Varieties of general type with small volume

Chengxi Wang UCLA

July 8, 2021

Volume

- (Hacon-M${ }^{c}$ Kernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t.

Volume

- (Hacon-McKKernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t. for any smooth complex projective variety X of general type with dimension n,

Volume

- (Hacon-McKKernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t. for any smooth complex projective variety X of general type with dimension n, the $\operatorname{map} \varphi_{\left|m K_{X}\right|}: X \rightarrow P^{h^{0}\left(m K_{X}\right)-1}$ is a birational embedding for $m \geq r_{n}$.

Volume

- (Hacon-McKernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t. for any smooth complex projective variety X of general type with dimension n, the $\operatorname{map} \varphi_{\left|m K_{X}\right|}: X \rightarrow P^{h^{0}\left(m K_{X}\right)-1}$ is a birational embedding for $m \geq r_{n}$.
- Volume of $X: \operatorname{vol}(X)=\lim \sup _{m \rightarrow \infty} h^{0}\left(X, m K_{X}\right) /\left(m^{n} / n!\right)$.

Volume

- (Hacon-McKKernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t. for any smooth complex projective variety X of general type with dimension n, the $\operatorname{map} \varphi_{\left|m K_{X}\right|}: X \rightarrow P^{h^{0}\left(m K_{X}\right)-1}$ is a birational embedding for $m \geq r_{n}$.
- Volume of $X: \operatorname{vol}(X)=\lim \sup _{m \rightarrow \infty} h^{0}\left(X, m K_{X}\right) /\left(m^{n} / n!\right)$. $\operatorname{vol}(X)=K_{X}^{n}$ if K_{X} is ample.

Volume

- (Hacon-M${ }^{c}$ Kernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t. for any smooth complex projective variety X of general type with dimension n, the $\operatorname{map} \varphi_{\left|m K_{X}\right|}: X \rightarrow P^{h^{0}\left(m K_{X}\right)-1}$ is a birational embedding for $m \geq r_{n}$.
- Volume of $X: \operatorname{vol}(X)=\lim \sup _{m \rightarrow \infty} h^{0}\left(X, m K_{X}\right) /\left(m^{n} / n!\right)$. $\operatorname{vol}(X)=K_{X}^{n}$ if K_{X} is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_{X}.)

Volume

- (Hacon-McKKernan, Takayama, and Tsuji) For each integer $n>0, \exists$ a constant r_{n} s.t. for any smooth complex projective variety X of general type with dimension n, the $\operatorname{map} \varphi_{\left|m K_{X}\right|}: X \rightarrow P^{h^{0}\left(m K_{X}\right)-1}$ is a birational embedding for $m \geq r_{n}$.
- Volume of $X: \operatorname{vol}(X)=\lim \sup _{m \rightarrow \infty} h^{0}\left(X, m K_{X}\right) /\left(m^{n} / n!\right)$. $\operatorname{vol}(X)=K_{X}^{n}$ if K_{X} is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_{X}.)
- For all smooth n-folds of general type, $\operatorname{vol}(X)$ has a positive lower bound $a_{n}=1 /\left(r_{n}\right)^{n}$.

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$.

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$. The extreme case: a general hypersurface $X_{10} \subset P(1,1,2,5)$.

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$. The extreme case: a general hypersurface $X_{10} \subset P(1,1,2,5)$.
- $\operatorname{dim}=3, r_{3} \leq 57, a_{3} \geq 1 / 1680$ (by J. Chen and M. Chen).

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$. The extreme case: a general hypersurface $X_{10} \subset P(1,1,2,5)$.
- $\operatorname{dim}=3, r_{3} \leq 57, a_{3} \geq 1 / 1680$ (by J. Chen and M. Chen). The smallest known volume is $1 / 420$ (lano-Fletcher):

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$. The extreme case: a general hypersurface $X_{10} \subset P(1,1,2,5)$.
- $\operatorname{dim}=3, r_{3} \leq 57, a_{3} \geq 1 / 1680$ (by J. Chen and M. Chen). The smallest known volume is $1 / 420$ (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$.

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$. The extreme case: a general hypersurface $X_{10} \subset P(1,1,2,5)$.
- $\operatorname{dim}=3, r_{3} \leq 57, a_{3} \geq 1 / 1680$ (by J. Chen and M. Chen). The smallest known volume is $1 / 420$ (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23) .\left|m K_{X}\right|$ is birational $\Leftrightarrow m=23$ or $m \geq 27$.

Smooth varieties of general type in low dimensions

- $\operatorname{dim}=1, r_{1}=3, a_{1}=2$.
- $\operatorname{dim}=2, r_{2}=5$ (by Bombieri), $a_{2}=1$. The extreme case: a general hypersurface $X_{10} \subset P(1,1,2,5)$.
- $\operatorname{dim}=3, r_{3} \leq 57, a_{3} \geq 1 / 1680$ (by J. Chen and M. Chen). The smallest known volume is $1 / 420$ (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23) .\left|m K_{X}\right|$ is birational $\Leftrightarrow m=23$ or $m \geq 27$.
- $\operatorname{dim}=4$, the smallest known volume is a resolution of $X_{165} \subset P(10,12,17,33,37,55)$, with volume $1 / 830280$ (by Brown and Kasprzyk).

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a smooth complex projective n-fold of general type with volume less than $1 / n^{(n \log n) / 3}$.
(2) \exists a smooth complex projective n-fold X of general type s.t. the linear system $\left|m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a smooth complex projective n-fold of general type with volume less than $1 / n^{(n \log n) / 3}$.
(2) \exists a smooth complex projective n-fold X of general type s.t. the linear system $\left|m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$.

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a smooth complex projective n-fold of general type with volume less than $1 / n^{(n \log n) / 3}$.
(2) \exists a smooth complex projective n-fold X of general type s.t. the linear system $\left|m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1 / n^{n}$,

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a smooth complex projective n-fold of general type with volume less than $1 / n^{(n \log n) / 3}$.
(2) \exists a smooth complex projective n-fold X of general type s.t. the linear system $\left|m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1 / n^{n}$, and s.t. $\left|m K_{X}\right|$ does not give a birational embedding for m at most a constant times n^{2}.

Noether-type inequality

- Surfaces of general type: $\operatorname{vol}(X) \geq 2 p_{g}-4$, where the geometric genus $p_{g}=h^{0}\left(X, K_{X}\right)$.

Noether-type inequality

- Surfaces of general type: $\operatorname{vol}(X) \geq 2 p_{g}-4$, where the geometric genus $p_{g}=h^{0}\left(X, K_{X}\right)$.
- (M. Chen and Z. Jiang) For every positive integer n,

Noether-type inequality

- Surfaces of general type: $\operatorname{vol}(X) \geq 2 p_{g}-4$, where the geometric genus $p_{g}=h^{0}\left(X, K_{X}\right)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_{n}>0, b_{n}>0$ s.t. vol $(X) \geq a_{n} p_{g}(X)-b_{n}$ for every smooth projective n-fold X of general type.

