M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA \& GEOMETRY EXAM

(1) (a) State the definition of a reduced Gröbner basis. Describe an important application of the reduced Gröbner basis when comparing two polynomial ideals $I_{1}, I_{2} \subset$ $k\left[x_{1}, \ldots, x_{n}\right]$.
(b) State Buchberger's Criterion and, using grlex order, verify that

$$
G=\left\{x^{2}+2 x y, x y, y^{2}-\frac{x}{2}\right\} \subset k[x, y]
$$

is a Gröbner basis.
(c) Find a reduced Gröbner basis for the ideal

$$
I=\left(x^{2}+2 x y, x y, y^{2}-\frac{x}{2}\right) \subset k[x, y],
$$

using grlex order.
(2) (a) Fix a monomial ordering and let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial.
(i) Prove that f can be written in the form $f=g+r$, where $g \in I$ and no term of r is divisible by an element of $\operatorname{LT}(I)$.
[Hint: Use the Division Algorithm.]
(ii) Given two expressions $f=g+r=g^{\prime}+r^{\prime}$ as in (i) above, prove that $r=r^{\prime}$.
(b) Let G and G^{\prime} be two Gröbner bases for an ideal I with respect to the same monomial order. Show that $\bar{f}^{G}=\bar{f}^{G^{\prime}}$ for all $f \in k\left[x_{1}, \ldots, k_{n}\right]$.
(c) Without calculating any S-polynomials, prove that $G=\left\{y-x^{2}, z-x^{3}\right\}$ is not a Gröbner basis with respect to lex order.
(3) (a) State the definition of radical ideal. Given an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, prove that \sqrt{I} is an ideal.
(b) Calculate $\sqrt{\left(x^{2}+y^{2}+2 x y, x^{2}+y^{2}-2 x y\right)} \subset k[x, y]$.
(c) Let $I=\left(x^{2}-1, y(x+2)\right) \subset \mathbb{C}[x, y]$. By computing $\mathbb{V}(I) \subset \mathbb{C}^{2}$, write down \sqrt{I}. Hence or otherwise show that $y-x^{2}+1 \in \sqrt{I}$.
(4) (a) Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. State the definition of a prime ideal and maximal ideal. Prove that if I is a maximal ideal then I is a prime ideal.
(b) Let $I=\left(x^{2}+1\right) \subset k[x]$. Show that I is maximal when $k=\mathbb{R}$, but that I is not maximal when $k=\mathbb{C}$.
(c) Let $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a maximal ideal. Prove that $\mathbb{V}(I) \subset \mathbb{R}^{n}$ is equal to either the empty set \emptyset or a point $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$.

[^0]
[^0]: a.m.kasprzyk@imperial.ac.uk
 http://magma.maths.usyd.edu.au/~kasprzyk/.

