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I Quadric hypersurfaces
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Q Q quadric ofdim n over k
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I Quadric surface bundles

1 Setup and main results
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Def Assume 9 0 Let D 9 0 CIPsE
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If p Q S has simpledegeneration eachfiberhas
corank 1 and relative dim is even then

Ra E DRS I Theme

5 S is thedouble coverramifiedalong Ss

My expectation
When relative dim of p Q 35 is even and
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Now we focus on P Qe S flat quadric surfbundle

Main Results

p as flat quadric surf bundle

Ra is geometric when
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Remarks

i In both cases 53 0 lie fibershavecrank 2

121 Forany flat quadric surf bundle p Qs s with

53 0 étale locally p has a smooth section

It's possible togeneralise to any
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Main Ideas make use of
hyperbolic reduction q 198 f Gmt g
relative Hilbert scheme of lines

Let P Q 75 be a flat quadric surface bundle
Theorem 1

S2E S PQoShas a smooth section
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the smooth section
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St Bls 5 resolutionof thedouble cover 5 over

S ramified along Sy 5 is nodal along sacs

and At is Azumaya on St

Moreover Tat eBrest is trivial F pi as has

a rational section
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P Q At Q fiber over o A has Gronk 2
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Hyperbolicreduction E L t two a Rtx A
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2 Ideas for the proofs of Theorem 1

Two proofs one easy one harder

harder proof describes theembedding functor
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be q Esf D go EPs II is the hyperbolic
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Proofs of Theorem 1

p as s flat quadric surfacebundle
Sa ES p has a smooth section IPsW

Proof 1 easy

Jiang213 Blowupformula
In the setting of Theorem 1 Sa S t smoothsection

Db Q Db a Db5 DE S E exc locusof f
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Mutations Ra E DRI

Note P Ess is me flat
p sisi sis double cover ramifieldalong sis

8152 0 p Sa PglElse is a IP bundle



Th Examples 1Applications of Main Theorems

Example I IXiel

X quintic del Petto 3 folds IterminalGovensteinFano 3fold

of index2 anddegree51

x nodal and number of nodes 3

Let a ex be a node

x Pb embedded projectivetangentspace Tax P

Consider linear projection X 1 Ipt from Tax

f Y Blay xx x resolution at a

exceptional locus E Z P1

g Y it flat quadricsurfacebundle with
a smooth section E

X has 1 or 2 nodes Yep has fibersofcrank 1

X has 3 nodes Yt lp has a fiber ofcrank 2
theorem 14 residual cat Ry Dblhyperbolic reduction



Example 2 Moschetti t Kuznetsov

x cps saltitch
4 fold containing a plane 2 1132

y BLT
IpaICY

projectionfois
g is a flat quadric surf bundle with possibly a finite
numberof corank 2 fibers

Rx t Ry theorem Dblsmooth K3 surf A

Example 3

X Q A Q2MQ smooth c i

where Qi epants quadrics dim X 2m

pit fidgetquadricbundle of relative dim 2Mt

Homological Projective Duality
Residualcategories Rx E Ra



Prop Assume ME 5

Rx Db Sam Army
Atumaya

where Sam IP is the resolutionof thedouble cover
over P ramified along a nodal curve of deg am 4
Moreover if m 3 then X is rational

if m 2 and O TAYeBr 541 then X is rational

Idea

P Q P flatquadricbundle of relative dim 2Mt

Imxp c a con to regular isotropic subbundle

hyperbolic reduction

p I p flat quadricsurf bundle
with E smooth D


