M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SHEET 2

(1) (a) Let $f \in \mathbb{C}[x]$ be a non-zero polynomial. Prove that $\mathbb{V}(f)=\emptyset$ if and only if f is a constant.
(b) Let $f_{1}, \ldots, f_{s} \in \mathbb{C}[x]$. Prove that $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\emptyset$ if and only if $\operatorname{gcd}\left\{f_{1}, \ldots, f_{s}\right\}=1$.
(c) What if we replace $\mathbb{C}[x]$ with $\mathbb{R}[x]$?
(2) Let $f \in \mathbb{C}[x]$ be a non-zero polynomial. We can write f as a product of linear factors

$$
\begin{equation*}
f=c \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}} \tag{1}
\end{equation*}
$$

where $c, a_{i} \in \mathbb{C}, c \neq 0$. Define the reduced polynomial of f to be

$$
\begin{equation*}
f_{r e d}=c \prod_{i=1}^{d}\left(x-a_{i}\right) \tag{2}
\end{equation*}
$$

so that $f_{\text {red }} \in \mathbb{C}[x]$ is of degree d. Prove that $\mathbb{V}(f)=\left\{a_{1}, \ldots, a_{d}\right\}$, and that $\mathbb{I}(\mathbb{V}(f))=$ $\left(f_{\text {red }}\right)$, where $\left(f_{r e d}\right) \subset \mathbb{C}[x]$ is the principal ideal generated by $f_{\text {red }}$.
(3) Throughout let $f \in \mathbb{C}[x]$ be a non-zero polynomial, and let $f^{\prime} \in \mathbb{C}[x]$ denote the derivative of f.
(a) Suppose that $f=(x-a)^{r} h \in \mathbb{C}[x]$, where $h(a) \neq 0$. Prove that $f^{\prime}=(x-a)^{r-1} h_{1}$ for some $h_{1} \in \mathbb{C}[x], h_{1}(a) \neq 0$.
(b) Now suppose that f is factored completely as in equation (1). Prove that

$$
f^{\prime}=H \prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}-1}
$$

where $H \in \mathbb{C}[x]$ is a polynomial not vanishing at any of the a_{i}.
(c) Prove that

$$
\operatorname{gcd}\left\{f, f^{\prime}\right\}=\prod_{i=1}^{d}\left(x-a_{i}\right)^{r_{i}-1}
$$

Hence or otherwise, prove that

$$
f_{r e d}=\frac{f}{\operatorname{gcd}\left\{f, f^{\prime}\right\}},
$$

where $f_{\text {red }}$ is defined in equation (2).
(d) Calculate $\mathbb{I}(\mathbb{V}(f))$ when:
(i) $f=1+x-2 x^{2}-2 x^{3}+x^{4}+x^{5} \in \mathbb{C}[x]$;
(ii) $f=108+324 x+387 x^{2}+238 x^{3}+80 x^{4}+14 x^{5}+x^{6} \in \mathbb{C}[x]$.

[^0]
[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

