M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY REVISION SOLUTIONS

(1) (a) Fix a monomial order. A finite subset $G=\left\{g_{1}, \ldots, g_{m}\right\}$ of an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is called a Gröbner basis if

$$
\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{m}\right)\right)=(\operatorname{LT}(I))
$$

where $\operatorname{LT}\left(g_{i}\right)$ is the leading term of the polynomial g_{i} with respect to the monomial order, and

$$
(\operatorname{LT}(I))=(\operatorname{LT}(f) \mid f \in I)
$$

is the monomial ideal generated by the leading terms of all polynomials f in I. Given two polynomials $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$, the S-polynomial $S(f, g)$ is defined by

$$
S(f, g)=\frac{x^{\alpha}}{\operatorname{LT}(f)} f-\frac{x^{\alpha}}{\operatorname{LT}(g)} g,
$$

where $x^{\alpha}=\operatorname{lcm}\{\operatorname{LM}(f), \operatorname{LM}(g)\}$ is the monomial in $k\left[x_{1}, \ldots, x_{n}\right]$ given by the least common multiple of the leading monomials of f and g.
Given a finite set of generators $G=\left\{g_{1}, \ldots, g_{m}\right\}$ for an ideal I, G can be transformed into a Gröbner basis as follows: We calculate the remainder ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}$ of $S\left(g_{i}, g_{j}\right)$ upon division by G, for each $i \neq j$; when the remainder is non-zero, we include it in the set G to obtain a new set of generators G^{\prime} for I and repeat. After a finite number of steps, this process will stabilise with a set $G^{\prime \prime}$ all of whose S-polynomials have remainder zero upon division by $G^{\prime \prime}$. By Buchberger's Criterion, $G^{\prime \prime}$ is a Gröbner basis for I.
(b) Let $G=\left\{x^{2}-y, x^{4}-2 x^{2} y\right\}$. We have that

$$
S\left(x^{2}-y, x^{4}-2 x^{2} y\right)=x^{4}-x^{2} y-x^{4}+2 x^{2} y=x^{2} y,
$$

and ${\overline{x^{2} y}}^{G}=y^{2}$. So we set $G^{\prime}=\left\{x^{2}-y, x^{4}-2 x^{2} y, y^{2}\right\}$.
We know by construction that $\overline{S\left(x^{2}-y, x^{4}-2 x^{2} y\right)^{G^{\prime}}}=0$. We consider the remaining two S-polynomials.

$$
\begin{aligned}
S\left(x^{2}-y, y^{2}\right)=x^{2} y^{2}-y^{3}-y^{2} x^{2}=-y^{3}, & \text { and } \overline{-y^{3}} \bar{G}^{\prime}=0 \\
S\left(x^{4}-2 x^{2} y, y^{2}\right)=x^{4} y^{2}-2 x^{2} y^{3}-x^{4} y^{2}=-2 x^{2} y^{3}, & \text { and } \overline{-2 x^{2} y^{3}}{ }^{G^{\prime}}=0 .
\end{aligned}
$$

Hence, by Buchberger's Criterion, G^{\prime} is a Grönber basis.

[^0](c) A Gröbner basis G is said to be minimal if $\operatorname{LC}(g)=1$ and $\operatorname{LT}(g) \notin(\operatorname{LT}(G \backslash\{g\}))$, for all $g \in G$. Our Gröbner basis in (b) is not minimal, since
$$
\operatorname{LT}\left(x^{4}-2 x^{2} y\right)=x^{4} \in\left(\operatorname{LT}\left(x^{2}-y\right), \operatorname{LT}\left(y^{2}\right)\right)=\left(x^{2}, y^{2}\right)
$$

A Gröbner basis G is said to be reduced if $\mathrm{LC}(g)=1$ and no monomial of g is contained in $(\operatorname{LT}(G \backslash\{g\}))$, for all $g \in G$. Clearly any reduced Gröbner basis is minimal, so our Gröbner basis in (b) is not reduced.
We can transform $G=\left\{x^{2}-y, x^{4}-2 x^{2} y, y^{2}\right\}$ into a reduced Gröbner basis in a finite number of steps as follows: For each $g \in G$ we calculate $g^{\prime}=\bar{g}^{G \backslash\{g\}}$ and set $G^{\prime}=(G \backslash\{g\}) \cup\left\{g^{\prime}\right\}$. The resulting set G^{\prime} is still a Gröbner basis for I. Repeating until this process stabilises, we obtain (by construction) the reduced Gröbner basis for I.

