イロト 不得 トイヨト イヨト ヨー のへで

Varieties of general type with small volume

Chengxi Wang UCLA

July 8, 2021

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, ∃ a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map φ_{|mK_X|} : X → P^{h⁰(mK_X)-1} is a birational embedding for m ≥ r_n.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, ∃ a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map φ_{1mKx1} : X → P^{h^b(mKx)-1} is a birational embedding for m ≥ r_n.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer *n* > 0, ∃ a constant *r_n* s.t. for any smooth complex projective variety *X* of general type with dimension *n*, the map φ_{|mK_X|} : *X* --→ *P*^{h⁰(mK_X)-1} is a birational embedding for *m* ≥ *r_n*.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)

• For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, ∃ a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map φ_{|mK_X|} : X --→ P^{h⁰(mK_X)-1} is a birational embedding for m ≥ r_n.
- Volume of X: vol(X) = lim sup_{m→∞} h⁰(X, mK_X)/(mⁿ/n!).
 vol(X) = Kⁿ_X if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X.)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, ∃ a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map φ_{|mK_X|} : X --→ P^{h⁰(mK_X)-1} is a birational embedding for m ≥ r_n.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, ∃ a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map φ_{|mK_X|} : X --→ P^{h⁰(mK_X)-1} is a birational embedding for m ≥ r_n.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, ∃ a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map φ_{|mK_X|} : X --→ P^{h⁰(mK_X)-1} is a birational embedding for m ≥ r_n.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

• $dim = 1, r_1 = 3, a_1 = 2.$

- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $dim = 3, r_3 \le 57, a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or $m \ge 27$.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $dim = 3, r_3 \le 57, a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or $m \ge 27$.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $dim = 3, r_3 \le 57, a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or $m \ge 27$.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, r₃ ≤ 57, a₃ ≥ 1/1680 (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface X₄₆ ⊂ P(4, 5, 6, 7, 23). |mK_X| is birational ⇔ m = 23 or m ≥ 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, r₃ ≤ 57, a₃ ≥ 1/1680 (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface X₄₆ ⊂ P(4, 5, 6, 7, 23). |mK_X| is birational ⇔ m = 23 or m ≥ 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, r₃ ≤ 57, a₃ ≥ 1/1680 (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface X₄₆ ⊂ P(4, 5, 6, 7, 23). |mK_X| is birational ⇔ m = 23 or m ≥ 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $dim = 3, r_3 \le 57, a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or $m \ge 27$.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- $dim = 1, r_1 = 3, a_1 = 2.$
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $dim = 3, r_3 \le 57, a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or $m \ge 27$.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

■ \exists a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.

② ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.
- ② ∃ a smooth complex projective *n*-fold *X* of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.
- ② ∃ a smooth complex projective *n*-fold *X* of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- I a smooth complex projective n-fold of general type with volume less than 1/n^{(n log n)/3}.
- ② ∃ a smooth complex projective *n*-fold *X* of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

- Surfaces of general type: vol(X) ≥ 2p_g − 4, where the geometric genus p_g = h⁰(X, K_X).
- (M. Chen and Z. Jiang) For every positive integer n, ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) − b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: vol(X) ≥ (4/3)p_g(X) − 10/3 if p_g(X) ≥ 11.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: vol(X) ≥ 2p_g − 4, where the geometric genus p_g = h⁰(X, K_X).
- (M. Chen and Z. Jiang) For every positive integer n, ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) − b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: vol(X) ≥ (4/3)p_g(X) − 10/3 if p_g(X) ≥ 11.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n. A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: vol(X) ≥ 2p_g − 4, where the geometric genus p_g = h⁰(X, K_X).
- (M. Chen and Z. Jiang) For every positive integer n, ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) − b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: vol(X) ≥ (4/3)p_g(X) − 10/3 if p_g(X) ≥ 11.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: vol(X) ≥ 2p_g − 4, where the geometric genus p_g = h⁰(X, K_X).
- (M. Chen and Z. Jiang) For every positive integer n, ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) − b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: vol(X) ≥ (4/3)p_g(X) - 10/3 if p_g(X) ≥ 11.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: vol(X) ≥ 2p_g − 4, where the geometric genus p_g = h⁰(X, K_X).
- (M. Chen and Z. Jiang) For every positive integer n, ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) − b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: vol(X) ≥ (4/3)p_g(X) - 10/3 if p_g(X) ≥ 11.(optimal constants)
- In high dimensions, our examples show that $a_n < 1/n^{(n \log n)/3}$ for all sufficiently large *n*.

