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To the experts on polytopes, I present some new polytopial manipulations.



Overview

(Y ,D) Looijenga pair (= log Calabi-Yau surface of maximal boundary):

I Y (smooth) projective surface.

I | − KY | 3 D = D1 + · · ·+ Dl , l > 1.

I Dj smooth nef.

There are 19 deformation-families of such, ∞-many if we allow for orbifold
singularities at the Di ∩ Dj , i 6= j . We focus on l = 2.

Example: P2(1, 4) = P2 with D1 = H a line and D2 = 2H a conic.

Example: dP3(0, 2) = blow up of P2 in 3 points with D1 = H − E3 and
D2 = 2H − E1 − E2.



Theme

I 5 different enumerative theories built from (Y ,D).

I They are all equivalent.

I They are all closed-form solvable.

I describe some of these through examples.
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Geometric Mechanism log → open

By example of dP3(0, 2) =
(
Bl3pts P2

)
(D1 = H − E3,D2 = 2H − E1 − E2).

Fan of a deformation where D1 is toric:
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Open geometry associated to Looijenga pair

; toric CY graph = discriminant locus of the SYZ torus fibration of the toric
Calabi–Yau 3-fold dPop

3 (0, 2) := Tot
(
KdP3(0,2)\D1

)
.
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The framing f determines an Aganagic–Vafa Lagrangian A-brane. The
construction is eminently reversible.



Geometric manipulations

We designated D1 to be open and D2 to be local. Starting from the fan, we

1. removed the ray D1 (and remembered where it was through the framing),

2. twisted by the remaining toric rays (whose sum is lin. equiv. to D2).

; toric CY3.

This construction works for 15 (out of 19) deformation families, and for
∞-many if we allow orbifold singularities.



Ignoring the framing, we can build the fan of the toric CY3 dPop
3 (0, 2) directly:



Associated Calabi–Yau fourfold

Variant: Declare both D1 and D2 to be local. Twist by the toric divisors
summing to D2 as before and twist by D1 in the fourth dimension. ; toric CY4

dPloc
3 (0, 2) := Tot (OdP3 (−D1)⊕OdP3 (−D2)) .

In general, Y loc(D1, . . . ,Dl) need not be toric.

Remark
A priori, both D1 and D2 open another option. However: computational tools
for open Gromov-Witten invariants (topological vertex, topological recursion)
only available for toric CY3.



Summary so far

For each of the 19 Y (D1, . . . ,Dl) we can build Y loc(D1, . . . ,Dl), for 15 of
them we can build Y op(D1, . . . ,Dl) and for the 10 with l = 2, we also have
some associated quivers.

We come to the enumerative theories and first focus on P2(1, 4) := P2(D1,D2)
with D1 = line, D2 = conic.



P2(1, 4) with log CY boundary (line + conic)

The space of degree d rational curves in P2 is of dimension 3d − 1. One may
formulate enumerative questions by asking a rational curve to

I pass through a point ↔ codim 1,

I be maximally tangent to a line/conic ↔ codim d − 1/2d − 1.

Let Rd := #{ degree d rational curves in P2 through 1 point

and maximally tangent to both line and conic }.

Figure: A degree 6 rational curve contributing to R6 = 924.

Then Rd =

(
2d

d

)
.



The open geometry
(
P2

)op
(1, 4)

The previous construction ;
(
P2
)op

(1, 4) = (C3, L), where L is the A-brane
determined by the framing.

Open GW invariants

Let Od be the Katz-Liu count of disks in C3 with boundary on L, of winding
number d and with framing 1 (defined by localization).

Od =
(−1)d

2d2

(
2d

d

)
=

(−1)d

2d2
Rd .



A local CY4 geometry

(P2)loc(1, 4) := Tot
(
O(−1)⊕O(−2) −→ P2

)
Local GW invariants

Nd := #{ degree d rational curves in (P2)loc(1, 4) through 1 point }.

Theorem (Klemm-Pandharipande ’07)

Nd =
(−1)d

2d2

(
2d

d

)
=

(−1)d

2d2
Rd

Definition/Conjecture (Klemm-Pandharipande ’07)

Nd =
∑
k|d

1

k2
KPd/k

and KPd ∈ Z.



Quiver associated to P2(1, 4)
The sequence (−1)dKPd is OEIS sequence A131868:

Konvalinka, Tewari, Some natural extensions of the parking space, arXiv:2003.04134.

(−1)dKPd = (−1)d
∑
k|d

µ(k)

k2

(−1)d/k

2d2/k2

(
2d/k

d/k

)

=
(−1)d

d2

∑
k|d

µ(d/k)
(−1)k

2

(
2k

k

)

=
(−1)d

d2

∑
k|d

µ(d/k) (−1)k
(

2k − 1

k − 1

)
= DTd(Q),

where Q is the 2-loop quiver
(=oriented graph consisting of
one vertex and two loops) and
DTd(Q) is its dth quiver DT in-
variant (Reineke ’12).