$$
\begin{aligned}
& {\overline{x^{2}-y}}^{x^{4}-2 x^{2} y, y^{2}}=x^{2}-y \\
& {\overline{x^{4}-2 x^{2} y}}^{x^{2}-y, y^{2}}=0
\end{aligned}
$$

so we have $G^{\prime}=\left\{x^{2}-y, y^{2}\right\}$, and

$$
\begin{aligned}
{\overline{x^{2}-y}}^{y^{2}} & =x^{2}-y \\
{\overline{y^{2}}}^{x^{2}-y} & =y^{2} .
\end{aligned}
$$

Hence $G^{\prime}=\left\{x^{2}-y, y^{2}\right\}$ is the reduced Gröbner basis for I.
(2) (a) We define the i-th elimination ideal of $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ to be the ideal in $k\left[x_{i+1}, \ldots, x_{n}\right]$ given by

$$
I_{i}:=I \cap k\left[x_{i+1}, \ldots, x_{n}\right] .
$$

Let G be a Gröbner basis for I with respect to the usual lex order. Then, by the Elimination Theorem,

$$
G_{i}:=G \cap k\left[x_{i+1}, \ldots, x_{n}\right]
$$

is a Gröbner basis for I_{i}.
A lex-ordered Gröbner basis for the ideal $I \subset \mathbb{C}[x, y, z]$ generated by the given system of equations is

$$
G=\left\{x^{2}-y-z, y^{3}+y z-2 y-z+1, z^{2}-3 z+2\right\}
$$

Hence $G_{2}=\left\{z^{2}-3 z+2\right\}$ is a Gröbner basis for $I_{2}=I \cap \mathbb{C}[z]$, so $\mathbb{V}\left(I_{2}\right)=\{1,2\} \subset \mathbb{C}$. We use these two partial solutions to calculate

$$
\mathbb{V}\left(I_{1}\right)=\mathbb{V}\left(y^{3}+y z-2 y-z+1, z^{2}-3 z+2\right) \subset \mathbb{C}^{2}
$$

When $z=1$ we have $y\left(y^{2}-1\right)=0$, with solutions $y=0, \pm 1$. When $z=2$ we have $y^{3}=1$, with solutions $y=1, \zeta, \zeta^{2}$. Hence

$$
\mathbb{V}\left(I_{1}\right)=\left\{(0,1),(-1,1),(1,1),(1,2),(\zeta, 2),\left(\zeta^{2}, 2\right)\right\} \subset \mathbb{C}^{2}
$$

Finally, we lift these partial solutions to find all solutions of $\mathbb{V}(I) \subset \mathbb{C}^{3}$. We have, for each partial solution respectively,

$$
\begin{aligned}
x^{2}=1 & \Rightarrow x= \pm 1, \\
x^{2}=0 & \Rightarrow x=0, \\
x^{2}=2 & \Rightarrow x= \pm \sqrt{2}, \\
x^{2}=3 & \Rightarrow x= \pm \sqrt{3}, \\
x^{2}=2+\zeta & \Rightarrow x= \pm \sqrt{2+\zeta}, \\
x^{2}=2+\zeta^{2} & \Rightarrow x= \pm \sqrt{2+\zeta^{2}} .
\end{aligned}
$$

Hence the system of equations has eleven solutions, given by the points

$$
\begin{gathered}
(\pm 1,0,1),(0,-1,1),(\pm \sqrt{2}, 1,1) \\
(\pm \sqrt{3}, 1,2),(\pm \sqrt{2+\zeta}, \zeta, 2),\left(\pm \sqrt{2+\zeta^{2}}, \zeta^{2}, 2\right)
\end{gathered}
$$

(b) We begin by computing a Gröbner basis for $I=\left(x^{2} z-y^{2}, y x-x+1\right)$ with respect to the usual lex order:

$$
G=\left\{x y-x+1, x z+y^{3}-y^{2}, y^{4}-2 y^{3}+y^{2}-z\right\} .
$$

Figure 1. The curve cut out by the intersection of the surfaces $x^{2} z-y^{2}=0$ and $y x-x+1=0$ in \mathbb{R}^{3}.

