M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY EXAM SOLUTIONS

(1) (a) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Fix a monomial order. We say that a Gröbner basis G for I is reduced if $\mathrm{LC}(g)=1$ and no monomial of g is contained in $(\operatorname{LT}(G \backslash\{g\}))$, for all $g \in G$.
The reduced Gröbner basis of I is unique, hence two ideals I_{1} and I_{2} are identical if and only if their reduced Gröbner bases agree.
(b) Buchberger's Criterion states that a finite generating set $G=\left\{g_{1}, \ldots, g_{m}\right\}$ for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner basis if and only if ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0$ for all $i \neq j$. Using grlex order we have S-polynomials:

$$
\begin{aligned}
S\left(x^{2}+2 x y, x y\right) & =2 x y^{2}, \\
S\left(x^{2}+2 x y, y^{2}-x / 2\right) & =2 x y^{3}+x^{3} / 2, \\
S\left(x y, y^{2}-x / 2\right) & =x^{2} / 2 .
\end{aligned}
$$

In each case, upon division by G we obtain remainder zero.
(c) G is not reduced since $x y \in(x y)$. We have that

$$
{\overline{x^{2}+2 x y}}^{x y, y^{2}-x / 2}=x^{2},
$$

so we can transform G to $G^{\prime}=\left\{x^{2}, x y, y^{2}-x / 2\right\}$. This is also a Gröbner basis, and we see that it is reduced.
(2) (a) (i) Let $G=\left\{g_{1}, \ldots, g_{m}\right\}$ be a Gröbner basis for I with respect to the given monomial order. The Division Algorithm gives us

$$
f=a_{1} g_{1}+\ldots+a_{m} g_{m}+r
$$

where no term of r is divisible by any $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{m}\right)$. Suppose that there exists some $h \in \operatorname{LT}(I)$ such that a term of r is divisible by h. Since G is a Gröbner basis for I, we have that $(\operatorname{LT}(I))=\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{m}\right)\right)$. Hence $\operatorname{LT}\left(g_{i}\right) \mid h$ for some i, which is a contradiction. Finally, setting $g=$ $a_{1} g_{1}+\ldots+a_{m} g_{m}$ we notice that $g \in I$ (since I is an ideal).
(ii) Let $G=\left\{g_{1}, \ldots, g_{m}\right\}$ be a Gröbner basis for I with respect to the given monomial order, and suppose that $f=g+r=g^{\prime}+r^{\prime}$. Then $r-r^{\prime}=g^{\prime}-g \in I$, so if $r \neq r^{\prime}$ we have that $\operatorname{LT}\left(r-r^{\prime}\right) \in(\operatorname{LT}(I))=\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{m}\right)\right)$. Hence $\mathrm{LT}\left(r-r^{\prime}\right)$ is divisible by $\operatorname{LT}\left(g_{i}\right)$ for some i. But this is impossible, since no term of either r or r^{\prime} is divisible by any of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{m}\right)$. We conclude that $r-r^{\prime}=0$ and so $r=r^{\prime}$.
(b) Since our choice of Gröbner basis G in the proof of (ii) was arbitrary, the result follows immediately.
(c) Using lex order we calculate the remainder of x^{3} upon division by G in two different ways:

$$
{\overline{x^{3}}}^{-x^{2}+y,-x^{3}+z}=x y, \quad \text { and } \quad \bar{x}^{-x^{3}+z,-x^{2}+y}=z
$$

Since the remainders do not agree, the order in which we list the elements of G matters. Hence by (b) we conclude that G is not a Gröbner basis with respect to lex order.
(3) (a) An ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is said to be radical if for each $f \in k\left[x_{1}, \ldots, g_{n}\right]$, if $f^{m} \in I$ for some positive power $m>0$ then $f \in I$.
Given an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ we define

$$
\sqrt{I}:=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f^{m} \in I \text { for some } m>0\right\}
$$