Cd α∈End(Cd)3β



4 different geometries in different dimensions exhibit 5 sets of equivalent
invariants:



Log/local (N. Takahashi, Gathmann, vG-Graber-Ruddat, Bousseau-Brini-vG,

Nabijou-Ranganathan, Tseng-You)

In large families of cases, equivalence of log & local invariants through:

Impose maximal

tangency with
Dj ←→

twist by OY (−Dj) and

multiply by (−1)d·Dj−1 d · Dj .



Log/open

Maximal tangency with Dj

d · Dj choices of contact points
←→

replace Dj by a Lagrangian L near Dj

multiply by (−1)d·Dj−1 d · Dj .



Curves in Looijenga surface Y (D1,D2) ↔ disks in open CY3 Y op(D1,D2)

P



Higher genus theorem for log/open

Under a positivity assumption (tameness), to each Y (D1, . . . ,Dl) we associate
an open geometry Y op(D1, . . . ,Dl) and prove that

Oι−1(d)(Y
op(D)) =

1

[1]2
q

l∏
i=1

(−1)d·Di+1[1]q
[d · Di ]q

l−1∏
i=1

[d · Di ]q
d · Di

Rlog
d (Y (D)) ,

where Oι−1(d)(Y
op(D)), resp. Rlog

d (Y (D)), are the generating functions of
open, resp. log, Gromov-Witten invariants,

and where [n]q := q
n
2 − q−

n
2 are the q-integers.



Scattering diagrams in the Gross-Siebert program

For today, a scattering diagram is a 2-dim complete fan Σ with focus-focus
singularities × on the rays of Σ indicating blow ups E(×) on the smooth loci of
the prime toric divisors corresponding to that rays.

It is a scattering diagram for Y (D) if the associated variety with its boundary
(= toric variety + blow ups E(×) at smooth loci corresponding to ×’s) can be
transformed into Y (D) by a sequence of toric blow ups and blow downs.

×

Figure: Scattering diagram for P2(1, 4).

Figure: Polytope picture.



Building degree d curves in P2

A wall emanating out of × with wall-

crossing function 1 + tx−1. t = t [E(×)]

keeps track of the intersection multi-

plicity with E(×) (on P2).
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×

A (Maslov index 0) disk emanating out

of the newly created singular fiber of

the SYZ-fibration.



Building degree d curves in P2

A wall emanating out of × with wall-

crossing function 1 + tx−1. t = t [E(×)]

keeps track of the intersection multiplicity

with E(×) (on P2).

x
y

•p
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D2

D1

1+tx−1

×

Two broken lines coming from the D1, resp.

D2, directions of index d , resp. 2d , captured

by their attaching functions.

A (Maslov index 0) disk emanating out

of the newly created singular fiber of

the SYZ-fibration.

· p

Two disks emanating out of the bound-

ary of tangency d , resp. 2d .

Point condition at p.



Building degree d curves in P2

A wall emanating out of × with wall-crossing function 1 + tx−1.

t = t[E(×)] keeps track of the intersection multiplicity with E(×)

(on P2).

Two broken lines coming from the D1, resp. D2, directions of index

d , resp. 2d , captured by their attaching functions.

x
y

•

•p

y−2d

xd y2d

D2

D1

1+tx−1

×
(2d
d )td x−d y−2d

Point condition at p.

A (Maslov index 0) disk emanating out of the newly created

singular fiber of the SYZ-fibration.

Two disks emanating out of the boundary of tangency d , resp.

2d .

•· p

The bottom broken line is crossing

the wall according to the Gross-Siebert

wall-crossing automorphism, picking up

a contribution from ×. A priori there

are many choices, but only one that

guarantees the line is straight at p. It

is the only contribution producing the

correct td corresponding to the inter-

section multiplicity d with E(×).



The algorithm produces a coefficient, in this case
(

2d
d

)
. It is the result of a

multiplication of two broken lines with asymptotic monomials zd [D1] = xdy 2d ,
resp. z2d [D2] = y−2d .

More precisely, it is the identity component of the result of multiplying two
broken lines.

Moreover, summing over broken lines gives the theta functions.



Theorem (Mandel ’19, Keel-Yu ’19, Gross-Siebert ’19) Frobenius
Conjecture (Gross-Hacking-Keelv1 ’11)

Let Y (D1,D2) be a log Calabi-Yau surface with scattering diagram Σ and let d
be a curve class.

For any general p, denote by Rd the sum of the coefficients of all the possible
results of multiplying broken lines with asymptotic monomials

z (d·D1) [D1] and z (d·D2) [D2].

