Jacobi algebras on the two-loop quiver and applications

Michael Wemyss

Nottingham geometry seminar, 29th April 2021.

(joint with Gavin Brown)

0/18

Plan of Talk

- 1. Jacobi algebras, and the Main Problem.
- 2. Geometric Interlude: flops and div-to-curve contractions.
- 3. Results in 'Type A', and 'Type D'.
- 4. Geometric Consequences.

Algebraic Setup

Consider the free algebra $\mathbb{C}\langle x, y \rangle$. Elements are finite sums like

$$f = \lambda_1 + \lambda_2 x + \lambda_3 y + \lambda_4 x^2 + \lambda_5 xy + \lambda_6 yx + \lambda_7 y^2.$$

Algebraic Setup

Consider the free algebra $\mathbb{C}\langle x, y \rangle$. Elements are finite sums like

$$f = \lambda_1 + \lambda_2 x + \lambda_3 y + \lambda_4 x^2 + \lambda_5 xy + \lambda_6 yx + \lambda_7 y^2.$$

...and the completed version $\mathbb{C}\langle\!\langle x, y \rangle\!\rangle$. Basically the same, except now allow infinite sums

$$f = \lambda_1 + \lambda_2 x + \lambda_3 y + \lambda_4 x^2 + \lambda_5 xy + \lambda_6 yx + \lambda_7 y^2 + \dots$$

Both these rings are *not* noetherian, and have exponential growth (GKdim ∞)

Given any $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$.

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y .

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

ххху

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

xxxy + xxyx

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

xxxy + xxyx + xyxx

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

xxxy + xxyx + xyxx + yxxx

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

$$xxxy + xxyx + xyxx + yxxx$$

then score off: $\delta_x(x^3y) = xxy + xyx + yxx$, and $\delta_y(x^3y) = xxx$.

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

$$xxxy + xxyx + xyxx + yxxx$$

then score off: $\delta_x(x^3y) = xxy + xyx + yxx$, and $\delta_y(x^3y) = xxx$. Definition

Given any $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle$, the Jacobi algebra is

$$\mathcal{J}ac(f) = \frac{\mathbb{C}\langle\!\langle x, y \rangle\!\rangle}{((\delta_x f, \delta_y f))}.$$

3/18

Given any $f \in \mathbb{C}\langle\langle x, y \rangle\rangle$, we can *differentiate* it with respect to both x and y, to give elements $\delta_x f$ and $\delta_y f$. This is just a simple rule, which on monomials is defined as follows.

Consider e.g. x^3y . First, cyclically permute it

$$xxxy + xxyx + xyxx + yxxx$$

then score off: $\delta_x(x^3y) = xxy + xyx + yxx$, and $\delta_y(x^3y) = xxx$. Definition

Given any $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle$, the Jacobi algebra is

$$\mathcal{J}ac(f) = \frac{\mathbb{C}\langle\!\langle x, y \rangle\!\rangle}{((\delta_x f, \delta_y f))}.$$

e.g.
$$\mathcal{J}ac(x^4 + xy^2) = \frac{\mathbb{C}\langle\!\langle x, y \rangle\!\rangle}{((4x^3 + y^2, xy + yx))}.$$

Main Algebraic Question

...classify all possible Jacobi algebras, up to isomorphism.

Problem

For every $n \ge 0$, produce a set of potentials S_n from which we can realise *every* Jacobi algebra of Gelfand–Kirillov (GK) dimension n, up to isomorphism.

Main Algebraic Question

...classify all possible Jacobi algebras, up to isomorphism.

Problem

For every $n \ge 0$, produce a set of potentials S_n from which we can realise *every* Jacobi algebra of Gelfand–Kirillov (GK) dimension n, up to isomorphism.

We insist that the elements of S_n should be a *normal form*, meaning that if $f, g \in S_n$ with $f \neq g$, then the resulting Jacobi algebras are not isomorphic.

Notation: write $f \cong g$ to mean $\mathcal{J}ac(f) \cong \mathcal{J}ac(g)$.

...for small n we propose that such a classification is desirable, and:

...for small n we propose that such a classification is desirable, and:

1. ...a classification is in fact possible! (c.f. Arnold)

...for small n we propose that such a classification is desirable, and:

1. ...a classification is in fact possible! (c.f. Arnold)

2. ...there are no moduli. Just very few countable families.