As in (a) we make use of the Elimination Theorem. Notice that I_{2} is the zero ideal, so be begin by considering $I_{1} \subset \mathbb{R}[y, z]$. This has Gröbner basis $G_{2}=\left\{y^{4}-2 y^{3}+y^{2}-z\right\}$,
so

$$
\mathbb{V}\left(I_{1}\right)=\left\{\left(t, t^{4}-2 t^{3}+t^{2}\right) \mid t \in \mathbb{R}\right\} .
$$

We now attempt to lift these partial solutions. First we consider the equation $x z+y^{3}-y^{2}=0$. We obtain:

$$
\begin{aligned}
x\left(t^{4}-2 t^{3}+t^{2}\right)+t^{3}-t^{2} & =0 \\
\Rightarrow t^{2}\left(x(t-1)^{2}+(t-1)\right) & =0 \\
\Rightarrow t & =0 \text { and } x \text { is free } \\
\text { or } t & =1 \text { and } x \text { is free } \\
\text { or } t & \neq 0,1 \text { and } x=\frac{1}{1-t} .
\end{aligned}
$$

Now we consider the equation $x y-x+1=0$. This tells us that $t \neq 1$, and that when $t \neq 1$ we have $x=\frac{1}{1-t}$. Combining these results we find that:

$$
\mathbb{V}\left(x^{2} z-y^{2}, y x-x+1\right)=\left\{\left.\left(\frac{1}{1-t}, t, t^{4}-2 t^{3}+t^{2}\right) \right\rvert\, t \in \mathbb{R} \backslash\{1\}\right\} .
$$

The curve is illustrated in Figure 1.
Let $\pi_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the projection map along the x-axis onto the (y, z)-plane. The image $\pi_{1}(C)$ of the curve $C=\mathbb{V}\left(x^{2} z-y^{2}, y x-x+1\right) \subset \mathbb{R}^{3}$ is

$$
\left\{\left(t, t^{4}-2 t^{3}+t^{2}\right) \mid t \in \mathbb{R} \backslash\{1\}\right\} \subset \mathbb{R}^{2}
$$

where the point $(1,0)$, corresponding to $t=1$, has been removed. This is illustrated in Figure 2. The Closure Theorem tells us that

$$
\mathbb{V}\left(I_{1}\right)=\left\{\left(t, t^{4}-2 t^{3}+t^{2}\right) \mid t \in \mathbb{R}\right\} \supset \pi_{1}(C)
$$

is the smallest affine variety containing $\pi_{1}(C)$.
(3) (a) An ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is called a monomial ideal if there exists a (possibly infinite) subset $\Lambda \subset \mathbb{Z}_{\geq 0}^{n}$ such that

$$
I=\left\{\sum_{\alpha \in \Lambda} h_{\alpha} x^{\alpha} \mid h_{\alpha} \in k\left[x_{1}, \ldots, x_{n}\right] \text { and finitely many } h_{\alpha} \neq 0\right\} .
$$

We write $I=\left(x^{\alpha} \mid \alpha \in \Lambda\right)$.
Suppose that x^{β} is a multiple of x^{α} for some $\alpha \in \Lambda$. Then $x^{\beta} \in I$ by definition of an ideal. Conversely suppose that $x^{\beta} \in I$. Then

$$
x^{\beta}=\sum_{i=1}^{m} x^{\alpha_{i}} h_{i}, \quad \text { where } \alpha_{i} \in \Lambda \text { and } h_{i} \in k\left[x_{1}, \ldots, x_{n}\right] \text {. }
$$

Expand each h_{i} as a linear combination of monomials. We see that every term on the right-hand side of the expression is divisible by some $x^{\alpha_{i}}$. Hence the left-hand side must also be divisible by some $x^{\alpha}, \alpha \in \Lambda$, and we are done.

Figure 2. The projection of the curve onto the (x, y)-plane. Notice how the image is missing the point $(1,0)$ corresponding to $t=1$ in the parameterisation.
(b) The monomials in J are sketched in Figure 3. The terms appearing in the remainder upon performing the division algorithm are given by k-linear sums of monomials outside of the shaded region; i.e. $\sum_{\beta \in \Gamma} c_{\beta} x^{\beta}$ where $c_{\beta} \in k$ and

$$
\begin{aligned}
\Gamma:= & \{(i, j) \mid i \in\{0,1\}, j \in\{0,1,2,3,4\}\} \cup \\
& \{(2, j) \mid j \in\{0,1,2\}\} \cup \\
& \{(i, j) \mid i \in\{3,4\}, j \in\{0,1\}\} \cup \\
& \{(5,0)\} .
\end{aligned}
$$

