On The Newton Polytope of the Morse Discriminant of a Univariate Polynomial

Arina Voorhaar

Universté de Genève

13.01.2022

Nottingham Online Algebraic Geometry Seminar

 $A\subset \mathbb{Z}\setminus\{0\}$ a finite set

- Length(conv A) $\geqslant 3$;
- A affinely generates \mathbb{Z} .

 $A\subset \mathbb{Z}\setminus\{0\}$ a finite set

- Length(conv A) $\geqslant 3$;
- A affinely generates \mathbb{Z} .

 \mathbb{C}^A , the space of all Laurent polynomials with support A.

 $A\subset \mathbb{Z}\setminus\{0\}$ a finite set

- Length(conv A) $\geqslant 3$;
- A affinely generates \mathbb{Z} .

 \mathbb{C}^A , the space of all Laurent polynomials with support A.

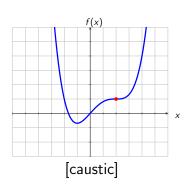
EXAMPLE

$$A = \{1, 2, 3, 4\} \subset \mathbb{Z};$$

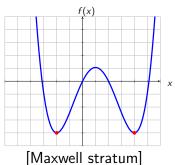
$$\mathbb{C}^A = \{b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 \mid b_i \in \mathbb{C}\};$$

We are interested in the following codimension 1 strata in \mathbb{C}^{A} :

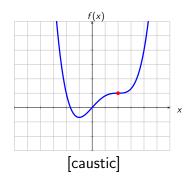
We are interested in the following codimension 1 strata in \mathbb{C}^A :

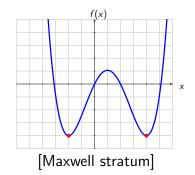


The map $f:(\mathbb{C}\setminus 0)\to \mathbb{C}$ has a degenerate critical point.



The map $f: (\mathbb{C} \setminus 0) \to \mathbb{C}$ has a pair of coinciding critical values taken at distinct points.

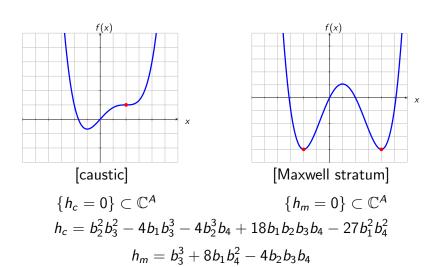




DEFINITION

A polynomial $f \in \mathbb{C}^A$ is *Morse*, if it does not belong to either the caustic or the Maxwell stratum.

Example: $A = \{1, 2, 3, 4\}$



Statement of the problem

PROBLEM

Describe in terms of the set A the Newton polytope \mathcal{M}_A of the Morse discriminant, i.e. of the polynomial $h_m^2 h_c$.

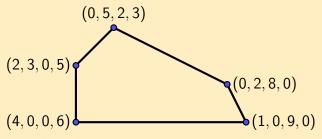
Statement of the problem

PROBLEM

Describe in terms of the set A the Newton polytope \mathcal{M}_A of the Morse discriminant, i.e. of the polynomial $h_m^2 h_c$.

EXAMPLE

For $A = \{1, 2, 3, 4\}$, the polytope \mathcal{M}_A is a pentagon in \mathbb{R}^4 .



DEFINITION

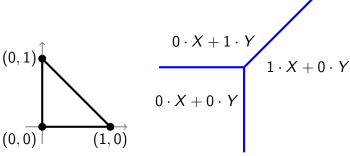
Let $P \subset \mathbb{R}^n$ be a convex polytope. Its *support function* $\tilde{P}: (\mathbb{R}^n)^* \to \mathbb{R}$ is defined as follows:

$$\tilde{P}(\gamma) = \max_{x \in P} \gamma(x).$$

DEFINITION

Let $P \subset \mathbb{R}^n$ be a convex polytope. Its *support function* $\tilde{P}: (\mathbb{R}^n)^* \to \mathbb{R}$ is defined as follows:

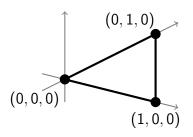
$$\tilde{P}(\gamma) = \max_{x \in P} \gamma(x).$$

