Stable maps to Looijenga pairs

Michel van Garrel University of Birmingham

Joint work arXiv:2011.08830, arXiv:2012.10353 with Pierrick Bousseau and Andrea Brini

Nottingham Algebraic Geometry Seminar

21 January 2021

To the experts on polytopes, I present some new polytopial manipulations.

Overview

(Y, D) Looijenga pair (= log Calabi-Yau surface of maximal boundary):

- Y (smooth) projective surface.
- $\triangleright |-K_Y| \ni D = D_1 + \cdots + D_l, \ l > 1.$
- \triangleright D_j smooth nef.

There are 19 deformation-families of such, ∞ -many if we allow for orbifold singularities at the $D_i \cap D_j$, $i \neq j$. We focus on l = 2.

Example: $\mathbb{P}^2(1,4) = \mathbb{P}^2$ with $D_1 = H$ a line and $D_2 = 2H$ a conic.

Example: $dP_3(0,2) = blow$ up of \mathbb{P}^2 in 3 points with $D_1 = H - E_3$ and $D_2 = 2H - E_1 - E_2$.

Theme

- **5** different enumerative theories built from (Y, D).
- They are all equivalent.
- ► They are all closed-form solvable.

I describe some of these through examples.

Geometric Mechanism log \rightarrow open

By example of $dP_3(0,2) = (Bl_{3pts} \mathbb{P}^2) (D_1 = H - E_3, D_2 = 2H - E_1 - E_2).$

Fan of a deformation where D_1 is toric:

d

Replace edge D_1 by framing and balance the vertices:

Open geometry associated to Looijenga pair

 \sim toric CY graph = discriminant locus of the SYZ torus fibration of the toric Calabi–Yau 3-fold $dP_3^{op}(0,2) := Tot(\mathcal{K}_{dP_3(0,2)\setminus D_1}).$

The framing f determines an Aganagic–Vafa Lagrangian *A-brane*. The construction is eminently reversible.

Geometric manipulations

We designated D_1 to be open and D_2 to be local. Starting from the fan, we

- **1.** removed the ray D_1 (and remembered where it was through the framing),
- **2.** twisted by the remaining toric rays (whose sum is lin. equiv. to D_2).

 \rightarrow toric CY3.

This construction works for 15 (out of 19) deformation families, and for $\infty\text{-many}$ if we allow orbifold singularities.

Ignoring the framing, we can build the fan of the toric CY3 $dP_3^{op}(0,2)$ directly:

Associated Calabi–Yau fourfold

Variant: Declare both D_1 and D_2 to be local. Twist by the toric divisors summing to D_2 as before and twist by D_1 in the fourth dimension. \sim toric CY4

```
\mathrm{dP}_3^{\mathrm{loc}}(0,2) := \mathrm{Tot}\left(\mathcal{O}_{\mathrm{dP}_3}(-D_1) \oplus \mathcal{O}_{\mathrm{dP}_3}(-D_2)\right).
```

In general, $Y^{loc}(D_1, \ldots, D_l)$ need not be toric.

Remark

A priori, both D_1 and D_2 open another option. However: computational tools for open Gromov-Witten invariants (topological vertex, topological recursion) only available for toric CY3.

Summary so far

For each of the 19 $Y(D_1, \ldots, D_l)$ we can build $Y^{\text{loc}}(D_1, \ldots, D_l)$, for 15 of them we can build $Y^{\text{op}}(D_1, \ldots, D_l)$ and for the 10 with l = 2, we also have some associated quivers.

We come to the enumerative theories and first focus on $\mathbb{P}^2(1,4) := \mathbb{P}^2(D_1, D_2)$ with $D_1 = \text{line}, D_2 = \text{conic.}$

$\mathbb{P}^2(1,4)$ with log CY boundary (line + conic)

The space of degree d rational curves in \mathbb{P}^2 is of dimension 3d - 1. One may formulate enumerative questions by asking a rational curve to

- **>** pass through a point \leftrightarrow codim 1,
- be maximally tangent to a line/conic \leftrightarrow codim d 1/2d 1.

Let $R_d := \#\{ \text{ degree } d \text{ rational curves in } \mathbb{P}^2 \text{ through 1 point}$ and maximally tangent to both line and conic $\}$.