A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: vol(X) ≥ 2p_g − 4, where the geometric genus p_g = h⁰(X, K_X).
- (M. Chen and Z. Jiang) For every positive integer n, ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) − b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: vol(X) ≥ (4/3)p_g(X) - 10/3 if p_g(X) ≥ 11.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n. A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- The weighted projective space Y = P(a₀,..., a_n) is said to be *well-formed* if gcd(a₀,..., â_j,..., a_n) = 1 for each j. (In other words, the analogous quotient stack [(Aⁿ⁺¹ 0)/G_m], where the multiplicative group G_m acts by t(x₀,..., x_n) = (t^{a₀}x₀,..., t^{a_n}x_n), has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree *d* is well-formed \Leftrightarrow gcd $(a_0, \ldots, \hat{a_i}, \ldots, \hat{a_j}, \ldots, a_n) | d$ for all i < j, and gcd $(a_0, \ldots, \hat{a_i}, \ldots, a_n) = 1$ for each *i*.
- Reflexive sheaf O(m) is a line bundle ⇔ m is a multiple of every weight a_i.
- The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.

- The weighted projective space $Y = P(a_0, ..., a_n)$ is said to be *well-formed* if $gcd(a_0, ..., \hat{a}_j, ..., a_n) = 1$ for each *j*. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, ..., x_n) = (t^{a_0}x_0, ..., t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree *d* is well-formed \Leftrightarrow gcd $(a_0, \ldots, \hat{a_i}, \ldots, \hat{a_j}, \ldots, a_n) | d$ for all i < j, and gcd $(a_0, \ldots, \hat{a_i}, \ldots, a_n) = 1$ for each *i*.
- Reflexive sheaf O(m) is a line bundle ⇔ m is a multiple of every weight a_i.
- The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.

- The weighted projective space $Y = P(a_0, ..., a_n)$ is said to be *well-formed* if $gcd(a_0, ..., \hat{a_j}, ..., a_n) = 1$ for each *j*. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, ..., x_n) = (t^{a_0}x_0, ..., t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree *d* is well-formed \Leftrightarrow gcd $(a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n) | d$ for all i < j, and gcd $(a_0, \ldots, \widehat{a_i}, \ldots, a_n) = 1$ for each *i*.
- Reflexive sheaf O(m) is a line bundle ⇔ m is a multiple of every weight a_i.
- The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.

- The weighted projective space $Y = P(a_0, ..., a_n)$ is said to be *well-formed* if $gcd(a_0, ..., \hat{a_j}, ..., a_n) = 1$ for each *j*. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, ..., x_n) = (t^{a_0}x_0, ..., t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree *d* is well-formed ⇔ gcd(a₀,..., â_i,..., â_j,..., a_n)|*d* for all *i* < *j*, and gcd(a₀,..., â_i,..., a_n) = 1 for each *i*.
- Reflexive sheaf O(m) is a line bundle ⇔ m is a multiple of every weight a_i.
- The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.

- The weighted projective space $Y = P(a_0, ..., a_n)$ is said to be *well-formed* if $gcd(a_0, ..., \hat{a}_j, ..., a_n) = 1$ for each *j*. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, ..., x_n) = (t^{a_0}x_0, ..., t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree *d* is well-formed ⇔ gcd(a₀,..., â_i,..., â_j,..., a_n)|*d* for all *i* < *j*, and gcd(a₀,..., â_i,..., a_n) = 1 for each *i*.
- Reflexive sheaf O(m) is a line bundle ⇔ m is a multiple of every weight a_i.
- The intersection number $\int_{V} c_1(O(1))^n = 1/a_0 \cdots a_n$.

- The weighted projective space $Y = P(a_0, ..., a_n)$ is said to be *well-formed* if $gcd(a_0, ..., \hat{a}_j, ..., a_n) = 1$ for each *j*. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, ..., x_n) = (t^{a_0}x_0, ..., t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree *d* is well-formed ⇔ gcd(a₀,..., â_i,..., â_j,..., a_n)|*d* for all *i* < *j*, and gcd(a₀,..., â_i,..., a_n) = 1 for each *i*.
- Reflexive sheaf O(m) is a line bundle ⇔ m is a multiple of every weight a_i.
- The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

Reid-Tai criterion for quotient singularities

For a positive integer *r*, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of *r*th roots of unity acts by $\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \hat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^{n} (ia_j \bmod r) \ge r$$

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

Reid-Tai criterion for quotient singularities

For a positive integer *r*, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of *r*th roots of unity acts by $\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \hat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^{n} (ia_j \bmod r) \ge r$$

Reid-Tai criterion for quotient singularities

For a positive integer *r*, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of *r*th roots of unity acts by $\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \widehat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

 $\sum_{j=1}^{n} (ia_j \bmod r) \ge r$

Reid-Tai criterion for quotient singularities

For a positive integer *r*, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of *r*th roots of unity acts by $\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \widehat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^{n} (ia_j \bmod r) \ge r$$

イロト (理) イヨト (ヨ) ヨー のへで

criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate point, $[0, \ldots, 0, 1, 0, \ldots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y = P(a_0, ..., a_n)$ is canonical (resp. terminal) \Leftrightarrow for each $0 \le m \le n$,

$$\sum_{j=0}^{n} (ia_j \bmod a_m) \ge a_m$$

(resp. > a_m) for $i = 1, ..., a_m - 1$.

criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate point, $[0, \ldots, 0, 1, 0, \ldots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y = P(a_0, ..., a_n)$ is canonical (resp. terminal) \Leftrightarrow for each $0 \le m \le n$,

$$\sum_{j=0}^n (ia_j \bmod a_m) \ge a_m$$

 $(resp. > a_m)$ for $i = 1, ..., a_m - 1$.