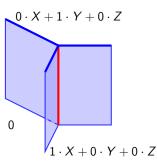


DEFINITION

Let $P \subset \mathbb{R}^n$ be a convex polytope. Its *support function* $\tilde{P}: (\mathbb{R}^n)^* \to \mathbb{R}$ is defined as follows:

$$\tilde{P}(\gamma) = \max_{x \in P} \gamma(x).$$





Tropical semiring $(\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

$$a \oplus b = \begin{cases} \max(a, b), & a \neq b; \\ [-\infty, a], & a = b. \end{cases}$$

 $a \odot b = a + b.$

Tropical semiring $(\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

$$a \oplus b = \begin{cases} \max(a, b), & a \neq b; \\ [-\infty, a], & a = b. \end{cases}$$

 $a \odot b = a + b.$

A tropical Laurent polynomial F(X) with the support A:

$$F(X) = \bigoplus_{p \in A} c_p \odot X^{\odot p} = \max_{p \in A} (pX + c_p).$$

Tropical semiring $(\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

$$a \oplus b = \begin{cases} \max(a, b), & a \neq b; \\ [-\infty, a], & a = b. \end{cases}$$

 $a \odot b = a + b.$

A tropical Laurent polynomial F(X) with the support A:

$$F(X) = \bigoplus_{p \in A} c_p \odot X^{\odot p} = \max_{p \in A} (pX + c_p).$$

DEFINITION

A tropical root r of F(X) is the point where at least two monomials of F(X) attain the maximal value $\max_{p \in A} (pX + c_p)$.

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma \colon A \to \mathbb{R}$.

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

Then γ can be viewed as a function $\gamma \colon A \to \mathbb{R}$.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$

EXAMPLE

Take
$$A = \{-3, -1, 1, 2, 4\} \subset \mathbb{Z}$$
. Then we have $|A| = 5$.

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

Then γ can be viewed as a function $\gamma \colon A \to \mathbb{R}$.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$

EXAMPLE

Take
$$A = \{-3, -1, 1, 2, 4\} \subset \mathbb{Z}$$
. Then we have $|A| = 5$.

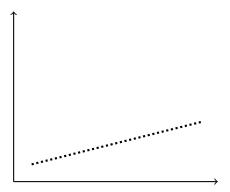
$$\gamma = (3, 5, 2, 5, 1) \in (\mathbb{R}^5)^* \leftrightarrow \varphi_{\gamma}(X) = \max(-3X + 3, -X + 5, X + 2, 2X + 5, 4X + 1).$$

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$

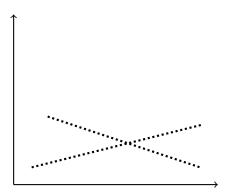
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$



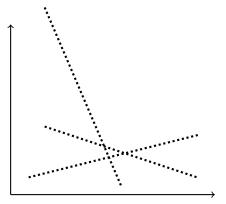
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$



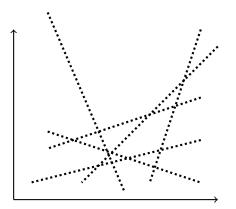
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$



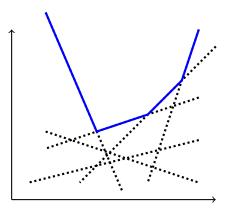
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$



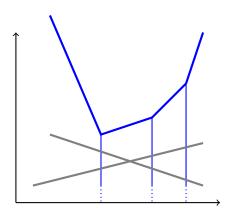
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$



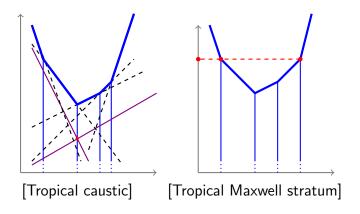
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector.

$$\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$$

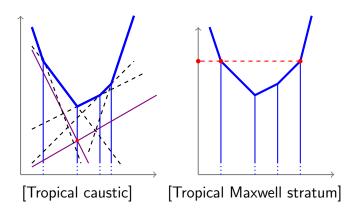


Non-Morse tropical polynomials

Non-Morse tropical polynomials



Non-Morse tropical polynomials



DEFINITION

A tropical polynomial is non-Morse, if it belongs to either the tropical caustic or the tropical Maxwell stratum.

Format of the answer

Format of the answer

• We want to describe the polytope \mathcal{M}_A ;

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- Which one? What are the coefficients of μ_A there?

