M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY EXAM SOLUTIONS

(1) (a) Let I ⊂ k[x₁,...,x_n] be an ideal. Fix a monomial order. We say that a Gröbner basis G for I is reduced if LC(g) = 1 and no monomial of g is contained in (LT(G \ {g})), for all g ∈ G.

The reduced Gröbner basis of I is unique, hence two ideals I_1 and I_2 are identical if and only if their reduced Gröbner bases agree.

(b) Buchberger's Criterion states that a finite generating set $G = \{g_1, \ldots, g_m\}$ for an ideal $I \subset k[x_1, \ldots, x_n]$ is a Gröbner basis if and only if $\overline{S(g_i, g_j)}^G = 0$ for all $i \neq j$. Using grlex order we have S-polynomials:

$$S(x^{2} + 2xy, xy) = 2xy^{2},$$

$$S(x^{2} + 2xy, y^{2} - x/2) = 2xy^{3} + x^{3}/2,$$

$$S(xy, y^{2} - x/2) = x^{2}/2.$$

In each case, upon division by G we obtain remainder zero.

(c) G is not reduced since $xy \in (xy)$. We have that

$$\overline{x^2 + 2xy}^{xy, y^2 - x/2} = x^2,$$

so we can transform G to $G' = \{x^2, xy, y^2 - x/2\}$. This is also a Gröbner basis, and we see that it is reduced.

(2) (a) (i) Let $G = \{g_1, \ldots, g_m\}$ be a Gröbner basis for I with respect to the given monomial order. The Division Algorithm gives us

$$f = a_1g_1 + \ldots + a_mg_m + r,$$

where no term of r is divisible by any $LT(g_1), \ldots, LT(g_m)$. Suppose that there exists some $h \in LT(I)$ such that a term of r is divisible by h. Since G is a Gröbner basis for I, we have that $(LT(I)) = (LT(g_1), \ldots, LT(g_m))$. Hence $LT(g_i) \mid h$ for some i, which is a contradiction. Finally, setting $g = a_1g_1 + \ldots + a_mg_m$ we notice that $g \in I$ (since I is an ideal).

(ii) Let $G = \{g_1, \ldots, g_m\}$ be a Gröbner basis for I with respect to the given monomial order, and suppose that f = g + r = g' + r'. Then $r - r' = g' - g \in I$, so if $r \neq r'$ we have that $\operatorname{LT}(r - r') \in (\operatorname{LT}(I)) = (\operatorname{LT}(g_1), \ldots, \operatorname{LT}(g_m))$. Hence $\operatorname{LT}(r - r')$ is divisible by $\operatorname{LT}(g_i)$ for some i. But this is impossible, since no term of either r or r' is divisible by any of $\operatorname{LT}(g_1), \ldots, \operatorname{LT}(g_m)$. We conclude that r - r' = 0 and so r = r'.

a.m.kasprzyk@imperial.ac.uk

http://magma.maths.usyd.edu.au/~kasprzyk/.

- (b) Since our choice of Gröbner basis G in the proof of (ii) was arbitrary, the result follows immediately.
- (c) Using lex order we calculate the remainder of x^3 upon division by G in two different ways:

$$\overline{x^3}^{-x^2+y,-x^3+z} = xy,$$
 and $\overline{x^3}^{-x^3+z,-x^2+y} = z$

Since the remainders do not agree, the order in which we list the elements of G matters. Hence by (b) we conclude that G is not a Gröbner basis with respect to lex order.

(3) (a) An ideal I ⊂ k[x₁,...,x_n] is said to be *radical* if for each f ∈ k[x₁,...,g_n], if f^m ∈ I for some positive power m > 0 then f ∈ I.
Given an ideal I ⊂ k[x₁,...,x_n] we define

$$\sqrt{I} := \{ f \in k[x_1, \dots, x_n] \mid f^m \in I \text{ for some } m > 0 \}.$$

We will prove that \sqrt{I} is an ideal. First, suppose that $f \in \sqrt{I}$ and $g \in k[x_1, \ldots, x_n]$. Then there exists some m > 0 such that $f^m \in I$. Since I is an ideal, we see that $g^m f^m \in I$, and hence $gf \in \sqrt{I}$. Now suppose that $f_1, f_2 \in \sqrt{I}$. Then there exists some $m_1, m_2 > 0$ such that $f_1^{m_1}, f_2^{m_2} \in I$. Let $m := \max\{m_1, m_2\}$ and consider the binomial expansion

$$(f_1 + f_2)^{2m} = f_1^{2m} + \binom{2m}{1} f_1^{2m-1} f_2 + \ldots + \binom{2m}{i} f_1^{2m-i} f_2^i + \ldots + f_2^{2m}.$$

For each term of the expansion, either $2m - i \ge m$ or $i \ge m$. In the first case we can write the term in the form $hf_1^{m_1}$, where $h = \binom{2m}{i}f_1^{2m-i-m_1}f_2^i \in k[x_1, \ldots, x_n]$. In the second case we can write the term in the form $h'f_2^{m_2}$, where $h' = \binom{2m}{i}f_1^{2m-i}f_2^{i-m_2} \in k[x_1, \ldots, x_n]$. Since I is an ideal, we conclude that $(f_1 + f_2)^{2m} \in I$, and hence that $f_1 + f_2 \in \sqrt{I}$.