- Y is well-formed since $k \ge 2$.
- X is well-formed since *d* is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

- Y is well-formed since $k \ge 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

- Y is well-formed since $k \ge 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- $Y = P(K^{(K+2)}, (K+1)^{(2K-1)}, (K(K+1))^{(2K-1)})$
 - Y is well-formed since $k \ge 2$.
 - X is well-formed since *d* is a multiple of all weights.
 - Y is canonical by Lemma. Check singularities of three types:

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- $Y = P(K^{(K+2)}, (K+1)^{(2K-1)}, (K(K+1))^{(2K-1)})$
 - Y is well-formed since $k \ge 2$.
 - X is well-formed since *d* is a multiple of all weights.
 - Y is canonical by Lemma. Check singularities of three types:

イロン 不良 アイヨン 不良 アンタイ

•
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$
Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, \ldots, k-1$.
It's true since $i(k+1) = i \ge 1 \mod k$.

• $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, \ldots, k$.
It's true since $ik \ge 1 \mod (k+1)$.

• $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$
Check $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k(k+1)$ for $i = 1, \ldots, k(k+1) - 1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,
and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.

(a) Y is canonical.

(X is canonical \leftarrow

(b) O(d) is basepoint-free line bundle since d > 0 is a multiple of all the weights

イロン 不良 アイヨン 不良 アンタイ

•
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$

Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, ..., k-1$.
It's true since $i(k+1) = i \ge 1 \mod k$.
• $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, ..., k$.
It's true since $ik \ge 1 \mod (k+1)$.
• $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$ Check
 $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k$
 $(k+1)$ for $i = 1, ..., k(k+1) - 1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, ..., k(k+1) - 1$,
and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.
X is canonical \Leftarrow
(a) Y is canonical.
(b) O(d) is basepoint-free line bundle since
 $d>0$ is a multiple of all the weights.

1 $\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1,, k-1$. It's true since $i(k+1) = i \ge 1 \mod k$.
2 $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k + 2)(ik \mod (k + 1)) \ge k + 1$ for $i = 1,, k$.
It's true since $ik \ge 1 \mod (k+1)$. 3 $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)})$, Check
by Kollár's Bertini theorem.

《비가 《聞가 《문가 《문가 》문.

イロン 不良 アイヨン 不良 アンタイ

1
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$

Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, \ldots, k-1$.
It's true since $i(k+1) = i \ge 1 \mod k$.
2 $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, \ldots, k$.
It's true since $ik \ge 1 \mod (k+1).$
3 $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$
3 Check $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k$
 $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k$
 $(k+1)$ for $i = 1, \ldots, k(k+1) - 1.$
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,
and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.
4 (a) Y is canonical.
(b) O(d) is basepoint-free line bundle since d>0 is a multiple of all the weights.
4 (k+1) k = k \mod k(k+1)

<ロト < 個 > < 目 > < 目 > 目 の < の</p>

1
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$

Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, \ldots, k-1$.
It's true since $i(k+1) = i \ge 1 \mod k$.

2 $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, \ldots, k$.
It's true since $ik \ge 1 \mod (k+1)$.

3 $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$ Check $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k(k+1)$ for $i = 1, \ldots, k(k+1) - 1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,
and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.

X is canonical \leftarrow

$$\begin{cases}
(a) Y \text{ is canonical.} \\
(b) O(d) \text{ is basepoint-free line bundle since } d \ge 0 \text{ is a multiple of all the weights.}
\end{cases}$$

•
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$

Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, \ldots, k-1$.
It's true since $i(k+1) = i \ge 1 \mod k$.
• $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, \ldots, k$.
It's true since $ik \ge 1 \mod (k+1)$.
• $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$ Check
 $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k(k+1)$ for $i = 1, \ldots, k(k+1) - 1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,
and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.

(a) Y is canonical.
(b) O(d) is basepoint-free line bundle since d>0 is a multiple of all the weights.

by Kollar's Bertini theorem.

•
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$

Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, \ldots, k-1$.
It's true since $i(k+1) = i \ge 1 \mod k$.
• $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, \ldots, k$.
It's true since $ik \ge 1 \mod (k+1).$
• $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$ Check
 $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k(k+1)$ for $i = 1, \ldots, k(k+1) - 1$.
It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,
and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.