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- Which one? What are the coefficients of μ_A there?

$$\gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{a function } \gamma \colon A \to \mathbb{R}$$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R} \\ \hline \end{array}$$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R}] \longleftrightarrow \\ \hline \text{Morse Tropical Polynomial } \varphi_\gamma(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} \\ \hline \end{array}$$

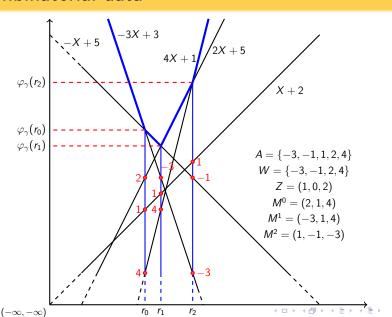
- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- ullet Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R}] \longleftrightarrow \\ \hline \text{Morse Tropical Polynomial } \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} \\ \hline \\ \hline \text{Combinatorial data } (W; Z; M^j)] \longleftrightarrow \end{array}$$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R} \\ \hline \text{Morse Tropical Polynomial } \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} \\ \hline \text{Combinatorial data } (W; Z; M^j) \\ \hline \text{Linearity domain of } \mu_A \\ \hline \end{array}$$

Combinatorial data



Main result

THEOREM (A.V.'21)

There is a surjection (given by a certain loooong and scary formula) between the set of all possible combinatorial types of Morse tropical polynomials with support set A and the vertices of the polytope \mathcal{M}_A .

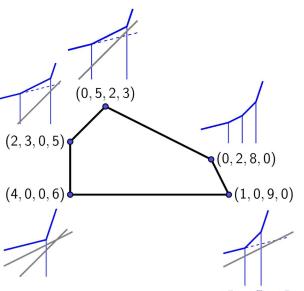
Main result

THEOREM (A.V.'21)

There is a surjection (given by a certain loooong and scary formula) between the set of all possible combinatorial types of Morse tropical polynomials with support set A and the vertices of the polytope \mathcal{M}_A .

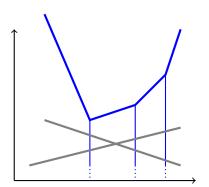
This result allows to enumerate all the vertices of the sought Newton polytope \mathcal{M}_A by all sorts of combinatorial types of Morse tropical polynomials.

Example: $A = \{1, 2, 3, 4\}$



Covectors ↔ tropical polynomials

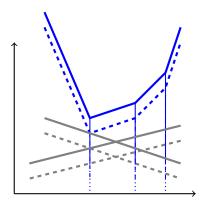
Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. $\gamma \colon A \to \mathbb{R} \longleftrightarrow \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$



Covectors ↔ tropical polynomials

$$\gamma' = \gamma + (b, \dots, b); b > 0,$$

 $\varphi_{\gamma'}(X) = \bigoplus_{a \in A} \gamma(a) \odot b \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a) + b).$

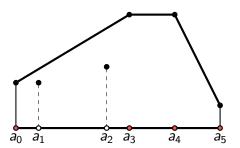


It suffices to consider covectors with non-negative coordinates!

Covectors \leftrightarrow polygons

$$\gamma \colon A \to \mathbb{R}_{\geqslant 0} \longleftrightarrow N_{\gamma} \subset \mathbb{R}^2$$

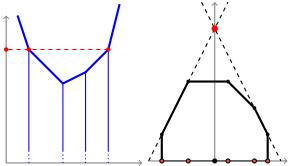
$$N_{\gamma} = \operatorname{conv}(\{(a, \gamma(a)) \mid a \in A\} \cup \{(a, 0) \mid a \in A\})$$



Non-Morse tropical Laurent polynomials revisited

DEFINITION

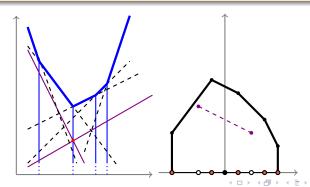
We say that a tropical Laurent polynomial F(X) belongs to the tropical Maxwell stratum in the space of tropical polynomials with the given support A, if there exists a pair r_1 , r_2 of tropical roots of F(X), such that $F(r_1) = F(r_2)$.