We will prove that \sqrt{I} is an ideal. First, suppose that $f \in \sqrt{I}$ and $g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then there exists some $m>0$ such that $f^{m} \in I$. Since I is an ideal, we see that $g^{m} f^{m} \in I$, and hence $g f \in \sqrt{I}$. Now suppose that $f_{1}, f_{2} \in \sqrt{I}$. Then there exists some $m_{1}, m_{2}>0$ such that $f_{1}^{m_{1}}, f_{2}^{m_{2}} \in I$. Let $m:=\max \left\{m_{1}, m_{2}\right\}$ and consider the binomial expansion
$\left(f_{1}+f_{2}\right)^{2 m}=f_{1}^{2 m}+\binom{2 m}{1} f_{1}^{2 m-1} f_{2}+\ldots+\binom{2 m}{i} f_{1}^{2 m-i} f_{2}^{i}+\ldots+f_{2}^{2 m}$.
For each term of the expansion, either $2 m-i \geq m$ or $i \geq m$. In the first case we can write the term in the form $h f_{1}^{m_{1}}$, where $h=\binom{2 m}{i} f_{1}^{2 m-i-m_{1}} f_{2}^{i} \in k\left[x_{1}, \ldots, x_{n}\right]$. In the second case we can write the term in the form $h^{\prime} f_{2}^{m_{2}}$, where $h^{\prime}=\binom{2 m}{i} f_{1}^{2 m-i} f_{2}^{i-m_{2}} \in$ $k\left[x_{1}, \ldots, x_{n}\right]$. Since I is an ideal, we conclude that $\left(f_{1}+f_{2}\right)^{2 m} \in I$, and hence that $f_{1}+f_{2} \in \sqrt{I}$.
(b) Notice that $I=\left(x^{2}+y^{2}+2 x y, x^{2}+y^{2}-2 x y\right)=\left((x+y)^{2},(x-y)^{2}\right)$. In particular we see that $x+y, x-y \in \sqrt{I}$, and hence $x, y \in \sqrt{I}$. Since $1 \notin I$, we conclude that $\sqrt{I}=(x, y)$.
(c) Let $I=\left(x^{2}-1, y(x+2)\right) \subset \mathbb{C}[x, y]$. We see that $\mathbb{V}(I)=\mathbb{V}\left(x^{2}-1\right) \cap \mathbb{V}(y(x+2)) \subset$ \mathbb{C}^{2}. Now $\mathbb{V}\left(x^{2}-1\right)=\mathbb{V}(x+1) \cup \mathbb{V}(x-1)$ is given by the union of the two lines $x= \pm 1 . \mathbb{V}(y(x+2))=\mathbb{V}(y) \cup \mathbb{V}(x+2)$ is the union of the lines $y=0$ and $x=-2$. Hence $\mathbb{V}(I)=\{(\pm 1,0)\}$. The Nullstellensatz tells us that

$$
\sqrt{I}=\mathbb{I}(\mathbb{V}(I))=\mathbb{I}(\{(\pm 1,0)\})=\left(x^{2}-1, y\right)
$$

(4) (a) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. We say that I is prime if whenever $f, g \in$ $k\left[x_{1}, \ldots, x_{n}\right]$ are such that $f g \in I$, then either $f \in I$ or $g \in I$. We say that I is maximal if $I \neq k\left[x_{1}, \ldots, x_{n}\right]$ and for any ideal $J \supseteq I$, either $J=I$ or $J=$ $k\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \neq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. We will prove the contrapositive: if I is not prime then I is not maximal. For suppose there exist polynomials $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ with
$f g \in I, f, g \notin I$, and consider the ideal $(f)+I$. Clearly $I \subset(f)+I$. Furthermore, since $f \notin I$ we see that $I \neq(f)+I$. If $(f)+I=k\left[x_{1}, \ldots, x_{n}\right]$ then $1 \in(f)+I$, hence $1=c f+h$ for some $c \in k\left[x_{1}, \ldots, x_{n}\right]$ and $h \in I$. Multiplying through by g gives

$$
g=c f g+h g
$$

But $f g \in I$ by assumption, and $h g \in I$ by construction. Hence $g \in I$; a contradiction. Hence $(f)+I \neq k\left[x_{1}, \ldots, x_{n}\right]$ and so I is not maximal.
(b) First we consider $\left(x^{2}+1\right) \subset \mathbb{C}[x]$. Since $x^{2}+1=(x-i)(x+i)$, we see that $\left(x^{2}+1\right)$ is not prime, and hence cannot be maximal.
Now we consider $\left(x^{2}+1\right) \subset \mathbb{R}[x]$. Suppose that $J \subset \mathbb{R}[x]$ is an ideal containing $\left(x^{2}+1\right)$. Since $\mathbb{R}[x]$ is a principal ideal domain, we can write $J=(f)$ for some $f \in \mathbb{R}[x]$. Since $x^{2}+1 \in(f)$, we have that $f \mid x^{2}+1$. But $x^{2}+1$ is irreducible, hence, up to multiplication by a non-zero constant, $f=1$ or $f=x^{2}+1$. Since in the first case we have that $J=\mathbb{R}[x]$, and in the second case that $J=\left(x^{2}+1\right)$, we conclude that $\left(x^{2}+1\right)$ is maximal.
(c) Let $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be maximal, and suppose that $\mathbb{V}(I) \neq \emptyset$. Then there exists some point $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}(I) \subset \mathbb{R}^{n}$. In particular, $I \subset\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Clearly $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \neq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, so by maximality of I we have that $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Hence $\mathbb{V}(I)=\mathbb{V}\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$.