- (b) Notice that $I = (x^2 + y^2 + 2xy, x^2 + y^2 2xy) = ((x + y)^2, (x y)^2)$. In particular we see that $x + y, x y \in \sqrt{I}$, and hence $x, y \in \sqrt{I}$. Since $1 \notin I$, we conclude that $\sqrt{I} = (x, y)$.
- (c) Let $I = (x^2 1, y(x+2)) \subset \mathbb{C}[x, y]$. We see that $\mathbb{V}(I) = \mathbb{V}(x^2 1) \cap \mathbb{V}(y(x+2)) \subset \mathbb{C}^2$. Now $\mathbb{V}(x^2 1) = \mathbb{V}(x+1) \cup \mathbb{V}(x-1)$ is given by the union of the two lines $x = \pm 1$. $\mathbb{V}(y(x+2)) = \mathbb{V}(y) \cup \mathbb{V}(x+2)$ is the union of the lines y = 0 and x = -2. Hence $\mathbb{V}(I) = \{(\pm 1, 0)\}$. The Nullstellensatz tells us that

$$\sqrt{I} = \mathbb{I}(\mathbb{V}(I)) = \mathbb{I}(\{(\pm 1, 0)\}) = (x^2 - 1, y).$$

(4) (a) Let $I \subset k[x_1, \ldots, x_n]$ be an ideal. We say that I is prime if whenever $f, g \in k[x_1, \ldots, x_n]$ are such that $fg \in I$, then either $f \in I$ or $g \in I$. We say that I is maximal if $I \neq k[x_1, \ldots, x_n]$ and for any ideal $J \supseteq I$, either J = I or $J = k[x_1, \ldots, x_n]$.

Let $I \neq k[x_1, \ldots, x_n]$ be an ideal. We will prove the contrapositive: if I is not prime then I is not maximal. For suppose there exist polynomials $f, g \in k[x_1, \ldots, x_n]$ with $fg \in I$, $f, g \notin I$, and consider the ideal (f) + I. Clearly $I \subset (f) + I$. Furthermore, since $f \notin I$ we see that $I \neq (f) + I$. If $(f) + I = k[x_1, \ldots, x_n]$ then $1 \in (f) + I$, hence 1 = cf + h for some $c \in k[x_1, \ldots, x_n]$ and $h \in I$. Multiplying through by ggives

$$g = cfg + hg.$$

But $fg \in I$ by assumption, and $hg \in I$ by construction. Hence $g \in I$; a contradiction. Hence $(f) + I \neq k[x_1, \ldots, x_n]$ and so I is not maximal.

- (b) First we consider (x² + 1) ⊂ C[x]. Since x² + 1 = (x − i)(x + i), we see that (x² + 1) is not prime, and hence cannot be maximal.
 Now we consider (x² + 1) ⊂ R[x]. Suppose that J ⊂ R[x] is an ideal containing (x² + 1). Since R[x] is a principal ideal domain, we can write J = (f) for some f ∈ R[x]. Since x² + 1 ∈ (f), we have that f | x² + 1. But x² + 1 is irreducible, hence, up to multiplication by a non-zero constant, f = 1 or f = x² + 1. Since in the first case we have that J = R[x], and in the second case that J = (x² + 1), we conclude that (x² + 1) is maximal.
- (c) Let $I \subset \mathbb{R}[x_1, \ldots, x_n]$ be maximal, and suppose that $\mathbb{V}(I) \neq \emptyset$. Then there exists some point $(a_1, \ldots, a_n) \in \mathbb{V}(I) \subset \mathbb{R}^n$. In particular, $I \subset (x_1 - a_1, \ldots, x_n - a_n)$. Clearly $(x_1 - a_1, \ldots, x_n - a_n) \neq \mathbb{R}[x_1, \ldots, x_n]$, so by maximality of I we have that $I = (x_1 - a_1, \ldots, x_n - a_n)$. Hence $\mathbb{V}(I) = \mathbb{V}(x_1 - a_1, \ldots, x_n - a_n) = \{(a_1, \ldots, a_n)\}$.