Figure: A degree 6 rational curve contributing to $R_6 = 924$.

Then $R_d = \begin{pmatrix} 2d \\ d \end{pmatrix}$.

The open geometry $\left(\mathbb{P}^2\right)^{\mathrm{op}}(1,4)$

The previous construction $\rightsquigarrow (\mathbb{P}^2)^{\text{op}}(1,4) = (\mathbb{C}^3, L)$, where *L* is the *A*-brane determined by the framing.

Open GW invariants

Let O_d be the Katz-Liu count of disks in \mathbb{C}^3 with boundary on L, of winding number d and with framing 1 (defined by localization).

$$O_d = \frac{(-1)^d}{2d^2} \binom{2d}{d} = \frac{(-1)^d}{2d^2} R_d.$$

A local CY4 geometry

$$(\mathbb{P}^2)^{\mathrm{loc}}(1,4) := \mathrm{Tot}\left(\mathcal{O}(-1) \oplus \mathcal{O}(-2) \longrightarrow \mathbb{P}^2\right)$$

Local GW invariants

 $N_d:=\#\{ \text{ degree } d \text{ rational curves in } (\mathbb{P}^2)^{\mathrm{loc}}(1,4) \text{ through } 1 \text{ point } \}.$

Theorem (Klemm-Pandharipande '07)

$$N_d = \frac{(-1)^d}{2d^2} \binom{2d}{d} = \frac{(-1)^d}{2d^2} R_d$$

Definition/Conjecture (Klemm-Pandharipande '07)

$$N_d = \sum_{k|d} rac{1}{k^2} \, K P_{d/k}$$

and $KP_d \in \mathbb{Z}$.

Quiver associated to $\mathbb{P}^2(1,4)$

The sequence $(-1)^d KP_d$ is OEIS sequence A131868:

Konvalinka, Tewari, Some natural extensions of the parking space, arXiv:2003.04134.

$$\begin{aligned} &-1)^{d} \mathcal{K} \mathcal{P}_{d} &= (-1)^{d} \sum_{k|d} \frac{\mu(k)}{k^{2}} \frac{(-1)^{d/k}}{2d^{2}/k^{2}} \begin{pmatrix} 2d/k \\ d/k \end{pmatrix} \\ &= \frac{(-1)^{d}}{d^{2}} \sum_{k|d} \mu(d/k) \frac{(-1)^{k}}{2} \begin{pmatrix} 2k \\ k \end{pmatrix} \\ &= \frac{(-1)^{d}}{d^{2}} \sum_{k|d} \mu(d/k) (-1)^{k} \begin{pmatrix} 2k-1 \\ k-1 \end{pmatrix} = \mathrm{DT}_{d}(\mathcal{Q}), \end{aligned}$$

where Q is the 2-loop quiver (=oriented graph consisting of one vertex and two loops) and $DT_d(Q)$ is its *d*th quiver DT invariant (Reineke '12).

4 different geometries in different dimensions exhibit 5 sets of equivalent invariants:

Log/local (N. Takahashi, Gathmann, vG-Graber-Ruddat, Bousseau-Brini-vG, Nabijou-Ranganathan, Tseng-You)

In large families of cases, equivalence of log & local invariants through:

Log/open

replace D_j by a Lagrangian L near D_j multiply by $(-1)^{d \cdot D_j - 1} d \cdot D_j$.

Curves in Looijenga surface $Y(D_1, D_2) \leftrightarrow$ disks in open CY3 $Y^{\mathrm{op}}(D_1, D_2)$

Higher genus theorem for log/open

Under a positivity assumption (tameness), to each $Y(D_1, \ldots, D_l)$ we associate an open geometry $Y^{op}(D_1, \ldots, D_l)$ and prove that

$$\mathsf{O}_{\iota^{-1}(d)}(Y^{\mathrm{op}}(D)) = rac{1}{[1]_q^2} \prod_{i=1}^l rac{(-1)^{d \cdot D_i + 1} [1]_q}{[d \cdot D_i]_q} \prod_{i=1}^{l-1} rac{[d \cdot D_i]_q}{d \cdot D_i} \mathsf{R}^{\mathrm{log}}_d(Y(D))\,,$$

where $O_{\iota^{-1}(d)}(Y^{op}(D))$, resp. $R_d^{log}(Y(D))$, are the generating functions of open, resp. log, Gromov-Witten invariants,

and where $[n]_q := q^{\frac{n}{2}} - q^{-\frac{n}{2}}$ are the q-integers.