X is canonical \leftarrow

(a) Y is canonical.
(b) O(d) is basepoint-free line bundle since d>0 is a multiple of all the weights.

X is canonical \leftarrow $\begin{cases} (b) O(d) \text{ is basepoint-free line bundle since} \\ d>0 \text{ is a multiple of all the weights.} \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a) Y is canonical.

X is canonical \leftarrow $\begin{cases} (b) O(d) \text{ is basepoint-free line bundle since} \\ d>0 \text{ is a multiple of all the weights.} \end{cases}$

イロン 不良 アイヨン 不良 アンタイ

1
$$\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}),$$
 Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i = 1, \ldots, k-1$.
 It's true since $i(k+1) = i \ge 1 \mod k$.
 1 $\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}),$
 Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i = 1, \ldots, k$.
 It's true since $ik \ge 1 \mod (k+1)$.
 1 $\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}),$
 Check $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge k(k+1)$ for $i = 1, \ldots, k(k+1) - 1$.
 It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,
 and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,
 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.
 (a) Y is canonical.
 (b) O(d) is basepoint-free line bundle since

d>0 is a multiple of all the weights.

- quasi-smooth
 - A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least || numbers $j \notin I$ such that $d - a_i$ is an *N*-linear combination of the numbers a_i with $i \in I$.

- quasi-smooth
 - A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d

- quasi-smooth
 - A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

- either (1) $a_i = d$ for some *i*,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d

- quasi-smooth
 - A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d

- quasi-smooth
 - A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or

- quasi-smooth
 - A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least |I| numbers $j \notin I$ such that $d - a_i$ is an *N*-linear combination of the numbers a_i with $i \in I$.

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$

• Adjunction formula holds:

 $K_X = O_X(d - \sum a_i) \Leftarrow \begin{cases} (a) \text{ X is well-formed.} \\ (b) \text{ X is quasi-smooth since} \\ d \text{ is a multiple of all the weights.} \end{cases}$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is *d* divided by the product of all weights of *Y*. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$

Adjunction formula holds:

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ is well-formed. \ (b) \ X \ is quasi-smooth since \ d \ is a multiple of all the weights. \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is *d* divided by the product of all weights of *Y*. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$

Adjunction formula holds:

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ is well-formed. \ (b) \ X \ is quasi-smooth since \ d \ is a multiple of all the weights. \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is *d* divided by the product of all weights of *Y*.

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$

• Adjunction formula holds:

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ is well-formed. \ (b) \ X \ is quasi-smooth since \ d \ is a multiple of all the weights. \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is *d* divided by the product of all weights of *Y*. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$

• Adjunction formula holds:

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ is well-formed. \ (b) \ X \ is quasi-smooth since \ d \ is a multiple of all the weights. \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is *d* divided by the product of all weights of *Y*. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$

• Adjunction formula holds:

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ is well-formed. \ (b) \ X \ is quasi-smooth since \ d \ is a multiple of all the weights. \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is *d* divided by the product of all weights of *Y*. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

Generalization

• Consider hypersurface X of degree d = (6+l)k(k+1)(k+2) in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{l})$, where $l \ge 0, k \ge 4$.

- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- Consider hypersurface X of degree d = (6+l)k(k+1)(k+2) in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{l})$, where $l \ge 0, k \ge 4$.
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Consider hypersurface X of degree d = (6+l)k(k+1)(k+2) in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{l})$, where $l \ge 0, k \ge 4$.
- *Y* is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and K_X = O_X(d ∑ a_i) = O_X(1).
 vol(X) = (6+/)/(k+1)^{6k+l}(k+2)^{6k+l-1}. This improves BPT's example.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Consider hypersurface X of degree d = (6+l)k(k+1)(k+2) in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{l})$, where $l \ge 0, k \ge 4$.
- *Y* is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

- Consider hypersurface X of degree d = (6+l)k(k+1)(k+2) in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{l})$, where $l \ge 0, k \ge 4$.
- *Y* is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

イロト 不得 トイヨト イヨト ヨー のへで

Generalization

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ I & \text{if } |I| = b. \end{cases}$$

イロト 不得 トイヨト イヨト ヨー のへで

Generalization

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ |I| = b. \end{cases}$$

Generalization

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ / & \text{if } |I| = b. \end{cases}$$

Generalization

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ | & \text{if } |I| = b. \end{cases}$$

Generalization

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ I & \text{if } |I| = b. \end{cases}$$

Let Y be the complex weighted projective space

$$P\bigg(\big(\prod_{j\in I}(k+j)\big)^{(k_l)}: I\subset \{0,\ldots,b-1\}\bigg).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

 $vol(K_X) < 1/n^{(n\log n)/3}$.