...for small n we propose that such a classification is desirable, and:

- 1. ...a classification is in fact possible! (c.f. Arnold)
- 2. ...there are no moduli. Just very few countable families.
- 3. ...the classification is ADE.

...for small n we propose that such a classification is desirable, and:

- 1. ...a classification is in fact possible! (c.f. Arnold)
- 2. ...there are no moduli. Just very few countable families.
- 3. ...the classification is ADE.
- 4. ...this algebraic classification *is* (and implies) the classification of flops, and of crepant divisorial contractions to curves.

Back up: where to find Jacobi algebras?

Contraction algebras arise in the birational geometry. Today: focus on crepant contractions of two types:

Assumptions: \mathfrak{X} is smooth, and only one curve above the origin.

Back up: where to find Jacobi algebras?

Contraction algebras arise in the birational geometry. Today: focus on crepant contractions of two types:

Assumptions: $\boldsymbol{\mathfrak{X}}$ is smooth, and only one curve above the origin.

To this data we associate the contraction algebra $\mathrm{A}_{\mathrm{con}}$ as follows...

Contraction Algebras

The contraction algebra $A_{\rm con}$ is defined using (noncommutative) deformation theory of the reduced fibre above the origin.

Details are unimportant, the only facts we need today are:

- 1. Since only one curve, A_{con} is a factor of $\mathbb{C}\langle\!\langle x, y \rangle\!\rangle$.
- 2. Since \mathfrak{X} is smooth, there exists f such that $A_{con} \cong \mathfrak{Jac}(f)$.

Contraction Algebras

The contraction algebra $A_{\rm con}$ is defined using (noncommutative) deformation theory of the reduced fibre above the origin.

Details are unimportant, the only facts we need today are:

- 1. Since only one curve, A_{con} is a factor of $\mathbb{C}\langle\!\langle x, y \rangle\!\rangle$.
- 2. Since \mathfrak{X} is smooth, there exists f such that $A_{con} \cong \mathfrak{Jac}(f)$.

Theorem (Donovan-W)

 $\begin{array}{lll} \mbox{Situation } \textcircled{0} \ (\mbox{flopping}) & \Longleftrightarrow & \mbox{GKdim} \ A_{\rm con} = 0. \\ \mbox{Situation } \textcircled{0} \ (\mbox{div} {\rightarrow} \mbox{curve}) & \Longleftrightarrow & \mbox{GKdim} \ A_{\rm con} = 1. \end{array}$

...motivates studying f such that $GKdim \mathcal{J}ac(f) \leq 1$.

Classification Conjecture (Donovan-W)

Contraction algebras classify.

Classification Conjecture (Donovan–W)

Contraction algebras classify. If $\mathcal{X}_1 \to \operatorname{Spec} \mathcal{R}_1$ and $\mathcal{X}_2 \to \operatorname{Spec} \mathcal{R}_2$ be 3-fold irreducible crepant contractions, with one-dimensional fibres, where \mathcal{X}_i are smooth, and \mathcal{R}_i are complete local. Denote their corresponding contraction algebras by A_{con} and B_{con} . Then

$$\mathfrak{R}_1 \cong \mathfrak{R}_2 \iff A_{\operatorname{con}} \cong B_{\operatorname{con}}.$$

Classification Conjecture (Donovan–W)

Contraction algebras classify. If $\mathcal{X}_1 \to \operatorname{Spec} \mathcal{R}_1$ and $\mathcal{X}_2 \to \operatorname{Spec} \mathcal{R}_2$ be 3-fold irreducible crepant contractions, with one-dimensional fibres, where \mathcal{X}_i are smooth, and \mathcal{R}_i are complete local. Denote their corresponding contraction algebras by A_{con} and B_{con} . Then

$$\mathfrak{R}_1 \cong \mathfrak{R}_2 \iff A_{\operatorname{con}} \cong B_{\operatorname{con}}.$$

Realisation Conjecture (Brown–W) Contraction algebras=Jacobi algebras.