Noether-type inequality

- Surfaces of general type: $\operatorname{vol}(X) \geq 2 p_{g}-4$, where the geometric genus $p_{g}=h^{0}\left(X, K_{X}\right)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_{n}>0, b_{n}>0$ s.t. vol $(X) \geq a_{n} p_{g}(X)-b_{n}$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\operatorname{vol}(X) \geq(4 / 3) p_{g}(X)-10 / 3$ if $p_{g}(X) \geq 11$.(optimal constants)

Noether-type inequality

- Surfaces of general type: $\operatorname{vol}(X) \geq 2 p_{g}-4$, where the geometric genus $p_{g}=h^{0}\left(X, K_{X}\right)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_{n}>0, b_{n}>0$ s.t. $v o l(X) \geq a_{n} p_{g}(X)-b_{n}$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\operatorname{vol}(X) \geq(4 / 3) p_{g}(X)-10 / 3$ if $p_{g}(X) \geq 11$.(optimal constants)
- In high dimensions, our examples show that $a_{n}<1 / n^{(n \log n) / 3}$ for all sufficiently large n.

Noether-type inequality

- Surfaces of general type: $\operatorname{vol}(X) \geq 2 p_{g}-4$, where the geometric genus $p_{g}=h^{0}\left(X, K_{X}\right)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_{n}>0, b_{n}>0$ s.t. vol $(X) \geq a_{n} p_{g}(X)-b_{n}$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\operatorname{vol}(X) \geq(4 / 3) p_{g}(X)-10 / 3$ if $p_{g}(X) \geq 11$. (optimal constants)
- In high dimensions, our examples show that $a_{n}<1 / n^{(n \log n) / 3}$ for all sufficiently large n.
A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

well-formed

- The weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is said to be well-formed if $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for each j.

well-formed

- The weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is said to be well-formed if $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for each j. (In other words, the analogous quotient stack $\left[\left(A^{n+1}-0\right) / G_{m}\right]$, where the multiplicative group G_{m} acts by $t\left(x_{0}, \ldots, x_{n}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{n}} x_{n}\right)$,

well-formed

- The weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is said to be well-formed if $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for each j. (In other words, the analogous quotient stack $\left[\left(A^{n+1}-0\right) / G_{m}\right]$, where the multiplicative group G_{m} acts by $t\left(x_{0}, \ldots, x_{n}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{n}} x_{n}\right)$, has trivial stabilizer group in codimension 1.)

well-formed

- The weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is said to be well-formed if $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for each j. (In other words, the analogous quotient stack $\left[\left(A^{n+1}-0\right) / G_{m}\right]$, where the multiplicative group G_{m} acts by $t\left(x_{0}, \ldots, x_{n}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{n}} x_{n}\right)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right) \mid d$ for all $i<j$, and $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, a_{n}\right)=1$ for each i.

well-formed

- The weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is said to be well-formed if $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for each j. (In other words, the analogous quotient stack $\left[\left(A^{n+1}-0\right) / G_{m}\right]$, where the multiplicative group G_{m} acts by $t\left(x_{0}, \ldots, x_{n}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{n}} x_{n}\right)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right) \mid d$ for all $i<j$, and $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, a_{n}\right)=1$ for each i.
- Reflexive sheaf $O(m)$ is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_{i}.

well-formed

- The weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is said to be well-formed if $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for each j. (In other words, the analogous quotient stack $\left[\left(A^{n+1}-0\right) / G_{m}\right]$, where the multiplicative group G_{m} acts by $t\left(x_{0}, \ldots, x_{n}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{n}} x_{n}\right)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right) \mid d$ for all $i<j$, and $\operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, a_{n}\right)=1$ for each i.
- Reflexive sheaf $O(m)$ is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_{i}.
- The intersection number $\int_{Y} c_{1}(O(1))^{n}=1 / a_{0} \cdots a_{n}$.

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^{n} / μ_{r} be the cyclic quotient singularity of type $\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$ over a field,

Assume that this description is well-formed in the sense that $\operatorname{acd}\left(r, a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n}\right)=1$ for $j=1, \ldots, n$. Then A^{n} / μ_{r} is canonical (resp. terminal) \Leftrightarrow

(resp. $>r$) for $i=1, \ldots, r-1$.

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^{n} / μ_{r} be the cyclic quotient singularity of type $\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$ over a field, meaning that the group μ_{r} of r th roots of unity acts by $\zeta\left(x_{1}, \ldots, x_{n}\right)=\left(\zeta^{a_{1}} x_{1}, \ldots, \zeta^{a_{n}} x_{n}\right)$.

Assume that this description is well-formed in the sense that $\operatorname{gcd}\left(r, a_{1}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for $j=1, \ldots, n$. Then A^{n} / μ_{r} is canonical (resp. terminal) \Leftrightarrow

$$
\sum_{j=1}^{n}\left(i a_{j} \bmod r\right) \geq r
$$

(resp. $>r$) for $i=1$, $, \ldots, r-1$.

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^{n} / μ_{r} be the cyclic quotient singularity of type $\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$ over a field, meaning that the group μ_{r} of r th roots of unity acts by $\zeta\left(x_{1}, \ldots, x_{n}\right)=\left(\zeta^{a_{1}} x_{1}, \ldots, \zeta^{a_{n}} x_{n}\right)$.

Assume that this description is well-formed in the sense that $\operatorname{gcd}\left(r, a_{1}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for $j=1, \ldots, n$.
canonical (resp. terminal) \Leftrightarrow

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^{n} / μ_{r} be the cyclic quotient singularity of type $\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$ over a field, meaning that the group μ_{r} of r th roots of unity acts by
$\zeta\left(x_{1}, \ldots, x_{n}\right)=\left(\zeta^{a_{1}} x_{1}, \ldots, \zeta^{a_{n}} x_{n}\right)$.
Assume that this description is well-formed in the sense that $\operatorname{gcd}\left(r, a_{1}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right)=1$ for $j=1, \ldots, n$. Then A^{n} / μ_{r} is canonical (resp. terminal) \Leftrightarrow

$$
\sum_{j=1}^{n}\left(i a_{j} \bmod r\right) \geq r
$$

(resp. $>r$) for $i=1, \ldots, r-1$.

criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate point, $[0, \ldots, 0,1,0, \ldots, 0]$.

Lemma (Balico, Pignatelli, and Tasin)
A well-formed weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is canonical (resp. terminal) \Leftrightarrow for each $0 \leq m \leq n$,

(resp

criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate point, $[0, \ldots, 0,1,0, \ldots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y=P\left(a_{0}, \ldots, a_{n}\right)$ is canonical (resp. terminal) \Leftrightarrow for each $0 \leq m \leq n$,

$$
\sum_{j=0}^{n}\left(i a_{j} \bmod a_{m}\right) \geq a_{m}
$$

(resp. $>a_{m}$) for $i=1, \ldots, a_{m}-1$.

Let $k \geq 2$ and $I \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d=(I+3) k(k+1)$ in weighted projective space

$$
Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right) .
$$

Let $k \geq 2$ and $I \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d=(I+3) k(k+1)$ in weighted projective space

$$
Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(/)}\right)
$$

- Y is well-formed since $k \geq 2$.

Let $k \geq 2$ and $I \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d=(I+3) k(k+1)$ in weighted projective space

$$
Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(/)}\right)
$$

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.

Let $k \geq 2$ and $I \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d=(I+3) k(k+1)$ in weighted projective space
$Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$.

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

Let $k \geq 2$ and $I \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d=(I+3) k(k+1)$ in weighted projective space
$Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$.

