

Group-invariant tensor train networks for supervised learning

Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors
(4) Group-invariant tensor train networks
(5) Experimental results
(6) Conclusions

Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors
(4) Group-invariant tensor train networks
(5) Experimental results
(6) Conclusions

1. Introduction

A key task in supervised machine learning is determining a good model from a class of parameterized models. ${ }^{1}$ That is, find the element from

$$
\mathcal{M}=\left\{f_{\alpha}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \mid \alpha \in \mathbb{R}^{p}\right\}
$$

that maximizes some performance criterion p, given suitable amounts of data $\mathbf{d} \in \mathbb{R}^{m} \times \mathbb{R}^{n}$:

$$
\max _{f_{\alpha} \in \mathcal{M}} p\left(f_{\alpha}, \mathbf{d}\right) .
$$

Examples of model classes include:
(1) linear, quadratic, logistic, whateveryoulikebest regression
(2) graphical models
(3) neural networks
and the performance criterion could be maximizing prediction accuracy on a set of data.

[^0]In recent years, researchers in machine learning recognized that convolutional neural networks contain a powerful inductive bias; their outputs are invariant under translations:

So mathematically, if S is a shifting map, and f is the convolution map, then we have

$$
f(S \mathbf{x})=S f(\mathbf{x})
$$

That is, the diagram on the left commutes. (Since both maps are linear, this states that S and f are commuting matrices.)

[^1]This realization led to the desire to incorporate additional constraints explicitly into machine learning models $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, such as
(1) invariance: $f(A \mathbf{x})=f(\mathbf{x})$, and
(2) equivariance: $f(A \mathbf{x})=B f(\mathbf{x})$.

Herein A and B are usually linear maps. See Cohen ${ }^{3}$ for an introduction to this area.

Many data augmentation strategies also try to realize these properties implicitly. These come with an additional computational cost, as each training example could be subjected to multiple transformations A.

[^2]In this talk, we focus on simple tensor-based models for supervised learning. ${ }^{45}$

Here, the input data is first passed through a feature map

$$
\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \cdots \times \mathbb{R}^{n_{k}}
$$

as in a kernel method, and then supplied as input to a multilinear map

$$
f: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \cdots \times \mathbb{R}^{n_{k}} \rightarrow \mathbb{R}^{n_{k+1}}
$$

By imposing suitable structures on f, this map can be computed efficiently, comprising its kernel trick.

[^3]
Central question

How can we parameterize the multilinear maps

$$
f: V_{1} \times V_{2} \times \cdots \times V_{k} \rightarrow V_{k+1}
$$

invariant under the action of chosen invertible linear maps $M_{g}^{i}: V_{i} \rightarrow V_{i}$:

$$
f\left(M_{g}^{1} \mathbf{x}_{1}, M_{g}^{2} \mathbf{x}_{2}, \ldots, M_{g}^{k} \mathbf{x}_{k}\right)=M_{g}^{k+1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right), \quad g=1, \ldots, s,
$$

for all $\mathbf{x}_{i} \in V_{i}$.

Most of the work presented stems from our desire to understand prior work by Finzi, Welling and Wilson. ${ }^{6}$

[^4]
Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors

4 Group-invariant tensor train networks
(5) Experimental results
6) Conclusions

2. Group-invariant tensors: Tensors

Let us first recall how multilinear maps could be parameterized.

Recall that a multilinear function is a map

$$
f: V_{1} \times V_{2} \times \cdots \times V_{k} \rightarrow V_{k+1}
$$

from the vector spaces V_{i} to the vector space V_{k+1} which is linear in each of its arguments:

$$
\begin{aligned}
& f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, \alpha \cdot \mathbf{x}_{i}+\beta \cdot \mathbf{y}_{i}, \mathbf{x}_{i+1}, \ldots, \mathbf{x}_{k}\right) \\
& \quad=\alpha \cdot f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)+\beta \cdot f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, \mathbf{y}_{i}, \mathbf{x}_{i+1}, \ldots, \mathbf{x}_{k}\right), \quad i=1, \ldots, k
\end{aligned}
$$

Because of the universal property of the tensor product, ${ }^{7}$ there is a bijection between multilinear functions f and order- $(k+1)$ tensors

$$
\mathcal{F} \in\left(V_{1}^{*} \otimes V_{2}^{*} \otimes \cdots \otimes V_{k}^{*}\right) \otimes V_{k+1} .
$$

The notation V_{i}^{*} means the dual space of V_{i}, i.e., the linear space of functions from V_{i} to the base field (\mathbb{R}).