Classification Conjecture (Donovan–W)

Contraction algebras classify. If $\mathcal{X}_1 \to \operatorname{Spec} \mathcal{R}_1$ and $\mathcal{X}_2 \to \operatorname{Spec} \mathcal{R}_2$ be 3-fold irreducible crepant contractions, with one-dimensional fibres, where \mathcal{X}_i are smooth, and \mathcal{R}_i are complete local. Denote their corresponding contraction algebras by A_{con} and B_{con} . Then

$$\mathfrak{R}_1 \cong \mathfrak{R}_2 \iff A_{\operatorname{con}} \cong B_{\operatorname{con}}.$$

Realisation Conjecture (Brown–W)

Contraction algebras=Jacobi algebras. If $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle$ satisfies GKdim $\mathcal{J}ac(f) \leq 1$, then $\mathcal{J}ac(f) \cong A_{con}$ for either a flopping contraction (GK zero), or div \rightarrow curve contraction (GK 1).

...so, blind to any geometry, off we go to classify all $\mathcal{J}ac(f)$! We will classify *first*, using only algebra, then at the end relate this to geometry. ...so, blind to any geometry, off we go to classify all $\mathcal{J}ac(f)$! We will classify *first*, using only algebra, then at the end relate this to geometry.

Rules

Since scalars differentiate to zero, and linear terms differentiate to units, to classify f, we can assume f contains only quadratic terms and higher. Write this as $f \in \mathbb{C}\langle\langle x, y \rangle\rangle_{\geq 2}$.

'Type A'

...the case f contains a quadratic term, e.g. $f = \lambda xy + \mu yx + \dots$

'Type A'

...the case f contains a quadratic term, e.g. $f = \lambda xy + \mu yx + ...$ Warm-Up Result

Suppose $f \in \mathbb{C}\langle\!\langle x, y
angle\!\rangle_{\geq 2}$ with $f_2 \neq 0$. Then either

$$f \cong \begin{cases} x^2 \\ x^2 + y^n & \text{for some } n \ge 2. \end{cases}$$

In all cases, $\mathsf{GKdim}\,\mathfrak{J}\mathrm{ac}(f)\leq 1,\,\mathfrak{J}\mathrm{ac}(f)$ is commutative, as either

$$\mathcal{J}ac(f) \cong \mathbb{C}\llbracket y \rrbracket$$
 or $\mathbb{C}\llbracket y \rrbracket / y^{n-1}$.

'Type A'

...the case f contains a quadratic term, e.g. $f = \lambda xy + \mu yx + ...$ Warm-Up Result

Suppose $f \in \mathbb{C}\langle\!\langle x, y
angle\!\rangle_{\geq 2}$ with $f_2 \neq 0$. Then either

$$f \cong \begin{cases} x^2 \\ x^2 + y^n & \text{for some } n \ge 2. \end{cases}$$

In all cases, $\mathsf{GKdim}\,\mathfrak{J}\mathrm{ac}(f)\leq 1,\,\mathfrak{J}\mathrm{ac}(f)$ is commutative, as either

$$\mathcal{J}ac(f) \cong \mathbb{C}\llbracket y \rrbracket$$
 or $\mathbb{C}\llbracket y \rrbracket / y^{n-1}$.

Notes:

- $f_2 \neq 0$ in fact equivalent to $\mathcal{J}ac(f)$ being commutative.
- Generic behaviour is $\operatorname{Jac}(f) \cong \mathbb{C}$.

Compare Reid's Pagoda

For Type A contractions, either:

Compare Reid's Pagoda

For Type A contractions, either:

To continue classification, can that assume $f_2 = 0$, and so $f \in \mathbb{C}\langle\!\langle x, y
angle\!\rangle_{\geq 3}$.

For GKdim $\mathcal{J}ac(f) \leq 1$, necessarily $f_3 \neq 0$. Almost there!?

To continue classification, can that assume $f_2 = 0$, and so $f \in \mathbb{C}\langle\!\langle x, y
angle\!\rangle_{\geq 3}$.

For GKdim $\mathcal{J}ac(f) \leq 1$, necessarily $f_3 \neq 0$. Almost there!?

So assume $f_2 = 0$ and $f_3 \neq 0$. By commuting variables, view f_3 as a commutative polynomial. ...it is cubic, so has either 1, 2 or 3 distinct factors. To continue classification, can that assume $f_2 = 0$, and so $f \in \mathbb{C}\langle\!\langle x, y
angle\!\rangle_{\geq 3}$.

For GKdim $\mathcal{J}ac(f) \leq 1$, necessarily $f_3 \neq 0$. Almost there!?

So assume $f_2 = 0$ and $f_3 \neq 0$. By commuting variables, view f_3 as a commutative polynomial. ...it is cubic, so has either 1, 2 or 3 distinct factors.