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(l)}\right)$, Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(k-1)}\right)$, Check

$k(k+1)$ for $i=1, \ldots, k(k+1)-1$
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i=1 \ldots \ldots k(k+1)-1$
and $i(k+1) \geq k+1 \bmod k(k+1)$ if $k \nmid i$,
$i k \geq k \bmod k(k+1)$ if $(k+1) \nmid i$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$, Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$.
It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(/)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(/)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$. It's true since $i k \geq 1 \bmod (k+1)$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(l)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I-1)}\right)$,
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(l)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I-1)}\right)$, Check $(k+2)(i k \bmod k(k+1))+(2 k-1)(i(k+1) \bmod k(k+1)) \geq$ $k(k+1)$ for $i=1, \ldots, k(k+1)-1$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I-1)}\right)$, Check $(k+2)(i k \bmod k(k+1))+(2 k-1)(i(k+1) \bmod k(k+1)) \geq$ $k(k+1)$ for $i=1, \ldots, k(k+1)-1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i=1, \ldots, k(k+1)-1$,
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(l-1)}\right)$, Check $(k+2)(i k \bmod k(k+1))+(2 k-1)(i(k+1) \bmod k(k+1)) \geq$ $k(k+1)$ for $i=1, \ldots, k(k+1)-1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i=1, \ldots, k(k+1)-1$, and $i(k+1) \geq k+1 \bmod k(k+1)$ if $k \nmid i$,
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(l)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I-1)}\right)$, Check
$(k+2)(i k \bmod k(k+1))+(2 k-1)(i(k+1) \bmod k(k+1)) \geq$ $k(k+1)$ for $i=1, \ldots, k(k+1)-1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i=1, \ldots, k(k+1)-1$, and $i(k+1) \geq k+1 \bmod k(k+1)$ if $k \nmid i$, $i k \geq k \bmod k(k+1)$ if $(k+1) \nmid i$.
(1) $\frac{1}{k}\left(k^{(k+1)},(k+1)^{(2 k-1)},(k(k+1))^{(l)}\right)$,

Check $(2 k-1)(i(k+1) \bmod k) \geq k$ for $i=1, \ldots, k-1$. It's true since $i(k+1)=i \geq 1 \bmod k$.
(2) $\frac{1}{k+1}\left(k^{(k+2)},(k+1)^{(2 k-2)},(k(k+1))^{(l)}\right)$,

Check $(k+2)(i k \bmod (k+1)) \geq k+1$ for $i=1, \ldots, k$.
It's true since $i k \geq 1 \bmod (k+1)$.
(3) $\frac{1}{k(k+1)}\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(l-1)}\right)$, Check
$(k+2)(i k \bmod k(k+1))+(2 k-1)(i(k+1) \bmod k(k+1)) \geq$ $k(k+1)$ for $i=1, \ldots, k(k+1)-1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i=1, \ldots, k(k+1)-1$, and $i(k+1) \geq k+1 \bmod k(k+1)$ if $k \nmid i$, $i k \geq k \bmod k(k+1)$ if $(k+1) \nmid i$.
X is canonical $\Leftarrow\left\{\begin{array}{l}(a) Y \text { is canonical. } \\ (b) O(d) \text { is basepoint-free line bundle since } \\ d>0 \text { is a multiple of all the weights. }\end{array}\right.$ by Kollár's Bertini theorem.

quasi-smooth

- A closed subvariety X of a weighted projective space $P\left(a_{0}, \ldots, a_{n}\right)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

```
Lemma (lano-Fletcher)
A general hynersurface of degree d in P(a, ,..., an ) is
quasi-smooth }
- either (1) a }\mp@subsup{a}{i}{}=d\mathrm{ for some i,
- or (2) for every nonempty subset I of {0,\ldots.n}, either (a)d
    is an N-linear combination of the numbers ai with i }\inI\mathrm{ ,or
    (b) there are at least ||| numbers j }\not|I\mathrm{ such that }d-\mp@subsup{a}{j}{}\mathrm{ is an
    N-linear combination of the numbers a with i 
```


quasi-smooth

- A closed subvariety X of a weighted projective space $P\left(a_{0}, \ldots, a_{n}\right)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

A general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n}\right)$ is quasi-smooth \Leftrightarrow

quasi-smooth

- A closed subvariety X of a weighted projective space $P\left(a_{0}, \ldots, a_{n}\right)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

A general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n}\right)$ is quasi-smooth \Leftrightarrow

- either (1) $a_{i}=d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d
is an N-linear combination of the numbers a_{i} with $i \in I$,or
(b) there are at least $\mid \|$ numbers $j \notin I$ such that $d-a_{j}$ is an
N-linear combination of the numbers a_{i} with $i \in I$.

quasi-smooth

- A closed subvariety X of a weighted projective space $P\left(a_{0}, \ldots, a_{n}\right)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

A general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n}\right)$ is quasi-smooth \Leftrightarrow

- either (1) $a_{i}=d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d

$$
\text { is an } N \text {-linear combination of the numbers } a_{i} \text { with } i \in I \text {,or }
$$

(b) there are at least $\mid I$ numbers $j \notin I$ such that $d-a_{j}$ is an
N-linear combination of the numbers a_{i} with $i \in I$.

quasi-smooth

- A closed subvariety X of a weighted projective space $P\left(a_{0}, \ldots, a_{n}\right)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

A general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n}\right)$ is quasi-smooth \Leftrightarrow

- either (1) $a_{i}=d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_{i} with $i \in I$,

quasi-smooth

- A closed subvariety X of a weighted projective space $P\left(a_{0}, \ldots, a_{n}\right)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

A general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n}\right)$ is quasi-smooth \Leftrightarrow

- either (1) $a_{i}=d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_{i} with $i \in I$,or (b) there are at least $|I|$ numbers $j \notin I$ such that $d-a_{j}$ is an N-linear combination of the numbers a_{i} with $i \in I$.

compute the volume

A general hypersurface X of degree $d=(I+3) k(k+1)$ in $Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$.

compute the volume

A general hypersurface X of degree $d=(I+3) k(k+1)$ in $Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(/)}\right)$.

- Adjunction formula holds:

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed. } \\
(b) X \text { is quasi-smooth since } \\
d \text { is a multiple of all the weights. }
\end{array}\right.
$$

compute the volume

A general hypersurface X of degree $d=(I+3) k(k+1)$ in $Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(/)}\right)$.

- Adjunction formula holds:

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed. } \\
(b) X \text { is quasi-smooth since } \\
d \text { is a multiple of all the weights. }
\end{array}\right.
$$

Thus $K_{X}=O_{X}(1)$ ample. So $\operatorname{vol}(X)=K_{X}^{n}$, which is d divided by the product of all weights of Y.

compute the volume

A general hypersurface X of degree $d=(I+3) k(k+1)$ in $Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(/)}\right)$.

- Adjunction formula holds:

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed. } \\
(b) X \text { is quasi-smooth since } \\
d \text { is a multiple of all the weights. }
\end{array}\right.
$$

Thus $K_{X}=O_{X}(1)$ ample. So $\operatorname{vol}(X)=K_{X}^{n}$, which is d divided by the product of all weights of Y.

$$
\operatorname{vol}(X)=\frac{(l+3) k(k+1)}{k^{k+2}(k+1)^{2 k-1}(k(k+1))^{\prime}}=\frac{(1+3)}{k^{k+1+1}(k+1)^{2 k-2+1}}
$$

compute the volume

A general hypersurface X of degree $d=(I+3) k(k+1)$ in $Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$.