Then
Rd = Rd(Y (D)).



And that’s why

Rd(P2(1, 4)) =

(
2d

d

)
.
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Figure: Scattering diagram for P2(1, 4) and two broken lines opposite at p.



Scattering diagram for F1(1, 3)

Two × interacting in a simple way.

x
y

×

×

1+tx−1

1
+
t 1
y
−

1

y−d0−d1

xd0 y2d0

1+
tt 1
x
−

1 y
−

1

(
d0+d1
k1

)
tk1 x−k1 y−d0−d1

(
d0+d1
k1

)(
d0+d1−k1

k2

)
tk1+k2 t

k2
1 x−k1−k2 y−d0−d1−k2

•p



Scattering diagram for F1(0, 4)

Two × creating infinite scattering.

x
y

×

×

1+tx−1

1+
t 1
xy

2

· · ·· · ·

y−2d0

xd1 y2d1

• p



Scattering diagram for dP3(1, 1)

Four × creating finite scattering.

x
y

×

× × ×

1+tx−1

1
+
t 1
y
−

1

1
+
t 2
y
−

1

1
+
t 3
y
−

1

yd0−d1−d2−d3

xd0 y2d0

•p



2-pointed invariants I

Rψd (dP2(1, 0, 0)) =

(
d0

d1

)(
d1

d0 − d2

)
.

x
y

D2

D1

D3 ×

×

1+t1x
−1

1
+
t 2
y
−

1

x−d1

y−d2

xd0 yd0

(
d0
d1

)
t
d0−d1
1 xd1 yd0(

d1
d0−d2

)
t
d0−d2
2 xd1 yd2−d0 • p



2-pointed invariants II
For the 2-point invariant, the tropical multiplicity at p is∣∣∣ det

(
d1 0
d0 −d2

) ∣∣∣ = d1 d2

and hence

Rd (dP2(1, 0, 0) = d1 d2

(d0

d1

)( d1

d0 − d2

)
.

x
y

D2

D1

D3 ×

×

1+t1x
−1

1
+
t 2
y
−

1

x−d1

y−d2

xd0 yd0

(
d0
d1

)
t
d0−d1
1 xd1 yd0(

d1
d0−d2

)
t
d0−d2
2 xd1 yd2−d0

•p2•
p1

p



Refinement by example I

Recall/define

P2(1, 4) = P2 with boundary (line + conic),

KPd(P2(1, 4)loc) =
∑
k|d

µ(k)

k2
Nd/k(P2(1, 4)loc) = OBPS

d (C3, L).

Refine the log invariants by higher genus invariants

Rg,d(P2(1, 4)) :=

∫
[M

log
g,1(Y (D),d)]vir

(−1)g λg ev∗([pt])

By Bousseau ’18, the quantized scattering diagram computes Rg,d(P2(1, 4)):

Rd(~) :=
∑
g≥0

Rg,d(P2(1, 4)) ~2g .



Refinement by example II

After the change of variable q = e i~,

Rd(q) =

[
2d
d

]
q

,

which is the quantized binomial coefficient

Coeffxd (1 + q−
2d−1

2 x)(1 + q−
2d−1

2
+1x) . . . (1 + q

2d−1
2 x) .

Theorem (Higher genus log/open correspondence)

Oι−1(d)(Y
op(D)) =

1

[1]2
q

l∏
i=1

(−1)d·Di+1[1]q
[d · Di ]q

l−1∏
i=1

[d · Di ]q
d · Di

Rlog
d (Y (D)) ,



Refinement by example III
Multiple cover formula for open GW:

Od(C3, L) =
∑
k|d

1

k2
OBPS

d/k (C3, L).

Lifting to a refinement of KPd(P2(1, 4))

Following Ooguri-Vafa, there is a Laurent polynomial refinement Ωd(q) of
OBPS

d (C3, L), i.e. such that

Ωd(q = 1) = OBPS
d (C3, L) = KPd(P(1, 4)loc).

Theorem (Higher genus open BPS integrality)

Ωd(q−1) = Ωd(q) ∈ q−(d−1
2 ) Z[q].

E.g.

Ω1(q) = −1, Ω2(q) = 1, Ω3(q) = −
(

1 +
(
q1/2 − q−1/2

)2
)
,

Ω4(q) = 2 + 6
(
q1/2 − q−1/2

)2

+ 5
(
q1/2 − q−1/2

)4

+
(
q1/2 − q−1/2

)6

, . . .



Summary of today

Theorem
For each tame Y (D) and its associated toric CY3 (X , L),

I The higher genus log/open correspondence holds.

I The higher genus open BPS invariants are Laurent polynomials with
integer coefficients

I and provide a refinement for the KPd(Y (D)loc) ← of interest to the
enemerative geometry of CY4.
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