Scattering diagrams in the Gross-Siebert program

For today, a scattering diagram is a 2-dim complete fan Σ with focus-focus singularities \times on the rays of Σ indicating blow ups $E(\times)$ on the smooth loci of the prime toric divisors corresponding to that rays.

It is a scattering diagram for Y(D) if the associated variety with its boundary (= toric variety + blow ups $E(\times)$ at smooth loci corresponding to \times 's) can be transformed into Y(D) by a sequence of toric blow ups and blow downs.

Figure: Scattering diagram for $\mathbb{P}^2(1, 4)$.

Building degree *d* curves in \mathbb{P}^2

A wall emanating out of \times with wallcrossing function $1 + tx^{-1}$. $t = t^{[\mathcal{E}(\times)]}$ keeps track of the intersection multiplicity with $\mathcal{E}(\times)$ (on \mathbb{P}^2).

A (Maslov index 0) disk emanating out of the newly created singular fiber of the SYZ-fibration.

Building degree *d* curves in \mathbb{P}^2

A wall emanating out of \times with wallcrossing function $1 + tx^{-1}$. $t = t^{[\mathcal{E}(\times)]}$ keeps track of the intersection multiplicity with $\mathcal{E}(\times)$ (on \mathbb{P}^2).

Two broken lines coming from the D_1 , resp. D_2 , directions of index d, resp. 2d, captured by their attaching functions.

A (Maslov index 0) disk emanating out of the newly created singular fiber of the SYZ-fibration.

Two disks emanating out of the boundary of tangency d, resp. 2d.

Point condition at p.

Building degree d curves in \mathbb{P}^2

A wall emanating out of \times with wall-crossing function $1 + tx^{-1}$. $t = t[E(\times)]$ keeps track of the intersection multiplicity with $E(\times)$ (on \mathbb{P}^2).

Two broken lines coming from the D_1 , resp. D_2 , directions of index d, resp. 2d, captured by their attaching functions.

Point condition at p.

A (Maslov index 0) disk emanating out of the newly created singular fiber of the SYZ-fibration.

Two disks emanating out of the boundary of tangency d, resp.

The bottom broken line is crossing the wall according to the Gross-Siebert wall-crossing automorphism, picking up a contribution from \times . A priori there are many choices, but only one that guarantees the line is straight at *p*. It is the only contribution producing the correct t^d corresponding to the intersection multiplicity *d* with $E(\times)$. The algorithm produces a coefficient, in this case $\binom{2d}{d}$. It is the result of **a** multiplication of two broken lines with *asymptotic monomials* $z^{d[D_1]} = x^d y^{2d}$, resp. $z^{2d[D_2]} = y^{-2d}$.

More precisely, it is the identity component of the result of multiplying two broken lines.

Moreover, summing over broken lines gives the theta functions.

Theorem (Mandel '19, Keel-Yu '19, Gross-Siebert '19) Frobenius Conjecture (Gross-Hacking-Keelv1 '11)

Let $Y(D_1, D_2)$ be a log Calabi-Yau surface with scattering diagram Σ and let d be a curve class.

For any general p, denote by R_d the sum of the coefficients of all the possible results of multiplying broken lines with asymptotic monomials

 $z^{(d \cdot D_1)[D_1]}$ and $z^{(d \cdot D_2)[D_2]}$.

Then

 $R_d = R_d(Y(D)).$

And that's why

$$R_d(\mathbb{P}^2(1,4)) = \binom{2d}{d}.$$

Figure: Scattering diagram for $\mathbb{P}^2(1,4)$ and two broken lines opposite at p.

Scattering diagram for $\mathbb{F}_1(1,3)$

Two \times interacting in a simple way.

Scattering diagram for $\mathbb{F}_1(0,4)$

Two \times creating infinite scattering.

Scattering diagram for $dP_3(1,1)$

Four \times creating finite scattering.