Let Y be the complex weighted projective space

$$P\bigg(\big(\prod_{j\in I}(k+j)\big)^{(k_I)}:I\subset\{0,\ldots,b-1\}\bigg).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

 $vol(K_X) < 1/n^{(n\log n)/3}$.

• Let Y be the complex weighted projective space

$$P\bigg(\big(\prod_{j\in I}(k+j)\big)^{(k_I)}:I\subset\{0,\ldots,b-1\}\bigg).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface *X* of degree *d* in *Y* has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

 $vol(K_X) < 1/n^{(n\log n)/3}$.

Let Y be the complex weighted projective space

$$P\bigg(\big(\prod_{j\in I}(k+j)\big)^{(k_I)}:I\subset\{0,\ldots,b-1\}\bigg).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface *X* of degree *d* in *Y* has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

 $vol(K_X) < 1/n^{(n \log n)/3}$.

Terminal Fano varieties.

 (Birkar) For each integer n > 0, ∃ a constant s_n s.t. for every terminal Fano n-fold X, |-mK_X| gives a birational embedding for all m ≥ s_n;

and \exists a constant $b_n > 0$ s.t. every terminal Fano *n*-fold *X* has $vol(-K_X) \ge b_n$.

- (J. Chen and M. Chen) The optimal cases: $dim = 2, X_6 \subset P(1, 1, 2, 3)$ with volume 1, $dim = 3, X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330,
- *dim* = 4, Brown-Kasprzyk's example
 *X*₃₄₈₆ ⊂ *P*(1, 41, 42, 498, 1162, 1743), with volume
 1/498240036

- (Birkar) For each integer n > 0, ∃ a constant s_n s.t. for every terminal Fano *n*-fold X, |-mK_X| gives a birational embedding for all m ≥ s_n; and ∃ a constant b_n > 0 s.t. every terminal Fano *n*-fold X has vol(-K_X) ≥ b_n.
- (J. Chen and M. Chen) The optimal cases: $dim = 2, X_6 \subset P(1, 1, 2, 3)$ with volume 1, $dim = 3, X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330,
- *dim* = 4, Brown-Kasprzyk's example
 X₃₄₈₆ ⊂ P(1, 41, 42, 498, 1162, 1743), with volume
 1/498240036

- (Birkar) For each integer n > 0, ∃ a constant s_n s.t. for every terminal Fano *n*-fold X, |-mK_X| gives a birational embedding for all m ≥ s_n; and ∃ a constant b_n > 0 s.t. every terminal Fano *n*-fold X has vol(-K_X) ≥ b_n.
- (J. Chen and M. Chen) The optimal cases: $dim = 2, X_6 \subset P(1, 1, 2, 3)$ with volume 1, $dim = 3, X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330
- *dim* = 4, Brown-Kasprzyk's example
 *X*₃₄₈₆ ⊂ *P*(1, 41, 42, 498, 1162, 1743), with volume
 1/498240036

- (Birkar) For each integer n > 0, ∃ a constant s_n s.t. for every terminal Fano *n*-fold X, |-mK_X| gives a birational embedding for all m ≥ s_n; and ∃ a constant b_n > 0 s.t. every terminal Fano *n*-fold X has vol(-K_X) ≥ b_n.
- (J. Chen and M. Chen) The optimal cases: $dim = 2, X_6 \subset P(1, 1, 2, 3)$ with volume 1, $dim = 3, X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330,
- *dim* = 4, Brown-Kasprzyk's example
 *X*₃₄₈₆ ⊂ *P*(1, 41, 42, 498, 1162, 1743), with volume
 1/498240036

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (Birkar) For each integer n > 0, ∃ a constant s_n s.t. for every terminal Fano *n*-fold X, |-mK_X| gives a birational embedding for all m ≥ s_n; and ∃ a constant b_n > 0 s.t. every terminal Fano *n*-fold X has vol(-K_X) ≥ b_n.
- (J. Chen and M. Chen) The optimal cases: $dim = 2, X_6 \subset P(1, 1, 2, 3)$ with volume 1, $dim = 3, X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330,
- dim = 4, Brown-Kasprzyk's example $X_{3486} \subset P(1, 41, 42, 498, 1162, 1743)$, with volume 1/498240036

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

■ a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.