[^5]By exploiting the multilinearity of f and the tensor product \otimes, it can be shown that

$$
\mathcal{F}=\sum_{j_{1}}^{n_{1}} \cdots \sum_{j_{d}=1}^{n_{k}} \mathbf{e}_{j_{1}}^{1 *} \otimes \cdots \otimes \mathbf{e}_{j_{k}}^{k *} \otimes f\left(\mathbf{e}_{j_{1}}^{1}, \ldots, \mathbf{e}_{j_{k}}^{k}\right)
$$

where $\mathbf{e}_{1}^{i}, \ldots, \mathbf{e}_{n_{i}}^{i}$ forms an orthonormal basis of the n_{i}-dimensional vector space V_{i}, and $\mathbf{e}_{j}^{* i}$ denotes the dual basis vector of \mathbf{e}_{j}^{i}; that is,

$$
\mathbf{e}_{j}^{* i}\left(\mathbf{e}_{j^{\prime}}^{i}\right)=\delta_{j j^{\prime}}=\left\{\begin{array}{ll}
1 & j=j^{\prime} \\
0 & \text { otherwise }
\end{array} .\right.
$$

(This is completely analogous to how a matrix represents a linear map.)

One can represent this tensor \mathcal{F} by a $(k+1)$-array

You can think of \mathcal{F} as containing the function evaluation $f\left(\mathbf{e}_{i_{1}}^{1}, \ldots, \mathbf{e}_{i_{k}}^{k}\right)$ at position $\left(i_{1}, \ldots, i_{k}\right)$ in this array.

Hence, the unconstrained model space of multilinear functions can be parameterized as

$$
\mathcal{M}=\left\{f: V_{1} \times \cdots \times V_{k} \rightarrow V_{k+1} \text { multilinear }\right\} \simeq \mathbb{R}^{n_{1} \times \cdots \times n_{k} \times n_{k+1}} \simeq \mathbb{R}^{n_{1} \cdots n_{k+1}}
$$

2. Group-invariant tensors: Invariant multilinear maps

For neural networks, Cohen and Welling ${ }^{8}$ introduced the concept of G-invariance for groups G. In our setting, we want to consider the maps f that satisfy

$$
\forall \mathbf{x}_{i} \in V_{i}: \quad f\left(M_{g}^{1} \mathbf{x}_{1}, \ldots, M_{g}^{k} \mathbf{x}_{k}\right)=M_{g}^{k+1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right), \quad g=1, \ldots, s
$$

for the fixed tuples, which we call invariance relations,

$$
M_{g}:=\left(M_{g}^{1}, \ldots, M_{g}^{k+1}\right) \in \operatorname{Aut}\left(V_{1}\right) \times \cdots \times \operatorname{Aut}\left(V_{k+1}\right)
$$

for $g=1, \ldots, s$.

Recall that $\operatorname{Aut}\left(V_{i}\right)$ is the subspace of bijective linear maps from V_{i} into itself.

[^6]
Lemma

Let G denote the set of all invariance relations satisfied by f subject to the previously imposed invariance relations. Then, (G, \circ) is a group.

Lemma

Let G denote the set of all invariance relations satisfied by f subject to the previously imposed invariance relations. Then, (G, \circ) is a group.