- Adjunction formula holds:

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed. } \\
(b) X \text { is quasi-smooth since } \\
d \text { is a multiple of all the weights. }
\end{array}\right.
$$

Thus $K_{X}=O_{X}(1)$ ample. So $\operatorname{vol}(X)=K_{X}^{n}$, which is d divided by the product of all weights of Y.

$$
\operatorname{vol}(X)=\frac{(I+3) k(k+1)}{k^{k+2}(k+1)^{2 k-1}(k(k+1))^{\prime}}=\frac{(I+3)}{k^{k+1+1}(k+1)^{2 k-2+1}} .
$$

- Let W be a resolution of singularities of X.

compute the volume

A general hypersurface X of degree $d=(I+3) k(k+1)$ in $Y=P\left(k^{(k+2)},(k+1)^{(2 k-1)},(k(k+1))^{(I)}\right)$.

- Adjunction formula holds:

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed. } \\
(b) X \text { is quasi-smooth since } \\
d \text { is a multiple of all the weights. }
\end{array}\right.
$$

Thus $K_{X}=O_{X}(1)$ ample. So $\operatorname{vol}(X)=K_{X}^{n}$, which is d divided by the product of all weights of Y.
$\operatorname{vol}(X)=\frac{(I+3) k(k+1)}{k^{k+2}(k+1)^{2 k-1}(k(k+1))^{\prime}}=\frac{(I+3)}{k^{k+1+1}(k+1)^{2 k-2+1}}$.

- Let W be a resolution of singularities of $X . W$ is a smooth complex projective n-fold of general type with $\operatorname{vol}(W)=\operatorname{vol}(X)$.

Generalization

- Consider hypersurface X of degree

$$
\begin{aligned}
& d=(6+l) k(k+1)(k+2) \text { in } \\
& Y=P\left(1^{(3 k+2)}, k^{(2 k+2)},(k+1)^{(2 k+1)},(k+2)^{(2 k+2)},\right. \\
& (k(k+1))^{(2 k+2)},(k(k+2))^{(2 k)},((k+1)(k+2))^{(2 k-2)}, \\
& \left.(k(k+1)(k+2))^{\prime}\right), \text { where } I \geq 0, k \geq 4 .
\end{aligned}
$$

Generalization

- Consider hypersurface X of degree

$$
\begin{aligned}
& d=(6+l) k(k+1)(k+2) \text { in } \\
& Y=P\left(1^{(3 k+2)}, k^{(2 k+2)},(k+1)^{(2 k+1)},(k+2)^{(2 k+2)},\right. \\
& (k(k+1))^{(2 k+2)},(k(k+2))^{(2 k)},((k+1)(k+2))^{(2 k-2)}, \\
& \left.(k(k+1)(k+2))^{\prime}\right), \text { where } I \geq 0, k \geq 4 .
\end{aligned}
$$

- Y is well-formed since 1 occurs more than once.

Generalization

- Consider hypersurface X of degree
$d=(6+I) k(k+1)(k+2)$ in
$Y=P\left(1^{(3 k+2)}, k^{(2 k+2)},(k+1)^{(2 k+1)},(k+2)^{(2 k+2)}\right.$,
$(k(k+1))^{(2 k+2)},(k(k+2))^{(2 k)},((k+1)(k+2))^{(2 k-2)}$,
$\left.(k(k+1)(k+2))^{\prime}\right)$, where $I \geq 0, k \geq 4$.
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.

Generalization

- Consider hypersurface X of degree
$d=(6+I) k(k+1)(k+2)$ in
$Y=P\left(1^{(3 k+2)}, k^{(2 k+2)},(k+1)^{(2 k+1)},(k+2)^{(2 k+2)}\right.$,
$(k(k+1))^{(2 k+2)},(k(k+2))^{(2 k)},((k+1)(k+2))^{(2 k-2)}$,
$\left.(k(k+1)(k+2))^{\prime}\right)$, where $I \geq 0, k \geq 4$.
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_{X}=O_{X}\left(d-\sum a_{i}\right)=O_{X}(1)$.

Generalization

- Consider hypersurface X of degree
$d=(6+I) k(k+1)(k+2)$ in
$Y=P\left(1^{(3 k+2)}, k^{(2 k+2)},(k+1)^{(2 k+1)},(k+2)^{(2 k+2)}\right.$,
$(k(k+1))^{(2 k+2)},(k(k+2))^{(2 k)},((k+1)(k+2))^{(2 k-2)}$,
$\left.(k(k+1)(k+2))^{\prime}\right)$, where $I \geq 0, k \geq 4$.
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_{X}=O_{X}\left(d-\sum a_{i}\right)=O_{X}(1)$.
- $\operatorname{vol}(X)=\frac{(6+1)}{k^{6 k+4+l-1}(k+1)^{6 k+1}(k+2)^{6 k+l-1}}$. This improves BPT's example.

Generalization

Let b, I, k be integers with $b \geq 2, I \geq 0$, and $k \geq 2 b-2$.

Generalization

Let b, I, k be integers with $b \geq 2, I \geq 0$, and $k \geq 2 b-2$. For each subset I of $\{0, \ldots, b-1\}$, define (with j running through $0,1, \ldots, b-1)$:

$$
k_{l}=\left\{\begin{array}{l}
-1+\sum_{j=0}^{b-1}(k+j) \\
\left.-(b-1)+2 \sum j\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if }|I|=0, \\
& \text { if } 1 \leq|I| \leq b-2, \\
& \text { if }|I|=b-1, \\
& \text { if }|I|=b .
\end{aligned}
$$

Generalization

Let b, I, k be integers with $b \geq 2, I \geq 0$, and $k \geq 2 b-2$. For each subset I of $\{0, \ldots, b-1\}$, define (with j running through $0,1, \ldots, b-1$):

$$
k_{I}= \begin{cases}-1+\sum_{j=0}^{b-1}(k+j) & \text { if }|I|=0, \\ -|I|+\sum_{j \nexists \prime}(k+j) & \text { if } 1 \leq|I| \leq b-2, \\ & \text { if }|I|=b-1, \\ & \text { if }|I|=b .\end{cases}
$$

Generalization

Let b, I, k be integers with $b \geq 2, I \geq 0$, and $k \geq 2 b-2$. For each subset I of $\{0, \ldots, b-1\}$, define (with j running through $0,1, \ldots, b-1)$:

$$
k_{I}= \begin{cases}-1+\sum_{j=0}^{b-1}(k+j) & \text { if }|I|=0 \\ -|I|+\sum_{j \nexists \prime}(k+j) & \text { if } 1 \leq|I| \leq b-2, \\ -(b-1)+2 \sum_{j \nexists I}(k+j) & \text { if }|I|=b-1, \\ & \text { if }|I|=b .\end{cases}
$$

Generalization

Let b, I, k be integers with $b \geq 2, I \geq 0$, and $k \geq 2 b-2$. For each subset I of $\{0, \ldots, b-1\}$, define (with j running through $0,1, \ldots, b-1)$:

$$
k_{I}= \begin{cases}-1+\sum_{j=0}^{b-1}(k+j) & \text { if }|I|=0, \\ -|I|+\sum_{j \nexists \prime}(k+j) & \text { if } 1 \leq|I| \leq b-2, \\ -(b-1)+2 \sum_{j \nexists I}(k+j) & \text { if }|I|=b-1, \\ I & \text { if }|I|=b .\end{cases}
$$

- Let Y be the complex weighted projective space

$$
P\left(\left(\prod_{j \in I}(k+j)\right)^{\left(k_{l}\right)}: I \subset\{0, \ldots, b-1\}\right)
$$

Let $d=(2 b+l) \prod_{j=0}^{b-1}(k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_{X}=O_{X}(1)$.