Having 2 or 3 factors \rightarrow 'Type *D*'. Having only 1 factor \rightarrow the exceptional, or 'Type *E*' case.

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

٠

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ ○ ○

13/18

$$f \cong \begin{cases} xy^2 \\ \end{cases}$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

•

$$f \cong \begin{cases} xy^2 + x^{even} \\ \\ \end{cases}$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

٠

$$f \cong \begin{cases} xy^2 & +x^{odd} \\ & &$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

٠

$$f \cong \begin{cases} xy^2 + x^{even} + x^{odd} \\ \end{cases}$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

٠

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ ○ ○

13/18

$$f \cong \begin{cases} xy^2 \\ \end{cases}$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ & &$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} \\ xy^2 + x^{2n} \\ xy^2 + x^{2n} \\ \vdots \\ \vdots \end{cases} \text{ with } m \ge 1$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

13/18

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ xy^2 + x^{2n} & \text{with } n \ge 2 \\ xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \\ & . \end{cases}$$

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ xy^2 + x^{2n} & \text{with } n \ge 2 \\ xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \\ xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m+1. \end{cases}$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

13/18

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ xy^2 + x^{2n} & \text{with } n \ge 2 \\ xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \le 2n-2 \\ xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m+1. \end{cases}$$

These are normal forms. All satisfy $GKdim \mathcal{J}ac(f) \leq 1$.

Theorem (Brown–W)

Consider $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle_{\geq 3}$ with $f_3 \neq 0$ such that f_3^{ab} has two or three distinct factors. Then either

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ xy^2 + x^{2n} & \text{with } n \ge 2 \\ xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \le 2n-2 \\ xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m+1. \end{cases}$$

These are normal forms. All satisfy $GKdim \mathcal{J}ac(f) \leq 1$.

Note: there are no moduli!

[Donovan–W] div→curve

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} \\ xy^2 + x^{2n} \end{cases}$$

[Donovan–W] div→curve [Brown–W] div→curve [Aspinwall–Morrison] Laufer flops

イロン イロン イヨン イヨン 三日

14/18

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} \\ xy^2 + x^{2n} \\ xy^2 + x^{2n} + x^{2m+1} \end{cases}$$

[Donovan–W] div→curve [Brown–W] div→curve [Aspinwall–Morrison] Laufer flops [BW, van Garderen, Kawamata] flops

$$f \cong \begin{cases} xy^2 \\ xy^2 + x^{2m+1} \\ xy^2 + x^{2n} \\ xy^2 + x^{2n} + x^{2m+1} \\ xy^2 + x^{2m+1} + x^{2n} \end{cases}$$

[Donovan–W] div→curve [Brown–W] div→curve [Aspinwall–Morrison] Laufer flops [BW, van Garderen, Kawamata] flops [van Garderen, Kawamata] flops

$$f \cong \begin{cases} xy^2 & [\text{Donovan-W}] \text{ div} \rightarrow \text{curve} \\ xy^2 + x^{2m+1} & [\text{Brown-W}] \text{ div} \rightarrow \text{curve} \\ xy^2 + x^{2n} & [\text{Aspinwall-Morrison}] \text{ Laufer flops} \\ xy^2 + x^{2n} + x^{2m+1} & [\text{BW, van Garderen, Kawamata}] \text{ flops} \\ xy^2 + x^{2m+1} + x^{2n} & [\text{van Garderen, Kawamata}] \text{ flops} \end{cases}$$

...in all cases, in the corresponding geometric contraction, the elephant has type D singularities.

$$f \cong \begin{cases} xy^2 & [\text{Donovan-W}] \text{ div} \rightarrow \text{curve} \\ xy^2 + x^{2m+1} & [\text{Brown-W}] \text{ div} \rightarrow \text{curve} \\ xy^2 + x^{2n} & [\text{Aspinwall-Morrison}] \text{ Laufer flops} \\ xy^2 + x^{2n} + x^{2m+1} & [\text{BW, van Garderen, Kawamata}] \text{ flops} \\ xy^2 + x^{2m+1} + x^{2n} & [\text{van Garderen, Kawamata}] \text{ flops} \end{cases}$$

...in all cases, in the corresponding geometric contraction, the elephant has type D singularities.

Corollary

The Realisation Conjecture is true, except possibly the only remaining case $f = x^3 + higher$.