∃ a complex terminal Fano n-fold X s.t. the linear system | - mK_X| does not give a birational embedding for any m < n^{(log n)/3}.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ∂ a complex terminal Fano n-fold X s.t. the linear system | - mK_X| does not give a birational embedding for any m ≤ n^{(log n)/3}.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ∂ a complex terminal Fano n-fold X s.t. the linear system | - mK_X| does not give a birational embedding for any m ≤ n^{(log n)/3}.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ∃ a complex terminal Fano n-fold X s.t. the linear system | − mK_X | does not give a birational embedding for any m ≤ n^{(log n)/3}.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1} \right),$$

where H_i are n + 2 general hyperplanes and $c_0, c_1, c_2, ...$ is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}.$$

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

 $(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$

where H_i are n + 2 general hyperplanes and $c_0, c_1, c_2, ...$ is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}.$$

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

 $(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$ where H_i are n + 2 general hyperplanes and c_0, c_1, c_2, \dots is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}.$$

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$

where H_i are n + 2 general hyperplanes and $c_0, c_1, c_2, ...$ is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}.$$

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X,\Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$

where H_i are n + 2 general hyperplanes and $c_0, c_1, c_2, ...$ is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}.$$

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$

where H_i are $n + 2$ general hyperplanes and c_0, c_1, c_2, \dots
is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$.
The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

 $(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$ where H_i are n + 2 general hyperplanes and c_0, c_1, c_2, \dots is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

 $(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$ where H_i are n + 2 general hyperplanes and c_0, c_1, c_2, \dots is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is 1/48983, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \ge 2$, \exists a complex klt n-fold X with ample canonical class s.t. $vol(K_X) < 1/2^{2^n}$.

 $\log(vol(K_X))$ of our klt varieties is asymptotic to $\log(vol(K_X + \Delta))$ in Kollár's klt pair above, as $n \to \infty$.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is 1/48983, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \ge 2$, \exists a complex klt n-fold X with ample canonical class s.t. $vol(K_X) < 1/2^{2^n}$.

 $\log(vol(K_X))$ of our klt varieties is asymptotic to $\log(vol(K_X + \Delta))$ in Kollár's klt pair above, as $n \to \infty$.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is 1/48983, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \ge 2$, \exists a complex klt n-fold X with ample canonical class s.t. $vol(K_X) < 1/2^{2^n}$.

 $log(vol(K_X))$ of our klt varieties is asymptotic to $log(vol(K_X + \Delta))$ in Kollár's klt pair above, as $n \to \infty$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.

• $n \ge 2$. Let $y = c_{n-1} - 1$ and

$$a_{2} = y^{3} + y + 1$$

$$a_{1} = y(y+1)(1+a_{2}) - a_{2}$$

$$a_{0} = y(1+a_{2}+a_{1}) - a_{1}.$$

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and

$$a_2 = y^3 + y + 1$$

$$a_1 = y(y+1)(1+a_2) - a_2$$

$$a_0 = y(1+a_2+a_1) - a_1.$$

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.

•
$$n \ge 2$$
. Let $y = c_{n-1} - 1$ and

$$a_2 = y^3 + y + 1$$

 $a_1 = y(y+1)(1+a_2) - a_2$
 $a_0 = y(1+a_2+a_1) - a_1.$

• Let
$$x = 1 + a_0 + a_1 + a_2$$
,
 $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$,
and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.

•
$$n \ge 2$$
. Let $y = c_{n-1} - 1$ and

$$a_2 = y^3 + y + 1$$

 $a_1 = y(y+1)(1+a_2) - a_2$
 $a_0 = y(1+a_2+a_1) - a_1.$

• Let
$$x = 1 + a_0 + a_1 + a_2$$
,
 $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$,
and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

うして ふぼう メロット ロー うめの

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

(日) (理) (ヨ) (ヨ) (ヨ) ()

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

うして ふぼう メロット ロー うめの

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

・ロン (理) (ヨン (ヨン ヨー うへつ)

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

(日) (理) (ヨ) (ヨ) (ヨ) ()

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal.

It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

イロン 人間 シスヨン メヨン ヨー シタの

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since

construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in $P(a_0, ..., a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = rac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

hus $vol(K_X) < rac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < rac{1}{2^{2^n}}.$

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

イロト 不得 トイヨト イヨト ヨー のへで

- some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 - Let $\frac{d}{a_{i+3}} \doteq c_i$ for $0 \le i \le n-2$. Let $d = c_0 \cdots c_{n-2} x$ for some integer x.
- $d \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

イロト 不得 トイヨト イヨト ヨー のへで

- some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 Let ^{*d*}/<sub>*a_{i+3}* ≐ *c_i* for 0 ≤ *i* ≤ *n* − 2. Let *d* = *c*₀ ··· *c_{n−2}x* for some integer *x*.
 </sub>
- $d \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

イロト (得) (ヨ) (ヨ) () ()

- some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 Let ^{*d*}/<sub>*a_{i+3}* ≐ *c_i* for 0 ≤ *i* ≤ *n* − 2. Let *d* = *c*₀ ··· *c_{n−2}x* for some integer *x*.
 </sub>
- $d \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 Let ^{*d*}/<sub>*a_{i+3}* ≐ *c_i* for 0 ≤ *i* ≤ *n* − 2. Let *d* = *c*₀ ··· *c_{n−2}x* for some integer *x*.
</sub>