- For X of sufficiently large dimension n, let $b=\lfloor(\log n) /(2 \log 2)\rfloor$ and $k=\left\lfloor\sqrt{n} /(\log n)^{2}\right\rfloor$. Then
- Let Y be the complex weighted projective space

$$
P\left(\left(\prod_{j \in I}(k+j)\right)^{\left(k_{l}\right)}: I \subset\{0, \ldots, b-1\}\right)
$$

Let $d=(2 b+I) \prod_{j=0}^{b-1}(k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_{X}=O_{X}(1)$.

- For X of sufficiently large dimension n, let $b=\lfloor(\log n) /(2 \log 2)\rfloor$ and $k=\left\lfloor\sqrt{n} /(\log n)^{2}\right\rfloor$. Then
- Let Y be the complex weighted projective space

$$
P\left(\left(\prod_{j \in I}(k+j)\right)^{\left(k_{l}\right)}: I \subset\{0, \ldots, b-1\}\right)
$$

Let $d=(2 b+I) \prod_{j=0}^{b-1}(k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_{X}=O_{X}(1)$.

- For X of sufficiently large dimension n, let $b=\lfloor(\log n) /(2 \log 2)\rfloor$ and $k=\left\lfloor\sqrt{n} /(\log n)^{2}\right\rfloor$.
- Let Y be the complex weighted projective space

$$
P\left(\left(\prod_{j \in I}(k+j)\right)^{\left(k_{l}\right)}: I \subset\{0, \ldots, b-1\}\right)
$$

Let $d=(2 b+I) \prod_{j=0}^{b-1}(k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_{X}=O_{X}(1)$.

- For X of sufficiently large dimension n, let
$b=\lfloor(\log n) /(2 \log 2)\rfloor$ and $k=\left\lfloor\sqrt{n} /(\log n)^{2}\right\rfloor$. Then

$$
\operatorname{vol}\left(K_{X}\right)<1 / n^{(n \log n) / 3}
$$

Terminal Fano varieties.

- (Birkar) For each integer $n>0, \exists$ a constant s_{n} s.t. for every terminal Fano n-fold $X,\left|-m K_{X}\right|$ gives a birational embedding for all $m \geq s_{n}$;

Terminal Fano varieties.

- (Birkar) For each integer $n>0, \exists$ a constant s_{n} s.t. for every terminal Fano n-fold $X,\left|-m K_{X}\right|$ gives a birational embedding for all $m \geq s_{n}$;
and \exists a constant $b_{n}>0$ s.t. every terminal Fano n-fold X has $\operatorname{vol}\left(-K_{X}\right) \geq b_{n}$.

Terminal Fano varieties.

- (Birkar) For each integer $n>0, \exists$ a constant s_{n} s.t. for every terminal Fano n-fold $X,\left|-m K_{X}\right|$ gives a birational embedding for all $m \geq s_{n}$;
and \exists a constant $b_{n}>0$ s.t. every terminal Fano n-fold X has $\operatorname{vol}\left(-K_{X}\right) \geq b_{n}$.
- (J. Chen and M. Chen) The optimal cases: $\operatorname{dim}=2, X_{6} \subset P(1,1,2,3)$ with volume 1 ,

Terminal Fano varieties.

- (Birkar) For each integer $n>0, \exists$ a constant s_{n} s.t. for every terminal Fano n-fold $X,\left|-m K_{X}\right|$ gives a birational embedding for all $m \geq s_{n}$;
and \exists a constant $b_{n}>0$ s.t. every terminal Fano n-fold X has $\operatorname{vol}\left(-K_{X}\right) \geq b_{n}$.
- (J. Chen and M. Chen) The optimal cases: $\operatorname{dim}=2, X_{6} \subset P(1,1,2,3)$ with volume 1 , $\operatorname{dim}=3, X_{66} \subset P(1,5,6,22,33)$ with volume $1 / 330$,

Terminal Fano varieties.

- (Birkar) For each integer $n>0, \exists$ a constant s_{n} s.t. for every terminal Fano n-fold $X,\left|-m K_{X}\right|$ gives a birational embedding for all $m \geq s_{n}$;
and \exists a constant $b_{n}>0$ s.t. every terminal Fano n-fold X has $\operatorname{vol}\left(-K_{X}\right) \geq b_{n}$.
- (J. Chen and M. Chen) The optimal cases: $\operatorname{dim}=2, X_{6} \subset P(1,1,2,3)$ with volume 1 , $\operatorname{dim}=3, X_{66} \subset P(1,5,6,22,33)$ with volume 1/330,
- $\operatorname{dim}=4$, Brown-Kasprzyk's example
$X_{3486} \subset P(1,41,42,498,1162,1743)$, with volume 1/498240036

Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a complex terminal Fano n-fold X with $\operatorname{vol}\left(-K_{X}\right)<1 / n^{(n \log n) / 3}$.
(2) \exists a complex terminal Fano n-fold X s.t. the linear system $m K_{x} \mid$ does not give a birational embedding for any $n \leq n^{(\log n) / 3}$

Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a complex terminal Fano n-fold X with $\operatorname{vol}\left(-K_{X}\right)<1 / n^{(n \log n) / 3}$.
(2) \exists a complex terminal Fano n-fold X s.t. the linear system $\left|-m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$.

Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a complex terminal Fano n-fold X with $\operatorname{vol}\left(-K_{X}\right)<1 / n^{(n \log n) / 3}$.
(2) \exists a complex terminal Fano n-fold X s.t. the linear system $\left|-m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$.

Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
(1) \exists a complex terminal Fano n-fold X with $\operatorname{vol}\left(-K_{X}\right)<1 / n^{(n \log n) / 3}$.
(2) \exists a complex terminal Fano n-fold X s.t. the linear system $\left|-m K_{X}\right|$ does not give a birational embedding for any $m \leq n^{(\log n) / 3}$.

Fujita's conjecture: for every smooth complex projective variety X of dimension n with an ample line bundle $A, K_{X}+(n+2) A$ is very ample.

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained,

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M${ }^{C}$ Kernan-Xu.

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M ${ }^{C}$ Kernan-Xu.

$$
(X, \Delta)=\left(P^{n}, \frac{1}{2} H_{0}+\frac{2}{3} H_{1}+\frac{6}{7} H_{2}+\cdots+\frac{c_{n+1}-1}{c_{n+1}} H_{n+1}\right)
$$

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M ${ }^{c}$ Kernan-Xu.
$(X, \Delta)=\left(P^{n}, \frac{1}{2} H_{0}+\frac{2}{3} H_{1}+\frac{6}{7} H_{2}+\cdots+\frac{c_{n+1}-1}{c_{n+1}} H_{n+1}\right)$,
where H_{i} are $n+2$ general hyperplanes

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M ${ }^{c}$ Kernan-Xu.
$(X, \Delta)=\left(P^{n}, \frac{1}{2} H_{0}+\frac{2}{3} H_{1}+\frac{6}{7} H_{2}+\cdots+\frac{c_{n+1}-1}{c_{n+1}} H_{n+1}\right)$,
where H_{i} are $n+2$ general hyperplanes and $c_{0}, c_{1}, c_{2}, \ldots$ is Sylvester's sequence, $c_{0}=2$ and $c_{m+1}=c_{m}\left(c_{m}-1\right)+1$.

