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EXAM SOLUTIONS

(1) (a) Let I ⊂ k[x1, . . . , xn] be an ideal. Fix a monomial order. We say that a Gröbner

basis G for I is reduced if LC(g) = 1 and no monomial of g is contained in

(LT(G \ {g})), for all g ∈ G.

The reduced Gröbner basis of I is unique, hence two ideals I1 and I2 are identical

if and only if their reduced Gröbner bases agree.

(b) Buchberger’s Criterion states that a finite generating set G = {g1, . . . , gm} for an

ideal I ⊂ k[x1, . . . , xn] is a Gröbner basis if and only if S(gi, gj)
G

= 0 for all i 6= j.

Using grlex order we have S-polynomials:

S(x2 + 2xy, xy) = 2xy2,

S(x2 + 2xy, y2 − x/2) = 2xy3 + x3/2,

S(xy, y2 − x/2) = x2/2.

In each case, upon division by G we obtain remainder zero.

(c) G is not reduced since xy ∈ (xy). We have that

x2 + 2xy
xy,y2−x/2

= x2,

so we can transform G to G′ = {x2, xy, y2−x/2}. This is also a Gröbner basis, and

we see that it is reduced.

(2) (a) (i) Let G = {g1, . . . , gm} be a Gröbner basis for I with respect to the given

monomial order. The Division Algorithm gives us

f = a1g1 + . . . + amgm + r,

where no term of r is divisible by any LT(g1) , . . . ,LT(gm). Suppose that

there exists some h ∈ LT(I) such that a term of r is divisible by h. Since

G is a Gröbner basis for I, we have that (LT(I)) = (LT(g1) , . . . ,LT(gm)).

Hence LT(gi) | h for some i, which is a contradiction. Finally, setting g =

a1g1 + . . . + amgm we notice that g ∈ I (since I is an ideal).

(ii) Let G = {g1, . . . , gm} be a Gröbner basis for I with respect to the given

monomial order, and suppose that f = g+r = g′+r′. Then r−r′ = g′−g ∈ I,

so if r 6= r′ we have that LT(r − r′) ∈ (LT(I)) = (LT(g1) , . . . ,LT(gm)). Hence

LT(r − r′) is divisible by LT(gi) for some i. But this is impossible, since no

term of either r or r′ is divisible by any of LT(g1) , . . . ,LT(gm). We conclude

that r − r′ = 0 and so r = r′.
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(b) Since our choice of Gröbner basis G in the proof of (ii) was arbitrary, the result

follows immediately.

(c) Using lex order we calculate the remainder of x3 upon division by G in two different

ways:

x3
−x2+y,−x3+z

= xy, and x3
−x3+z,−x2+y

= z.

Since the remainders do not agree, the order in which we list the elements of G

matters. Hence by (b) we conclude that G is not a Gröbner basis with respect to

lex order.

(3) (a) An ideal I ⊂ k[x1, . . . , xn] is said to be radical if for each f ∈ k[x1, . . . , gn], if fm ∈ I

for some positive power m > 0 then f ∈ I.

Given an ideal I ⊂ k[x1, . . . , xn] we define
√
I := {f ∈ k[x1, . . . , xn] | fm ∈ I for some m > 0}.

We will prove that
√
I is an ideal. First, suppose that f ∈

√
I and g ∈ k[x1, . . . , xn].

Then there exists some m > 0 such that fm ∈ I. Since I is an ideal, we see that

gmfm ∈ I, and hence gf ∈
√
I. Now suppose that f1, f2 ∈

√
I. Then there exists

some m1,m2 > 0 such that fm1
1 , fm2

2 ∈ I. Let m := max{m1,m2} and consider the

binomial expansion

(f1 + f2)
2m = f2m

1 +

(
2m

1

)
f2m−1
1 f2 + . . . +

(
2m

i

)
f2m−i
1 f i

2 + . . . + f2m
2 .

For each term of the expansion, either 2m− i ≥ m or i ≥ m. In the first case we can

write the term in the form hfm1
1 , where h =

(
2m
i

)
f2m−i−m1
1 f i

2 ∈ k[x1, . . . , xn]. In the

second case we can write the term in the form h′fm2
2 , where h′ =

(
2m
i

)
f2m−i
1 f i−m2

2 ∈
k[x1, . . . , xn]. Since I is an ideal, we conclude that (f1 + f2)

2m ∈ I, and hence that

f1 + f2 ∈
√
I.

(b) Notice that I = (x2 + y2 + 2xy, x2 + y2 − 2xy) =
(
(x + y)2, (x− y)2

)
. In particular

we see that x + y, x− y ∈
√
I, and hence x, y ∈

√
I. Since 1 6∈ I, we conclude that√

I = (x, y).

(c) Let I =
(
x2 − 1, y(x + 2)

)
⊂ C[x, y]. We see that V(I) = V(x2− 1)∩V(y(x+ 2)) ⊂

C2. Now V(x2 − 1) = V(x + 1) ∪ V(x − 1) is given by the union of the two lines

x = ±1. V(y(x + 2)) = V(y) ∪V(x + 2) is the union of the lines y = 0 and x = −2.

Hence V(I) = {(±1, 0)}. The Nullstellensatz tells us that
√
I = I(V(I)) = I({(±1, 0)}) = (x2 − 1, y).

(4) (a) Let I ⊂ k[x1, . . . , xn] be an ideal. We say that I is prime if whenever f, g ∈
k[x1, . . . , xn] are such that fg ∈ I, then either f ∈ I or g ∈ I. We say that I

is maximal if I 6= k[x1, . . . , xn] and for any ideal J ⊇ I, either J = I or J =

k[x1, . . . , xn].

Let I 6= k[x1, . . . , xn] be an ideal. We will prove the contrapositive: if I is not prime

then I is not maximal. For suppose there exist polynomials f, g ∈ k[x1, . . . , xn] with
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fg ∈ I, f, g /∈ I, and consider the ideal (f) + I. Clearly I ⊂ (f) + I. Furthermore,

since f /∈ I we see that I 6= (f) + I. If (f) + I = k[x1, . . . , xn] then 1 ∈ (f) + I,

hence 1 = cf + h for some c ∈ k[x1, . . . , xn] and h ∈ I. Multiplying through by g

gives

g = cfg + hg.

But fg ∈ I by assumption, and hg ∈ I by construction. Hence g ∈ I; a contradic-

tion. Hence (f) + I 6= k[x1, . . . , xn] and so I is not maximal.

(b) First we consider (x2 + 1) ⊂ C[x]. Since x2 + 1 = (x− i)(x+ i), we see that (x2 + 1)

is not prime, and hence cannot be maximal.

Now we consider (x2 + 1) ⊂ R[x]. Suppose that J ⊂ R[x] is an ideal containing

(x2 + 1). Since R[x] is a principal ideal domain, we can write J = (f) for some

f ∈ R[x]. Since x2 + 1 ∈ (f), we have that f | x2 + 1. But x2 + 1 is irreducible,

hence, up to multiplication by a non-zero constant, f = 1 or f = x2 + 1. Since in

the first case we have that J = R[x], and in the second case that J = (x2 + 1), we

conclude that (x2 + 1) is maximal.

(c) Let I ⊂ R[x1, . . . , xn] be maximal, and suppose that V(I) 6= ∅. Then there exists

some point (a1, . . . , an) ∈ V(I) ⊂ Rn. In particular, I ⊂ (x1 − a1, . . . , xn − an).

Clearly (x1 − a1, . . . , xn − an) 6= R[x1, . . . , xn], so by maximality of I we have that

I = (x1 − a1, . . . , xn − an). Hence V(I) = V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)}.
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