Non-Morse tropical Laurent polynomials revisited

DEFINITION

A tropical Laurent polynomial F(X) belongs to the *tropical* caustic in the space of tropical polynomials with the given support A, if for some tropical root r of F(X), there are at least two pairs of monomials attaining the same values at r.



- $0 \notin A \subset \mathbb{Z}$, a finite set.
 - A affinely generates \mathbb{Z} ;
 - Length(conv A) $\geqslant 3$;

- $0 \notin A \subset \mathbb{Z}$, a finite set.
 - A affinely generates \mathbb{Z} ;
 - Length(conv A) $\geqslant 3$;
 - A generic polynomial $f \in \mathbb{C}^A$ which belongs to the Morse discriminant has either exactly one pair of coinciding critical values or exactly one degenerate critical point of multiplicity 2.

- $0 \notin A \subset \mathbb{Z}$, a finite set.
 - A affinely generates \mathbb{Z} ;
 - Length(conv A) $\geqslant 3$;
 - A generic polynomial $f \in \mathbb{C}^A$ which belongs to the Morse discriminant has either exactly one pair of coinciding critical values or exactly one degenerate critical point of multiplicity 2.

True for a wide range of sets $A \subset \mathbb{Z}$. For instance:

- sets A such that $A = \operatorname{conv}(A) \cap \mathbb{Z}$;
- sets A containing 4 consecutive integers.

- $0 \notin A \subset \mathbb{Z}$, a finite set.
 - A affinely generates \mathbb{Z} ;
 - Length(conv A) $\geqslant 3$;
 - A generic polynomial $f \in \mathbb{C}^A$ which belongs to the Morse discriminant has either exactly one pair of coinciding critical values or exactly one degenerate critical point of multiplicity 2.

True for a wide range of sets $A \subset \mathbb{Z}$. For instance:

- sets A such that $A = \operatorname{conv}(A) \cap \mathbb{Z}$;
- sets A containing 4 consecutive integers.

CONJECTURE

Any set A satisfying the first two properties, also satisfies the third one.

① We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$.

• We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...

- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...
- ② Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$

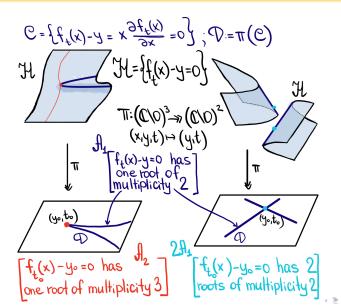
- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...
- **2** Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$
- **3** The Morse discriminant is the hypersurface $\{\mathcal{F}_A=0\}\subset\mathbb{C}^A.$

- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...
- **2** Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$
- The Morse discriminant is the hypersurface {F_A = 0} ⊂ ℂ^A. If we plug the coefficients of f_t into F_A, we get a polynomial in t of degree μ_A(γ).

- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{>0}^{|A|})^*$...
- Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$
- The Morse discriminant is the hypersurface $\{\mathcal{F}_A=0\}\subset\mathbb{C}^A$. If we plug the coefficients of f_t into \mathcal{F}_A , we get a polynomial in t of degree $\mu_A(\gamma)$.
 - Thus, we can reformulate the initial problem as follows:

PROBLEM

For how many complex values of t is the polynomial $f_t^{\gamma}(x)$ non-Morse?



One more statement of the problem

 $\mathcal{M}_A \subset \mathbb{R}^{|A|}$ – the Newton polytope of the Morse discriminant, $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R}$ – its support function.

Proposition

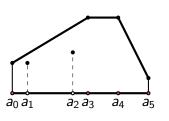
For a generic covector γ with non-negative integer coefficients, we have

$$\mu_A(\gamma) = 2 \cdot \underbrace{|2A_1|}_{\text{Maxwell stratum}} + \underbrace{|A_2|}_{\text{caustic}}.$$

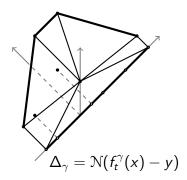
Thus, we reduced the initial problem to finding the number of cusps and nodes of the curve \mathcal{D} .

2 polytopes

$$\gamma \colon \mathsf{A} o \mathbb{Z}_{\geqslant 0}$$
 – a covector;



$$N_{\gamma} = \mathcal{N}(f_t^{\gamma}(x))$$



PROPOSITION

$$|\mathcal{A}_2| = \operatorname{Area}(N_{\gamma}) - \gamma(a_0) - \gamma(a_{|A|-1}).$$

Proof.