Theorem* (Brown–W)

Suppose that $f: \mathfrak{X} \to \operatorname{Spec} \mathfrak{R}$ is *any* smooth type *D* flop, or div \to curve contraction, one curve above the origin. Then

 $A_{con} \cong \mathcal{J}ac(f)$

for some f on the previous slide.

Theorem* (Brown–W)

Suppose that $f: \mathfrak{X} \to \operatorname{Spec} \mathfrak{R}$ is *any* smooth type *D* flop, or div \to curve contraction, one curve above the origin. Then

 $A_{con} \cong \mathcal{J}ac(f)$

for some f on the previous slide.

...all possible contraction algebras in Type D are now classified!

Theorem* (Brown–W)

Suppose that $f: \mathfrak{X} \to \operatorname{Spec} \mathfrak{R}$ is *any* smooth type *D* flop, or div \to curve contraction, one curve above the origin. Then

 $A_{con} \cong \mathcal{J}ac(f)$

for some f on the previous slide.

...all possible contraction algebras in Type D are now classified!

...the conjectures suggest, but don't yet prove, that *these are all* Type D flops, and div \rightarrow curve, extending Reid from 80s.

Theorem* (Brown–W)

Suppose that $f: \mathcal{X} \to \operatorname{Spec} \mathcal{R}$ is *any* smooth type *D* flop, or div \to curve contraction, one curve above the origin. Then

 $A_{con} \cong \mathcal{J}ac(f)$

for some f on the previous slide.

...all possible contraction algebras in Type D are now classified!

...the conjectures suggest, but don't yet prove, that *these are all* Type D flops, and div \rightarrow curve, extending Reid from 80s. Even if you don't believe conjectures, there are still geometric corollaries!

GV invariants

To every flop is an associated tuple of numbers (n_1, \ldots, n_6) called the Gopakumar–Vafa (GV) invariants.

..basically deform your flopping curve C into a disjoint union of (-1, -1) curves, and count those. It is a bit more refined than this: n_i equals the number of such curves with curve class j[C].

GV invariants

To every flop is an associated tuple of numbers (n_1, \ldots, n_6) called the Gopakumar–Vafa (GV) invariants.

..basically deform your flopping curve C into a disjoint union of (-1, -1) curves, and count those. It is a bit more refined than this: n_i equals the number of such curves with curve class j[C].

- Type A (Pagoda flops) have GV invariants (n, 0, 0, 0, 0, 0).
 The data of n is enough to distinguish elements in this family.
 All possible n arise.
- Type D flops have GV invariants (a, b, 0, 0, 0, 0) for some a, b ∈ N. Different flops can have the same GV invariants.
 Question. What possible (a, b) can arise?

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1)

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(7,2)

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)					
	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
	(7,2)				
		(8,3)	(8,4)	(8,5)	(8,6)

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
	(7,2)	(8,3)	(8,4)	(8,5)	(8,6)
		(0,2)			

(9,3)

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
	(7,2)	(8,3)	(8,4)	(8,5)	(8,6)
		(9,3)	(10,4)	(10,5)	(10,6)

・ロ ・ ・ (語 ・ く 語 ・ く 語 ・ 語 ・ の Q ()
17 / 18

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

$x^{3}+x^{4}$	$x^{3}+x^{6}$	x ³ +x ⁸	$x^3 + x^{10}$	$x^3 + x^{12}$	$x^3 + x^{14}$
 (4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)					
	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
	(7,2)				
	(.,_)	(8,3)	(8,4)	(8,5)	(8,6)
		(9,3)			
			(10,4)	(10,5)	(10,6)

・ロ ・ ・ (語 ・ く 語 ・ く 語 ・ 語 ・ の Q ()
17 / 18

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

The obstruction to e.g. (5,2) existing is noncommutative.

Towards Type E

The final case $f = x^3 +$ higher is work in progress.

We have already found the first infinite family of type *E* flops, plus some div \rightarrow curve contractions.

Towards Type E

The final case $f = x^3 + \text{higher}$ is work in progress.

We have already found the first infinite family of type *E* flops, plus some div \rightarrow curve contractions.

...looks like a *full* analytic classification of single-curve flops, and at the same time div \rightarrow curve contractions, may indeed be possible. Here is the beginning:

$$\begin{array}{ll} A & x^2 + y^t & t \in \mathbb{N} \cup \{\infty\} \\ D & xy^2 + \varepsilon x^{2n} + \varepsilon x^{2m-1} & n, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \\ E & x^3 + ? \end{array}$$