(c) Using lex order we have remainder $2 x^{3}+3 x^{2} y$.
(4) (a) Let $\tilde{I}=\left(f_{1}, \ldots, f_{r}, 1-w f\right) \subset k\left[x_{1}, \ldots, x_{n}\right]$. From the proof of the Nullstellensatz we have that $1 \in \tilde{I}$ only if $f^{m} \in I$ for some m. Hence $f \in \sqrt{I}$. Conversely suppose that $f \in \sqrt{I}$. Then $f^{m} \in I$ for some m, and so $f^{m} \in \tilde{I}$. Since $1-w f \in \tilde{I}$ by definition, we see that

$$
\begin{aligned}
1 & =w^{m} f^{m}+\left(1-w^{m} f^{m}\right) \\
& =w^{m} f^{m}+(1-w f)\left(1+w f+w^{2} f^{2}+\ldots+w^{m-1} f^{m-1}\right) \in \tilde{I} .
\end{aligned}
$$

(b) Using lex order, the reduced Gröbner basis for \tilde{I} is $\{1\}$. Hence, by (a), $f \in \mathbb{I}$. To determine the smallest power m such that $f^{m} \in I$ we begin by calculating the

Figure 3. The monomials in the ideal J, where $x^{a} y^{b} \leftrightarrow(a, b) \in \mathbb{Z}_{\geq 0}^{2}$.
reduced Gröbner basis for I (again using lex order):

$$
G=\left\{x^{4}-2 x^{2}+1, y^{2}\right\} .
$$

We now calculate the remainder $\overline{f^{G}}$ for successive values of m :

$$
\begin{aligned}
\bar{f}^{G} & =-x^{2}+y+1, \\
{\overline{f^{2}}}^{G} & =-2 x^{2} y+2 y, \\
{\overline{f^{3}}}^{G} & =0 .
\end{aligned}
$$

Hence $m=3$.
(c) Define

$$
f_{r e d}:=\frac{f}{\operatorname{gcd}\left\{f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\}} .
$$

Then $\sqrt{I}=\left(f_{\text {red }}\right)$. We find that $f_{\text {red }}=x y\left(x^{2}+y-1\right)+y^{2}$, and so

$$
\sqrt{I}=\left(x y\left(x^{2}+y-1\right)+y^{2}\right) .
$$

(5) (a) We begin by calculating the partial derivatives:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=8 x^{3}\left(x^{4}+y^{4}\right)-2 x y^{2}, \\
& \frac{\partial f}{\partial y}=8 y^{3}\left(x^{4}+y^{4}\right)-2 x^{2} y .
\end{aligned}
$$

The ideal $I=\left(\left(x^{4}+y^{4}\right)^{2}-x^{2} y^{2}, 8 x^{3}\left(x^{4}+y^{4}\right)-2 x y^{2}, 8 y^{3}\left(x^{4}+y^{4}\right)-2 x^{2} y\right)$ has reduced Gröbner basis

$$
G=\left\{x^{7}-\frac{x y^{2}}{4}, x^{2} y-4 y^{7}, x y^{3}, y^{8}\right\}
$$

with respect to the usual lex order. By the Elimination Theorem we have partial solution $\mathbb{V}\left(y^{8}\right)=\{0\}$; i.e. $y=0$. Extending this we see that $x=0$. We conclude from the definition of singularity that $f=0$ has only one singular point, when $x=y=0$.
(b) In this case the partial derivatives are:

$$
\begin{aligned}
& \frac{\partial g}{\partial x}=-6 x z^{4}+2 y^{5} \\
& \frac{\partial g}{\partial y}=10 x y^{4}+10 y z^{4} \\
& \frac{\partial g}{\partial z}=-12 x^{2} z^{3}+20 y^{2} z^{3} .
\end{aligned}
$$

We obtain the lex-ordered reduced Gröbner basis

$$
G=\left\{x^{2} z^{3}-\frac{5 y^{2} z^{3}}{3}, x y^{4}+y z^{4}, x z^{4}-\frac{y^{5}}{3}, y^{7}, y^{6} z^{3}, y^{2} z^{4}, y z^{8}\right\} .
$$

We have the partial solutions $\mathbb{V}\left(y^{7}, y^{6} z^{3}, y^{2} z^{4}, y z^{8}\right)=\mathbb{V}(y)$; i.e. there is a line of partial solutions parameterised by $(0, t)$. We now attempt to lift these solutions. First we consider the equation $x z^{4}-\frac{y^{5}}{3}=0$. This gives us $x t^{4}=0$, implying that either $t=0$ or $x=0$. The equation $x y^{4}+y z^{4}=0$ tells us nothing new (since $y=0)$. Similarly for $x^{2} z^{3}-\frac{5 y^{2} z^{3}}{3}=0$. Hence we see that

$$
\mathbb{V}(I)=\mathbb{V}(y, z) \cup \mathbb{V}(x, y)=\{(s, 0,0)\} \cup\{(0,0, t)\}
$$

so there are two lines of singularities, corresponding to the x-axis and to the z-axis.

[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