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M ${ }^{c}$ Kernan-Xu.
$(X, \Delta)=\left(P^{n}, \frac{1}{2} H_{0}+\frac{2}{3} H_{1}+\frac{6}{7} H_{2}+\cdots+\frac{c_{n+1}-1}{c_{n+1}} H_{n+1}\right)$,
where H_{i} are $n+2$ general hyperplanes and $c_{0}, c_{1}, c_{2}, \ldots$ is Sylvester's sequence, $c_{0}=2$ and $c_{m+1}=c_{m}\left(c_{m}-1\right)+1$.
The volume of $K_{X}+\Delta$ is

$$
1 /\left(c_{n+2}-1\right)^{n}<1 / 2^{2^{n}}
$$

klt pair

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M ${ }^{c}$ Kernan-Xu.
$(X, \Delta)=\left(P^{n}, \frac{1}{2} H_{0}+\frac{2}{3} H_{1}+\frac{6}{7} H_{2}+\cdots+\frac{c_{n+1}-1}{c_{n+1}} H_{n+1}\right)$,
where H_{i} are $n+2$ general hyperplanes and $c_{0}, c_{1}, c_{2}, \ldots$ is Sylvester's sequence, $c_{0}=2$ and $c_{m+1}=c_{m}\left(c_{m}-1\right)+1$.
The volume of $K_{X}+\Delta$ is

$$
1 /\left(c_{n+2}-1\right)^{n}<1 / 2^{2^{n}}
$$

- The optimal example is "Hurwitz orbifold" of volume $1 / 42$ in dimension 1.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is $1 / 48983$, by an example of Alexeev and Liu.

Theorem (B. Totaro, C. Wang)
For every integer $n>2$, \exists a complex klt n-fold X with ample canonical class s.t. vol $\left(K_{X}\right)<1 / 2^{2}$

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is $1 / 48983$, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \geq 2, \exists$ a complex klt n-fold X with ample canonical class s.t. $\operatorname{vol}\left(K_{X}\right)<1 / 2^{2^{n}}$.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is $1 / 48983$, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \geq 2, \exists$ a complex klt n-fold X with ample canonical class s.t. vol $\left(K_{X}\right)<1 / 2^{2^{n}}$.
$\log \left(\operatorname{vol}\left(K_{X}\right)\right)$ of our klt varieties is asymptotic to $\log \left(\operatorname{vol}\left(K_{X}+\Delta\right)\right)$ in Kollár's klt pair above, as $n \rightarrow \infty$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P\left(a_{0}, \ldots, a_{n+1}\right)$.
- Sylvester's sequence: $c_{0}=2, c_{1}=3, c_{2}=7, c_{3}=43$, $c_{4}=1807, \ldots$ and $c_{n+1}=c_{n}\left(c_{n}-1\right)+1$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P\left(a_{0}, \ldots, a_{n+1}\right)$.
- Sylvester's sequence: $c_{0}=2, c_{1}=3, c_{2}=7, c_{3}=43$, $c_{4}=1807, \ldots$ and $c_{n+1}=c_{n}\left(c_{n}-1\right)+1$.
- $n \geq 2$. Let $y=c_{n-1}-1$ and

$$
\begin{aligned}
& a_{2}=y^{3}+y+1 \\
& a_{1}=y(y+1)\left(1+a_{2}\right)-a_{2} \\
& a_{0}=y\left(1+a_{2}+a_{1}\right)-a_{1} .
\end{aligned}
$$

construct klt varieties with ample canonical class

- Construct weighted projective space $P\left(a_{0}, \ldots, a_{n+1}\right)$.
- Sylvester's sequence: $c_{0}=2, c_{1}=3, c_{2}=7, c_{3}=43$, $c_{4}=1807, \ldots$ and $c_{n+1}=c_{n}\left(c_{n}-1\right)+1$.
- $n \geq 2$. Let $y=c_{n-1}-1$ and

$$
\begin{aligned}
& a_{2}=y^{3}+y+1 \\
& a_{1}=y(y+1)\left(1+a_{2}\right)-a_{2} \\
& a_{0}=y\left(1+a_{2}+a_{1}\right)-a_{1} .
\end{aligned}
$$

- Let $x=1+a_{0}+a_{1}+a_{2}$, $d=y x=c_{0} \cdots c_{n-2} x=y^{7}+y^{6}+y^{5}+4 y^{4}+2 y^{3}+2 y^{2}+2 y$, and $a_{i+3}=c_{0} \cdots \widehat{c}_{i} \cdots c_{n-2} x$ for $0 \leq i \leq n-2$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P\left(a_{0}, \ldots, a_{n+1}\right)$.
- Sylvester's sequence: $c_{0}=2, c_{1}=3, c_{2}=7, c_{3}=43$, $c_{4}=1807, \ldots$ and $c_{n+1}=c_{n}\left(c_{n}-1\right)+1$.
- $n \geq 2$. Let $y=c_{n-1}-1$ and

$$
\begin{aligned}
& a_{2}=y^{3}+y+1 \\
& a_{1}=y(y+1)\left(1+a_{2}\right)-a_{2} \\
& a_{0}=y\left(1+a_{2}+a_{1}\right)-a_{1} .
\end{aligned}
$$

- Let $x=1+a_{0}+a_{1}+a_{2}$, $d=y x=c_{0} \cdots c_{n-2} x=y^{7}+y^{6}+y^{5}+4 y^{4}+2 y^{3}+2 y^{2}+2 y$, and $a_{i+3}=c_{0} \cdots \widehat{c}_{i} \cdots c_{n-2} x$ for $0 \leq i \leq n-2$.

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

Thus vol(K_{X}) and hence $\operatorname{vol}\left(K_{x}\right)$

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

$$
\operatorname{vol}\left(K_{X}\right)=\frac{1}{y^{n-3} x^{n-2} a_{0} a_{1} a_{2}} .
$$

Thus vol $\left(K_{X}\right)$ and hence $\operatorname{vol}\left(K_{X}\right)<\frac{1}{2^{2 \pi}}$

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

$$
\operatorname{vol}\left(K_{X}\right)=\frac{1}{y^{n-3} x^{n-2} a_{0} a_{1} a_{2}} .
$$

Thus $\operatorname{vol}\left(K_{X}\right)<\frac{1}{\left(c_{n-1}-1\right)^{7 n-1}}$ and hence $\operatorname{vol}\left(K_{X}\right)<\frac{1}{2^{2^{n}}}$.

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

$$
\operatorname{vol}\left(K_{X}\right)=\frac{1}{y^{n-3} x^{n-2} a_{0} a_{1} a_{2}} .
$$

Thus $\operatorname{vol}\left(K_{X}\right)<\frac{1}{\left(c_{n-1}-1\right)^{7 n-1}}$ and hence $\operatorname{vol}\left(K_{X}\right)<\frac{1}{2^{2^{n}}}$.
which should be fairly close to optimal.

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

$$
\operatorname{vol}\left(K_{X}\right)=\frac{1}{y^{n-3} x^{n-2} a_{0} a_{1} a_{2}}
$$

Thus $\operatorname{vol}\left(K_{X}\right)<\frac{1}{\left(c_{n-1}-1\right)^{7 n-1}}$ and hence $\operatorname{vol}\left(K_{X}\right)<\frac{1}{2^{2^{n}}}$.
which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ),

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$. Then X is a klt with dimension n and K_{X} ample,

$$
\operatorname{vol}\left(K_{X}\right)=\frac{1}{y^{n-3} x^{n-2} a_{0} a_{1} a_{2}}
$$

Thus $\operatorname{vol}\left(K_{X}\right)<\frac{1}{\left(c_{n-1}-1\right)^{7 n-1}}$ and hence $\operatorname{vol}\left(K_{X}\right)<\frac{1}{2^{2^{n}}}$.
which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ), since $\operatorname{vol}\left(K_{X}+\Delta\right)=1 /\left(c_{n+2}-1\right)^{n} \doteq 1 /\left(c_{n-1}-1\right)^{8 n}$.

- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_{i}.
- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_{i}.
Let $\frac{d}{a_{i+3}} \doteq c_{i}$ for $0 \leq i \leq n-2$.
- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_{i}.
Let $\frac{d}{a_{i+3}} \doteq c_{i}$ for $0 \leq i \leq n-2$. Let $d=c_{0} \cdots c_{n-2} x$ for some integer x.
- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_{i}.
Let $\frac{d}{a_{i+3}} \doteq c_{i}$ for $0 \leq i \leq n-2$. Let $d=c_{0} \cdots c_{n-2} x$ for some integer x.
- $d-\sum a_{i}$ equals $1 \Leftrightarrow x=1+a_{0}+a_{1}+a_{2}$.
- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_{i}.
Let $\frac{d}{a_{i+3}} \doteq c_{i}$ for $0 \leq i \leq n-2$. Let $d=c_{0} \cdots c_{n-2} x$ for some integer x.
- $d-\sum a_{i}$ equals $1 \Leftrightarrow x=1+a_{0}+a_{1}+a_{2}$.
- From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

```
For positive integers d and a}\mp@subsup{a}{0}{},\ldots,\mp@subsup{a}{n+1}{},\mathrm{ , a general hypersurface
of degree d in P(a, , .., an+1 ) is quasi-smooth if d }2\mathrm{ a a for
every }i\mathrm{ and there is a positive integer r such that:
(1) }\mp@subsup{a}{i}{}|d\mathrm{ if }i\geqr
2 d-ar-1 \equiv0(mod ar-2),\ldots,d-a, 笨\equiv0(mod a a ), and
    d}-\mp@subsup{a}{0}{}\equiv0(\operatorname{mod}\mp@subsup{a}{r-1}{})
```

- From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_{0}, \ldots, a_{n+1}, a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$ is quasi-smooth if $d \geq a_{i}$ for every i and there is a positive integer r such that:

- From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_{0}, \ldots, a_{n+1}, a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$ is quasi-smooth if $d \geq a_{i}$ for every i and there is a positive integer r such that:
(1) $a_{i} \mid d$ if $i \geq r$,

- From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_{0}, \ldots, a_{n+1}, a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$ is quasi-smooth if $d \geq a_{i}$ for every i and there is a positive integer r such that:
(1) $a_{i} \mid d$ if $i \geq r$,
(2) $d-a_{r-1} \equiv 0\left(\bmod a_{r-2}\right), \ldots, d-a_{1} \equiv 0\left(\bmod a_{0}\right)$, and $d-a_{0} \equiv 0\left(\bmod a_{r-1}\right)$.

- From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_{0}, \ldots, a_{n+1}, a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$ is quasi-smooth if $d \geq a_{i}$ for every i and there is a positive integer r such that:
(1) $a_{i} \mid d$ if $i \geq r$,
(2) $d-a_{r-1} \equiv 0\left(\bmod a_{r-2}\right), \ldots, d-a_{1} \equiv 0\left(\bmod a_{0}\right)$, and $d-a_{0} \equiv 0\left(\bmod a_{r-1}\right)$.

- Choose other weights a_{i} to make X quasi-smooth.
- From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_{0}, \ldots, a_{n+1}, a general hypersurface of degree d in $P\left(a_{0}, \ldots, a_{n+1}\right)$ is quasi-smooth if $d \geq a_{i}$ for every i and there is a positive integer r such that:
(1) $a_{i} \mid d$ if $i \geq r$,
(2) $d-a_{r-1} \equiv 0\left(\bmod a_{r-2}\right), \ldots, d-a_{1} \equiv 0\left(\bmod a_{0}\right)$, and $d-a_{0} \equiv 0\left(\bmod a_{r-1}\right)$.

- Choose other weights a_{i} to make X quasi-smooth. a_{0}, a_{1}, a_{2} satisfy a "cycle" of congruences:
$d-a_{2}=0\left(\bmod a_{1}\right), d-a_{1}=0\left(\bmod a_{0}\right), d-a_{0}=0\left(\bmod a_{2}\right)$,

construct klt varieties with ample canonical class

- $\operatorname{dim}=2, X_{316} \subset P(158,85,61,11)$ with volume $2 / 57035 \doteq 3.5 \times 10^{-5}$.

construct klt varieties with ample canonical class

- $\operatorname{dim}=2, X_{316} \subset P(158,85,61,11)$ with volume $2 / 57035 \doteq 3.5 \times 10^{-5}$.
- $\operatorname{dim}=3, X_{340068} \subset P(170034,113356,47269,9185,223)$ with volume $1 / 5487505331993410 \doteq 1.8 \times 10^{-16}$.

construct klt varieties with ample canonical class

- $\operatorname{dim}=2, X_{316} \subset P(158,85,61,11)$ with volume $2 / 57035 \doteq 3.5 \times 10^{-5}$.
- $\operatorname{dim}=3, X_{340068} \subset P(170034,113356,47269,9185,223)$ with volume $1 / 5487505331993410 \doteq 1.8 \times 10^{-16}$.
- $\operatorname{dim}=4$, volume about 1.4×10^{-44}.

construct klt varieties with ample canonical class

- $\operatorname{dim}=2, X_{316} \subset P(158,85,61,11)$ with volume $2 / 57035 \doteq 3.5 \times 10^{-5}$.
- $\operatorname{dim}=3, X_{340068} \subset P(170034,113356,47269,9185,223)$ with volume $1 / 5487505331993410 \doteq 1.8 \times 10^{-16}$.
- $\operatorname{dim}=4$, volume about 1.4×10^{-44}. The smallest known volume for a klt 4 -fold with ample canonical class is about 1.4×10^{-47}.

sketch of proof

Our construction of klt varieties with ample canonical class:

- Sylvester's sequence $\left\{c_{i}\right\}$.

sketch of proof

Our construction of klt varieties with ample canonical class:

- Sylvester's sequence $\left\{c_{i}\right\}$.
- $n \geq 2$. Let $y=c_{n-1}-1$ and
$a_{2}=y^{3}+y+1$,
$a_{1}=y(y+1)\left(1+a_{2}\right)-a_{2}$,
$a_{0}=y\left(1+a_{2}+a_{1}\right)-a_{1}$.

sketch of proof

Our construction of klt varieties with ample canonical class:

- Sylvester's sequence $\left\{c_{i}\right\}$.
- $n \geq 2$. Let $y=c_{n-1}-1$ and
$a_{2}=y^{3}+y+1$,
$a_{1}=y(y+1)\left(1+a_{2}\right)-a_{2}$,
$a_{0}=y\left(1+a_{2}+a_{1}\right)-a_{1}$.
- Let $x=1+a_{0}+a_{1}+a_{2}$,
$d=y x=c_{0} \cdots c_{n-2} x=y^{7}+y^{6}+y^{5}+4 y^{4}+2 y^{3}+2 y^{2}+2 y$, and $a_{i+3}=c_{0} \cdots \widehat{c}_{i} \cdots c_{n-2} x$ for $0 \leq i \leq n-2$.

sketch of proof

Our construction of klt varieties with ample canonical class:

- Sylvester's sequence $\left\{c_{i}\right\}$.
- $n \geq 2$. Let $y=c_{n-1}-1$ and
$a_{2}=y^{3}+y+1$,
$a_{1}=y(y+1)\left(1+a_{2}\right)-a_{2}$,
$a_{0}=y\left(1+a_{2}+a_{1}\right)-a_{1}$.
- Let $x=1+a_{0}+a_{1}+a_{2}$,
$d=y x=c_{0} \cdots c_{n-2} x=y^{7}+y^{6}+y^{5}+4 y^{4}+2 y^{3}+2 y^{2}+2 y$, and $a_{i+3}=c_{0} \cdots \widehat{c}_{i} \cdots c_{n-2} x$ for $0 \leq i \leq n-2$.
- $X \subset P\left(a_{0}, \ldots, a_{n+1}\right)$ is a general hypersurface of degree d.

sketch of proof when $r=3$

- X is klt since it has only cyclic quotient singularities.

sketch of proof when $r=3$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d-a_{2}=\left(y^{2}+1\right) a_{1}, d-a_{1}=$ $(y+1) a_{0}, d-a_{0}=\left(y^{4}+3 y-1\right) a_{2}$. (by Lemma)

sketch of proof when $r=3$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d-a_{2}=\left(y^{2}+1\right) a_{1}, d-a_{1}=$ $(y+1) a_{0}, d-a_{0}=\left(y^{4}+3 y-1\right) a_{2}$. (by Lemma)

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed } \\
(b) X \text { is quasi-smooth }
\end{array}\right.
$$

sketch of proof when $r=3$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d-a_{2}=\left(y^{2}+1\right) a_{1}, d-a_{1}=$ $(y+1) a_{0}, d-a_{0}=\left(y^{4}+3 y-1\right) a_{2}$. (by Lemma)

$$
K_{X}=O_{X}\left(d-\sum a_{i}\right) \Leftarrow\left\{\begin{array}{l}
(a) X \text { is well-formed } \\
(b) X \text { is quasi-smooth }
\end{array}\right.
$$

- $\operatorname{vol}\left(K_{X}\right)=\operatorname{vol}\left(O_{X}(1)\right)=\frac{d}{a_{0} \cdots a_{n+1}}=\frac{1}{y^{n-3} x^{n-2} a_{0} a_{1} a_{2}}$

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have
$a_{2}=y^{3}+y+1>y^{3}$,

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have

$$
\begin{aligned}
& a_{2}=y^{3}+y+1>y^{3} \\
& a_{1}=y^{5}+y^{4}+3 y^{2}+y-1>y^{5}
\end{aligned}
$$

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have
$a_{2}=y^{3}+y+1>y^{3}$,
$a_{1}=y^{5}+y^{4}+3 y^{2}+y-1>y^{5}$, $a_{0}=y^{6}+3 y^{3}-y^{2}+1>y^{6}$,

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have
$a_{2}=y^{3}+y+1>y^{3}$,
$a_{1}=y^{5}+y^{4}+3 y^{2}+y-1>y^{5}$,
$a_{0}=y^{6}+3 y^{3}-y^{2}+1>y^{6}$,
$x=y^{6}+y^{5}+y^{4}+4 y^{3}+2 y^{2}+2 y+2>y^{6}$.

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have
$a_{2}=y^{3}+y+1>y^{3}$,
$a_{1}=y^{5}+y^{4}+3 y^{2}+y-1>y^{5}$,
$a_{0}=y^{6}+3 y^{3}-y^{2}+1>y^{6}$,
$x=y^{6}+y^{5}+y^{4}+4 y^{3}+2 y^{2}+2 y+2>y^{6}$.
Thus $\operatorname{vol}\left(K_{X}\right)<1 / y^{7 n-1}=1 /\left(c_{n-1}-1\right)^{7 n-1}$.

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have
$a_{2}=y^{3}+y+1>y^{3}$,
$a_{1}=y^{5}+y^{4}+3 y^{2}+y-1>y^{5}$,
$a_{0}=y^{6}+3 y^{3}-y^{2}+1>y^{6}$,
$x=y^{6}+y^{5}+y^{4}+4 y^{3}+2 y^{2}+2 y+2>y^{6}$.
Thus $\operatorname{vol}\left(K_{X}\right)<1 / y^{7 n-1}=1 /\left(c_{n-1}-1\right)^{7 n-1}$.
- There is a constant $c \doteq 1.264$ such that c_{i} is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$.

sketch of proof when $r=3$

- In terms of $y=c_{n-1}-1$, we have
$a_{2}=y^{3}+y+1>y^{3}$,
$a_{1}=y^{5}+y^{4}+3 y^{2}+y-1>y^{5}$,
$a_{0}=y^{6}+3 y^{3}-y^{2}+1>y^{6}$,
$x=y^{6}+y^{5}+y^{4}+4 y^{3}+2 y^{2}+2 y+2>y^{6}$.
Thus $\operatorname{vol}\left(K_{X}\right)<1 / y^{7 n-1}=1 /\left(c_{n-1}-1\right)^{7 n-1}$.
- There is a constant $c \doteq 1.264$ such that c_{i} is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$. This implies the crude statement that $\operatorname{vol}\left(K_{X}\right)<\frac{1}{2^{2^{n}}}$ for all $n \geq 2$.

Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r-1$, we
give an example with weights chosen to satisfy a cycle of r
congruences.

Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r-1$, we give an example with weights chosen to satisfy a cycle of r congruences.

Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r-1$, we give an example with weights chosen to satisfy a cycle of r congruences.

$$
\text { - } \frac{\log \left(\operatorname{vol}\left(K_{X}\right)\right)}{\log \left(\operatorname{vol}\left(K_{Y}+\Delta\right)\right)} \rightarrow \frac{2^{r}-1}{2^{r}} \text { as } n \rightarrow \infty .
$$

Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r-1$, we give an example with weights chosen to satisfy a cycle of r congruences.

- $\frac{\log \left(v o l\left(K_{X}\right)\right)}{\log \left(\operatorname{vol}\left(K_{Y}+\Delta\right)\right)} \rightarrow \frac{2^{r}-1}{2^{r}}$ as $n \rightarrow \infty$.
- For $r=3$, this is the example above.

Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r-1$, we give an example with weights chosen to satisfy a cycle of r congruences.

- $\frac{\log \left(\operatorname{vol}\left(K_{X}\right)\right)}{\log \left(\operatorname{vol}\left(K_{Y}+\Delta\right)\right)} \rightarrow \frac{2^{r}-1}{2^{r}}$ as $n \rightarrow \infty$.
- For $r=3$, this is the example above.
- When $r=5, n=4$, it is a a general hypersurface of degree 147565206676 in $P(73782603338,39714616165,28421358181,5458415771$, 187980859, 232361)

Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r-1$, we give an example with weights chosen to satisfy a cycle of r congruences.

- $\frac{\log \left(v o l\left(K_{X}\right)\right)}{\log \left(\operatorname{vol}\left(K_{Y}+\Delta\right)\right)} \rightarrow \frac{2^{r}-1}{2^{r}}$ as $n \rightarrow \infty$.
- For $r=3$, this is the example above.
- When $r=5, n=4$, it is a a general hypersurface of degree 147565206676 in $P(73782603338,39714616165,28421358181,5458415771$, $187980859,232361)$ with $\doteq 7.4 \times 10^{-45}$. (Better)

Thank you!