2-pointed invariants I

2-pointed invariants II

For the 2-point invariant, the tropical multiplicity at p is

$$\left| \det \begin{pmatrix} d_1 & 0 \\ d_0 & -d_2 \end{pmatrix} \right| = d_1 d_2$$

and hence

$$R_d(dP_2(1,0,0) = d_1 d_2 {d_0 \choose d_1} {d_1 \choose d_0 - d_2}$$

Refinement by example I

Recall/define

$$\begin{split} \mathbb{P}^2(1,4) &= \mathbb{P}^2 \text{ with boundary (line + conic)}, \\ \mathcal{K}P_d(\mathbb{P}^2(1,4)^{\mathrm{loc}}) &= \sum_{k|d} \frac{\mu(k)}{k^2} \, N_{d/k}(\mathbb{P}^2(1,4)^{\mathrm{loc}}) = O_d^{\mathrm{BPS}}(\mathbb{C}^3, \mathcal{L}). \end{split}$$

Refine the log invariants by higher genus invariants

$$R_{g,d}(\mathbb{P}^2(1,4)) := \int_{[\overline{\mathrm{M}}_{g,1}^{\log}(Y(D),d)]^{\mathrm{vir}}} (-1)^g \lambda_g \operatorname{ev}^*([pt])$$

By Bousseau '18, the *quantized* scattering diagram computes $R_{g,d}(\mathbb{P}^2(1,4))$:

$$\mathsf{R}_d(\hbar) := \sum_{g \ge 0} \mathsf{R}_{g,d}(\mathbb{P}^2(1,4)) \, \hbar^{2g}.$$

Refinement by example II

After the change of variable $q = e^{i\hbar}$,

$$\mathsf{R}_d(q) = \begin{bmatrix} 2d \\ d \end{bmatrix}_q,$$

which is the quantized binomial coefficient

$$\operatorname{Coeff}_{x^d}(1+q^{-\frac{2d-1}{2}}x)(1+q^{-\frac{2d-1}{2}+1}x)\dots(1+q^{\frac{2d-1}{2}}x).$$

Theorem (Higher genus log/open correspondence)

$$\mathsf{O}_{\iota^{-1}(d)}(Y^{\mathrm{op}}(D)) = rac{1}{[1]_q^2} \prod_{i=1}^l rac{(-1)^{d \cdot D_i + 1} [1]_q}{[d \cdot D_i]_q} \prod_{i=1}^{l-1} rac{[d \cdot D_i]_q}{d \cdot D_i} \mathsf{R}_d^{\mathrm{log}}(Y(D)) \, ,$$

Refinement by example III

Multiple cover formula for open GW:

$$O_d(\mathbb{C}^3,L) = \sum_{k\mid d} \frac{1}{k^2} O_{d/k}^{\mathrm{BPS}}(\mathbb{C}^3,L).$$

Lifting to a refinement of $KP_d(\mathbb{P}^2(1,4))$

Following Ooguri-Vafa, there is a Laurent polynomial refinement $\Omega_d(q)$ of $O_d^{BPS}(\mathbb{C}^3, L)$, i.e. such that

$$\Omega_d(q=1)=O_d^{\mathrm{BPS}}(\mathbb{C}^3,L)=\mathcal{KP}_d(\mathbb{P}(1,4)^{\mathrm{loc}}).$$

Theorem (Higher genus open BPS integrality)

$$\Omega_d(q^{-1})=\Omega_d(q)\in q^{-\binom{d-1}{2}}\mathbb{Z}[q].$$

E.g.

$$egin{aligned} \Omega_1(q) &= -1, \quad \Omega_2(q) = 1, \quad \Omega_3(q) = -\left(1 + \left(q^{1/2} - q^{-1/2}
ight)^2
ight), \ \Omega_4(q) &= 2 + 6\left(q^{1/2} - q^{-1/2}
ight)^2 + 5\left(q^{1/2} - q^{-1/2}
ight)^4 + \left(q^{1/2} - q^{-1/2}
ight)^6, \dots \end{aligned}$$

Summary of today

Theorem

For each tame Y(D) and its associated toric CY3 (X, L),

- The higher genus log/open correspondence holds.
- The higher genus open BPS invariants are Laurent polynomials with integer coefficients
- and provide a refinement for the KP_d(Y(D)^{loc}) ← of interest to the enemerative geometry of CY4.