Follows from the description of the Newton polytope of the classical discriminant by Gelfand, Kapranov, Zelevinsky.

PROPOSITION

$$|\mathcal{A}_2| = \operatorname{Area}(N_{\gamma}) - \gamma(a_0) - \gamma(a_{|A|-1}).$$

Proof.

Follows from the description of the Newton polytope of the classical discriminant by Gelfand, Kapranov, Zelevinsky.

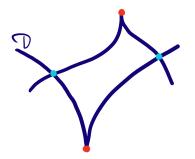
PROPOSITION

$$\chi(\mathcal{A}_1) + 2|2\mathcal{A}_1| + 2|\mathcal{A}_2| = -\operatorname{Area}(N_{\gamma})$$

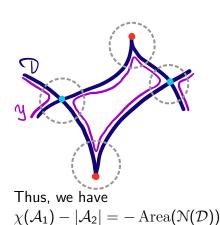
Proof.

Bernstein–Kouchnirenko–Khovanskii theorem + additivity of Euler characteristic.

The first two equations do not suffice. We need the third one!

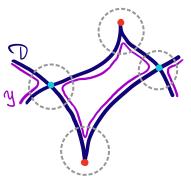


$$\chi(\mathcal{D}) = \chi(\mathcal{A}_1) + |2\mathcal{A}_1| + |\mathcal{A}_2|$$



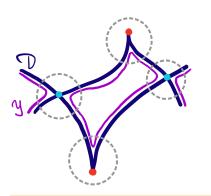
known

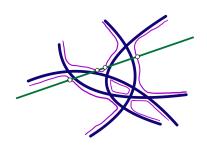
$$\begin{split} &\chi(\mathcal{A}_1) + |2\mathcal{A}_1| + |\mathcal{A}_2| - |2\mathcal{A}_1| - \\ &|\mathcal{A}_2| + |2\mathcal{A}_1| \cdot 0 + |\mathcal{A}_2| \cdot (-1) = \\ &\chi(\mathcal{A}_1) - |\mathcal{A}_2| \\ &\text{By the BKK theorem,} \\ &\chi(Y) = -\operatorname{Area}(\mathcal{N}(\mathcal{D})) \end{split}$$



Thus, we have
$$\chi(\mathcal{A}_1) - |\mathcal{A}_2| = -\operatorname{Area}(\underbrace{\mathcal{N}(\mathcal{D})}_{\text{known}}) + \boxed{?!}$$

3 equations



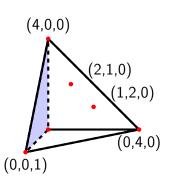


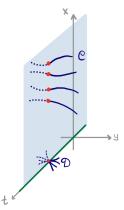
PROPOSITION

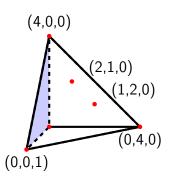
$$\begin{array}{l} \chi(\mathcal{A}_1) - |\mathcal{A}_2| = \\ -\operatorname{Area}(\mathcal{N}(\mathcal{D})) - \sum_{s \in \operatorname{FPS}} \chi((\mathbb{C} \setminus 0)^2 \cap \textit{Milnor fiber of s}) \end{array}$$

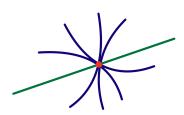
$$C = \{f(x, y, t) = g(x, y, t) = 0\} \subset (\mathbb{C} \setminus 0)^3 \text{ and } \mathcal{D} = \pi(C)$$

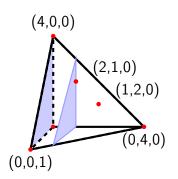
 f, g generic with support
 $\tilde{A} = \{(0, 0, 0), (4, 0, 0), (2, 1, 0), (1, 2, 0), (0, 4, 0), (0, 0, 1)\}.$

