x z, I=\left(x+z, x^{2} y, x-z^{2}\right)$.
(5) Prove that if I is a proper ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ (that is, $I \neq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$), then

$$
\sqrt{I}=\bigcap_{\substack{J \text { prime } \\ I \subseteq J}} J
$$

(6) Let $I=\left(x z-y^{2}, z^{3}-x^{5}\right) \subset \mathbb{C}[x, y, z]$. Express $\mathbb{V}(I) \subset \mathbb{C}^{3}$ as a finite union of irreducible varieties.
(7) Let $V, W \subset k^{n}$ be affine varieties such that $V \subset W$. Show that each irreducible component of V is contained in an irreducible component of W.

[^0]
[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