•
$$d - \sum a_i$$
 equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 Let ^{*d*}/<sub>*a_{i+3}* ≐ *c_i* for 0 ≤ *i* ≤ *n* − 2. Let *d* = *c*₀ ··· *c_{n−2}x* for some integer *x*.
</sub>

•
$$d - \sum a_i$$
 equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

メロト (局) (日) (日) (日) (日) (の)

 From a criterion for quasi-smoothness proved by lano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_0, \ldots, a_{n+1} , a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every i and there is a positive integer r such that:

- $1 a_i | d \text{ if } i \geq r,$
- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \dots, d a_1 \equiv 0 \pmod{a_0}$, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$

Erom a critor	ion for quasi-smo	othness proved by	
	•	• •	
lano-Fletche	r, we get a sufficie	ent condition for	

quasi-smooth:

For positive integers *d* and a_0, \ldots, a_{n+1} , a general hypersurface of degree *d* in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every *i* and there is a positive integer *r* such that:

a_i|d if i ≥ r,
d - a_{r-1} ≡ 0 (mod a_{r-2}), ..., d - a₁ ≡ 0 (mod a₀), and d - a₀ ≡ 0 (mod a_{r-1}).

Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

For positive integers *d* and a_0, \ldots, a_{n+1} , a general hypersurface of degree *d* in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every *i* and there is a positive integer *r* such that:

$$\mathbf{D} \ a_i | d \text{ if } i \geq r,$$

2
$$d - a_{r-1} \equiv 0 \pmod{a_{r-2}}, \dots, d - a_1 \equiv 0 \pmod{a_0}$$
, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

varieties of general type	Construction	Rit varieties	

For positive integers *d* and a_0, \ldots, a_{n+1} , a general hypersurface of degree *d* in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every *i* and there is a positive integer *r* such that:

$$) a_i | d \text{ if } i \geq r,$$

2
$$d - a_{r-1} \equiv 0 \pmod{a_{r-2}}, \dots, d - a_1 \equiv 0 \pmod{a_0}$$
, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$

イロン 不良 アイヨン イヨン シック

valieties of general type	Construction	Kit vaneties	

For positive integers *d* and a_0, \ldots, a_{n+1} , a general hypersurface of degree *d* in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every *i* and there is a positive integer *r* such that:

$$\bigcirc a_i | d \text{ if } i \geq r,$$

2
$$d - a_{r-1} \equiv 0 \pmod{a_{r-2}}, \dots, d - a_1 \equiv 0 \pmod{a_0}$$
, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

• Choose other weights *a_i* to make *X* quasi-smooth.

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$

イロン 不良 アイヨン イヨン シック

For positive integers *d* and a_0, \ldots, a_{n+1} , a general hypersurface of degree *d* in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every *i* and there is a positive integer *r* such that:

$$\bigcirc a_i | d \text{ if } i \geq r,$$

2
$$d - a_{r-1} \equiv 0 \pmod{a_{r-2}}, \dots, d - a_1 \equiv 0 \pmod{a_0}$$
, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

construct klt varieties with ample canonical class

• dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.

- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

construct klt varieties with ample canonical class

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

construct klt varieties with ample canonical class

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4 × 10⁻⁴⁴. The smallest known volume for a klt 4-fold with ample canonical class is about 1.4 × 10⁻⁴⁷.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

construct klt varieties with ample canonical class

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

sketch of proof

Our construction of klt varieties with ample canonical class:

- Sylvester's sequence $\{c_i\}$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and $a_2 = y^3 + y + 1$, $a_1 = y(y+1)(1+a_2) - a_2$, $a_0 = y(1+a_2+a_1) - a_1$.
- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

• $X \subset P(a_0, \ldots, a_{n+1})$ is a general hypersurface of degree *d*.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

sketch of proof

Our construction of klt varieties with ample canonical class:

• Sylvester's sequence $\{c_i\}$.

•
$$n \ge 2$$
. Let $y = c_{n-1} - 1$ and
 $a_2 = y^3 + y + 1$,
 $a_1 = y(y+1)(1+a_2) - a_2$,
 $a_0 = y(1+a_2+a_1) - a_1$.

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

• $X \subset P(a_0, \ldots, a_{n+1})$ is a general hypersurface of degree *d*.

sketch of proof

Our construction of klt varieties with ample canonical class:

• Sylvester's sequence $\{c_i\}$.

•
$$n \ge 2$$
. Let $y = c_{n-1} - 1$ and
 $a_2 = y^3 + y + 1$,
 $a_1 = y(y+1)(1+a_2) - a_2$,
 $a_0 = y(1+a_2+a_1) - a_1$.

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

• $X \subset P(a_0, ..., a_{n+1})$ is a general hypersurface of degree d.

sketch of proof

Our construction of klt varieties with ample canonical class:

• Sylvester's sequence $\{c_i\}$.