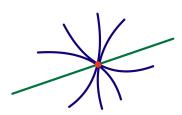


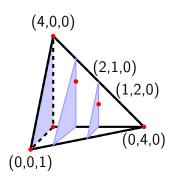


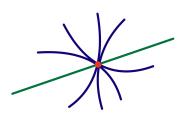


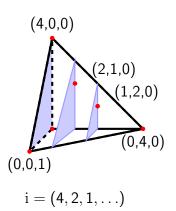


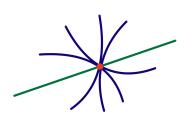


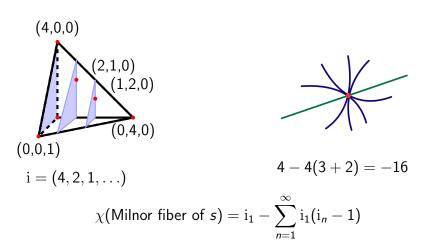


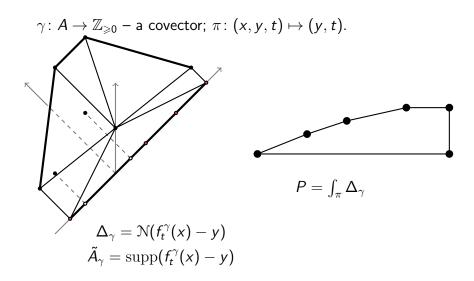












(Take
$$A = \{-3, -1, 1, 2, 4\}$$
 and $\gamma = (3, 5, 2, 5, 1)$)
$$W = \{w_0, w_1, w_2, w_3\}$$

$$= \{-1, 1, 2, 4\}$$

$$= \{-1, 2, 3, 4\}$$

$$= \{-1, 3, 2, 4\}$$

$$= \{-1, 3, 2, 4\}$$

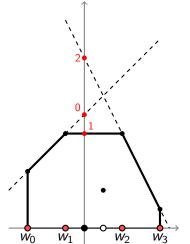
$$= \{-1, 3, 2, 4\}$$

$$= \{-1, 3, 2, 4\}$$

$$W = \{w_0, w_1, w_2, w_3\} =$$

= $\{-3, -1, 2, 4\};$

(Take
$$A = \{-3, -1, 1, 2, 4\}$$
 and $\gamma = (3, 5, 2, 5, 1)$)



$$W = \{w_0, w_1, w_2, w_3\} =$$

$$= \{-3, -1, 2, 4\};$$
 $Z = (1, 0, 2);$

(Take
$$A = \{-3, -1, 1, 2, 4\}$$
 and $\gamma = (3, 5, 2, 5, 1)$)
$$W = \{w_0, w_1, w_2, y_3, y_4, y_5, y_6\}$$

$$Z = (1, 0, y_6)$$

$$M^0 = (2, 1, 0, y_6)$$

$$M^1 = (-3, y_6)$$

$$M^2 = (1, -1, 0, y_6)$$

$$W = \{w_0, w_1, w_2, w_3\} =$$

$$= \{-3, -1, 2, 4\};$$

$$Z = (1, 0, 2);$$

$$M^0 = (2, 1, 4);$$

$$M^1 = (-3, 1, 4);$$

$$M^2 = (1, -1, -3).$$

3 equations

The sought number $|2A_1|$ can be extracted from the following 3 equations:

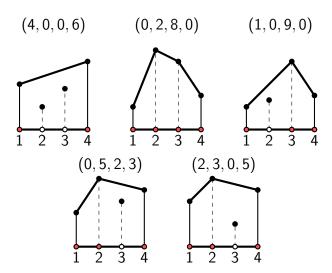
$$|\mathcal{A}_2| = \operatorname{Area}(N_{\gamma}) - \gamma(a_0) - \gamma(a_{|A|-1})$$

 $\chi(\mathcal{A}_1) + 2|2\mathcal{A}_1| + 2|\mathcal{A}_2| = -\operatorname{Area}(N_{\gamma})$

$$\chi(\mathcal{A}_1) - |\mathcal{A}_2| =$$

$$-\operatorname{Area}(\underbrace{\mathcal{N}(\mathcal{D})}_{\int_{\pi} \Delta}) - \sum_{s \in \operatorname{FPS}} \underbrace{\chi((\mathbb{C} \setminus 0)^2 \cap \operatorname{\mathsf{Milnor fiber of }} s)}_{\operatorname{\mathsf{tricky, but we know how to compute it}}$$

Example revisited: $A = \{1, 2, 3, 4\}$



Thank you!!!

arXiv:2104.05123 [math.AG]

