M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY REVISION PROBLEMS

Unless stated otherwise, you may use a computational algebra package to aid your calculations. However, you must be clear in your own mind about how the result has been calculated.
(1) (a) State clearly the definition of Gröbner basis, and the definition of S-polynomial. Explain how the S-polynomial is used when calculating a Gröbner basis.
(b) Without the aid of a computer, find a Gröbner basis for the ideal

$$
\left(x^{2}-y, x^{4}-2 x^{2} y\right)
$$

using lex order. Be sure that you explain how you know that your answer is a Gröbner basis.
(c) Is your Gröbner basis minimal? Is it reduced? If not, adjust it so that it is.
(2) (a) Find all possible solutions to the system of equations

$$
\left\{\begin{array}{l}
x^{10}-22 x^{6}+51 x^{4}-48 x^{2}+18=-18 y \\
x^{10}-22 x^{6}+51 x^{4}-30 x^{2}+18=18 z \\
x^{12}-9 x^{10}+32 x^{8}-57 x^{6}+51 x^{4}-18 x^{2}=0
\end{array}\right.
$$

If appropriate, write your solutions in terms of ζ and ζ^{2}, where $1, \zeta$ and ζ^{2} are the three cube roots of unity.
(b) Find a parameterisation for the curve

$$
\mathbb{V}\left(x^{2} z-y^{2}, y x-x+1\right) \subset \mathbb{R}^{3}
$$

What is the image of its projection along the x-axis onto the (y, z)-plane? In the image of this projection, explain what is happening at the point $(1,0)$.
(3) (a) State the definition of monomial ideal. Prove that if

$$
I=\left(x^{\alpha} \mid \alpha \in A\right)
$$

is a monomial ideal, then a monomial $x^{\beta} \in I$ if and only if x^{β} is divisible by x^{α} for some $\alpha \in A$.
(b) Sketch a picture of the monomials contained in the ideal

$$
J=\left(x^{6}, x^{5} y, x^{3} y^{2}, x^{2} y^{3}, y^{5}\right) \subset k[x, y]
$$

If we perform the division algorithm on some $f \in k[x, y]$ using the generators of J as divisors, write down explicitly which terms can appear in the remainder.

[^0](c) Making sure that you state which monomial order you are using, calculate the remainder when $f=2 x^{3}+x^{7} y^{2}+3 x^{2} y+y^{6}$.
(4) (a) Let $I=\left(f_{1}, \ldots, f_{r}\right)$ be an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Prove that $f \in \sqrt{I}$ if and only if $1 \in\left(f_{1}, \ldots, f_{r}, 1-w f\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}, w\right]$.
(b) If $I=\left(x y^{2}-2 y^{2}, x^{4}-2 x^{2}+1\right) \subset \mathbb{C}[x, y]$ and $f=y-x^{2}+1$, is $f \in \sqrt{I}$? If so, what is the smallest power $m>0$ of f such that $f^{m} \in I$?
(c) Let
\[

$$
\begin{aligned}
& I=\left(\left(x^{7}-x^{6}-2 x^{5}+2 x^{4}+x^{3}-x^{2}\right) y^{2}+\right. \\
& \left.\quad \quad\left(2 x^{5}-4 x^{4}+4 x^{2}-2 x\right) y^{3}+\left(x^{3}-3 x^{2}+3 x-1\right) y^{4}\right) \subset \mathbb{C}[x, y]
\end{aligned}
$$
\]

be a principal ideal. Find \sqrt{I}.
(5) Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial. We say that f has a singularity at the point $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ if its partial derivatives all vanish at that point; i.e. if:

$$
\frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right)=\ldots=\frac{\partial f}{\partial x_{n}}\left(a_{1}, \ldots, a_{n}\right)=0 .
$$

(a) Let $f=\left(x^{4}+y^{4}\right)^{2}-x^{2} y^{2} \in \mathbb{R}[x, y]$. By performing a suitable Gröbner basis calculation, show that

$$
\mathbb{V}\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\{(0,0)\} .
$$

Hence or otherwise conclude that $f=0$ has only one singular point, at the origin.
(b) Show that $g=2 x y^{5}+5 y^{2} z^{4}-3 x^{2} z^{4}$ has two lines of singularities. What are they?

[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

