M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY SHEET 1

(1) Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial such that $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in$ \mathbb{R}^{n}. Prove, by induction on n, that $f=0$. [Hint: When $n=1$ we have shown in lectures that f can have at most $\operatorname{deg} f$ roots.]
(2) Let $\mathbb{F}_{2}=\mathbb{Z} /(2)=\{0,1\}$ and define addition and multiplication in the usual way, so that \mathbb{F}_{2} is a field. Consider $g(x, y)=x^{2} y+y^{2} x \in \mathbb{F}_{2}[x, y]$. Show that $g(a, b)=0$ for every $(a, b) \in \mathbb{F}_{2}^{2}$. Write down a non-zero polynomial in $\mathbb{F}_{2}[x, y, z]$, involving all three variables x, y, and z, vanishing at every point (a, b, c) in \mathbb{F}_{2}^{3}. Generalise this to $g \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ such that $g\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{2}^{n}$.
(3) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and $f_{1}, \ldots, f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$ be a finite collection of polynomials. Prove that $f_{1}, \ldots, f_{m} \in I$ if and only if $\left(f_{1}, \ldots, f_{m}\right) \subset I$.
(4) Show that $\mathbb{I}\left(\mathbb{V}\left(x^{n}, y^{m}\right)\right)=(x, y)$ for any positive integers n, m.
(5) Let $I \subset \mathbb{F}_{2}[x, y]$ be the ideal of all polynomials vanishing at all points in \mathbb{F}_{2}^{2}. Notice that $I \neq\{0\}$ since, for example, the equation $x^{2} y+y^{2} x$ in question (2) is an element of I.
(a) Show that $\left(x^{2}-x, y^{2}-y\right) \subset I$.
(b) Show that every $f \in \mathbb{F}_{2}[x, y]$ can be written as

$$
f=A\left(x^{2}-x\right)+B\left(y^{2}-y\right)+a x y+b x+c y+d
$$

where $A, B \in \mathbb{F}_{2}[x, y]$ and $a, b, c, d \in \mathbb{F}_{2}$. [Hint: Write f in the form $\sum_{i} p_{i}(x) y^{i}$ and use the division algorithm to divide each p_{i} by $x^{2}-x$. From this you can write $f=A\left(x^{2}-x\right)+q_{1}(y) x+q_{2}(y)$. Now divide q_{1} and q_{2} by $\left.y^{2}-y.\right]$
(c) Show that $a x y+b x+c y+d \in I$ if and only if $a=b=c=d=0$.
(d) Conclude that $I=\left(x^{2}-x, y^{2}-y\right)$.
(e) Express $x^{2} y+y^{2} x$ as a combination of $x^{2}-x$ and $y^{2}-y$. [Hint: Remember that $2=1+1=0$ in $\left.\mathbb{F}_{2}.\right]$
(6) Prove that the ideal $(x, y) \subset k[x, y]$ is not principal.
(7) Let $f_{1}, f_{2}, \ldots, f_{m} \in k[x]$ be a finite collection of polynomials, and set $h=\operatorname{gcd}\left\{f_{2}, \ldots, f_{m}\right\}$. Prove that $\left(f_{1}, h\right)=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$.
(8) Use a computer algebra system to compute the following GCDs:
(a) $\operatorname{gcd}\left\{x^{4}+x^{2}+1, x^{4}-x^{2}-2 x-1, x^{3}-1\right\}$.
(b) $\operatorname{gcd}\left\{x^{3}+2 x^{2}-x-2, x^{3}-2 x^{2}-x+2, x^{3}-x^{2}-4 x+4\right\}$.
(9) Is it true that $x^{2}-4 \in\left(x^{3}+x^{2}-4 x-4, x^{3}-x^{2}-4 x+4, x^{3}-2 x^{2}-x+2\right)$?