•
$$n \ge 2$$
. Let $y = c_{n-1} - 1$ and
 $a_2 = y^3 + y + 1$,
 $a_1 = y(y+1)(1+a_2) - a_2$,
 $a_0 = y(1+a_2+a_1) - a_1$.

- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.
- $X \subset P(a_0, \ldots, a_{n+1})$ is a general hypersurface of degree *d*.

sketch of proof when r = 3

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

 $K_X = O_X(d - \sum a_i) \Leftarrow \begin{cases} (a) \ X \text{ is well-formed} \\ (b) \ X \text{ is quasi-smooth} \end{cases}$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}$$

<ロ>×日>×日>×日>×日>×日>×日>×日

sketch of proof when r = 3

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

 $K_X = O_X(d - \sum a_i) \Leftarrow \begin{cases} (a) \ X \text{ is well-formed} \\ (b) \ X \text{ is quasi-smooth} \end{cases}$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}$$

イロト 不同 トイヨト イヨト ヨー のへで

sketch of proof when r = 3

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ \mathsf{X} ext{ is well-formed} \ (b) \ \mathsf{X} ext{ is quasi-smooth} \end{cases}$$

• $vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}$

sketch of proof when r = 3

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

$$\mathcal{K}_X = \mathcal{O}_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ \mathsf{X} ext{ is well-formed} \ (b) \ \mathsf{X} ext{ is quasi-smooth} \end{cases}$$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}$$

・ロン・国ン・国ン・国ン・国・ のへの

イロト イ理ト イヨト イヨト ニヨー のくぐ

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

イロト イ理ト イヨト イヨト ニヨー のくぐ

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

イロト イ理ト イヨト イヨト ニヨー のくぐ

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$.
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

イロト イ理ト イヨト イヨト ニヨー のくぐ

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$.
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

イロト 不得 トイヨト イヨト ヨー のへで

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$.
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

There is a constant c = 1.264 such that c_i is the closest integer to c^{2ⁱ⁺¹} for all i ≥ 0. This implies the crude statement that vol(K_X) < 1/2π for all n ≥ 2.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

sketch of proof when r = 3

• In terms of
$$y = c_{n-1} - 1$$
, we have
 $a_2 = y^3 + y + 1 > y^3$,
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$.
Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

Better klt varieties with ample canonical class

For any odd number $r \ge 3$ and any dimension $n \ge r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

•
$$\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \rightarrow \frac{2^r-1}{2^r}$$
 as $n \rightarrow \infty$.

• For r = 3, this is the example above.

When r = 5, n = 4, it is a general hypersurface of degree 147565206676 in P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with ≐ 7.4 × 10⁻⁴⁵. (Better)

Better klt varieties with ample canonical class

For any odd number $r \ge 3$ and any dimension $n \ge r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

- $\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \rightarrow \frac{2^r-1}{2^r}$ as $n \rightarrow \infty$.
- For r = 3, this is the example above.
- When r = 5, n = 4, it is a general hypersurface of degree 147565206676 in P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with ≐ 7.4 × 10⁻⁴⁵. (Better)

Better klt varieties with ample canonical class

For any odd number $r \ge 3$ and any dimension $n \ge r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

•
$$\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \rightarrow \frac{2^r-1}{2^r}$$
 as $n \rightarrow \infty$.

• For r = 3, this is the example above.

When r = 5, n = 4, it is a general hypersurface of degree 147565206676 in
 P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with ≐ 7.4 × 10⁻⁴⁵. (Better)

Better klt varieties with ample canonical class

For any odd number $r \ge 3$ and any dimension $n \ge r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

•
$$\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \rightarrow \frac{2^r-1}{2^r}$$
 as $n \rightarrow \infty$.

• For r = 3, this is the example above.

When r = 5, n = 4, it is a general hypersurface of degree 147565206676 in
 P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with ≐ 7.4 × 10⁻⁴⁵. (Better)

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

Better klt varieties with ample canonical class

For any odd number $r \ge 3$ and any dimension $n \ge r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

•
$$\frac{\log(\textit{vol}(K_X))}{\log(\textit{vol}(K_Y+\Delta))} \rightarrow \frac{2^r-1}{2^r}$$
 as $n \rightarrow \infty$.

• For r = 3, this is the example above.

• When r = 5, n = 4, it is a general hypersurface of degree 147565206676 in P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with $= 7.4 \times 10^{-45}$. (Better)

Better klt varieties with ample canonical class

For any odd number $r \ge 3$ and any dimension $n \ge r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

•
$$\frac{\log(\textit{vol}(K_X))}{\log(\textit{vol}(K_Y+\Delta))} \rightarrow \frac{2^r-1}{2^r}$$
 as $n \rightarrow \infty$.

• For r = 3, this is the example above.

• When r = 5, n = 4, it is a general hypersurface of degree 147565206676 in P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with $\doteq 7.4 \times 10^{-45}$. (Better)

Thank you!