Indeed, if $M_{g}, M_{h} \in G$, then

$$
f\left(M_{h}^{1} M_{g}^{1} \mathbf{x}_{1}, \ldots, M_{h}^{k} M_{g}^{k} \mathbf{x}_{k}\right)=M_{h}^{k+1} f\left(M_{g}^{1} \mathbf{x}_{1}, \ldots, M_{g}^{k} \mathbf{x}_{k}\right)=M_{h}^{k+1} M_{g}^{k+1} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)
$$

so that $M_{h} \circ M_{g}:=\left(M_{h}^{1} M_{g}^{1}, \ldots, M_{h}^{k+1} M_{g}^{k+1}\right) \in G$.

Lemma

Let G denote the set of all invariance relations satisfied by f subject to the previously imposed invariance relations. Then, (G, \circ) is a group.

Indeed, if $M_{g}, M_{h} \in G$, then

$$
f\left(M_{h}^{1} M_{g}^{1} \mathbf{x}_{1}, \ldots, M_{h}^{k} M_{g}^{k} \mathbf{x}_{k}\right)=M_{h}^{k+1} f\left(M_{g}^{1} \mathbf{x}_{1}, \ldots, M_{g}^{k} \mathbf{x}_{k}\right)=M_{h}^{k+1} M_{g}^{k+1} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right),
$$

so that $M_{h} \circ M_{g}:=\left(M_{h}^{1} M_{g}^{1}, \ldots, M_{h}^{k+1} M_{g}^{k+1}\right) \in G$.
Moreover, we have for all $M_{g} \in G$ that

$$
M_{g}^{k+1} f\left(\left(M_{g}^{1}\right)^{-1} \mathbf{x}_{1}, \ldots,\left(M_{g}^{k}\right)^{-1} \mathbf{x}_{k}\right)=f\left(M_{g}^{1}\left(M_{g}^{1}\right)^{-1} \mathbf{x}_{1}, \ldots, M_{g}^{k}\left(M_{g}^{k}\right)^{-1} \mathbf{x}_{k}\right)=f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)
$$

which implies that $M_{g}^{-1}:=\left(\left(M_{g}^{1}\right)^{-1}, \ldots,\left(M_{g}^{k+1}\right)^{-1}\right) \in G$.

Moreover, it is immediately verified that the projection maps

$$
\pi_{i}: G \rightarrow \operatorname{Aut}\left(V_{i}\right), \quad\left(M^{1}, \ldots, M^{k+1}\right) \mapsto M^{i}
$$

are group homomorphisms. That is,
(1) $\pi_{i}\left(\left(\operatorname{Id}_{V_{1}}, \ldots, \operatorname{Id} V_{k+1}\right)\right)=\operatorname{Id}_{V_{i}}$, and
(2) $\pi_{i}\left(M_{h} \circ M_{g}\right)=M_{h}^{i} M_{g}^{i}=\pi_{i}\left(M_{h}\right) \pi_{i}\left(M_{g}\right)$.

A map $\rho: G \rightarrow \operatorname{Aut}(V)$ that maps an abstract group G homomorphically into the group of automorphisms on a vector space V is called a group representation of G on V.

All of the foregoing entails that multilinear maps satisfying

$$
f\left(M_{g}^{1} \mathbf{x}_{1}, M_{g}^{2} \mathbf{x}_{2}, \ldots, M_{g}^{k} \mathbf{x}_{k}\right)=M_{g}^{k+1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right), \quad g=1, \ldots, s
$$

are G-invariant (with representations $\rho_{i}: G \rightarrow V_{i}$) for the group $G=\left\langle M_{1}, \ldots, M_{s}\right\rangle .{ }^{9}$ That is, the above equation holds for all $M_{g} \in G$, not only for the generators.

Note that conversely one could start from an abstract group along with suitable representations and impose G-invariance in this way on f.

[^7]
2. Group-invariant tensors: Invariant tensors

We saw that a natural way of imposing invariance relations on a multilinear map f leads to f 's G-invariance. What does this entail for the associated tensor \mathcal{F} ?

Assume we have linear maps $U_{i}^{*}: V_{i}^{*} \rightarrow V_{i}^{*}, i=1, \ldots, k$, and $U_{k+1}: V_{k+1} \rightarrow V_{k+1}$. Let

$$
\mathcal{F}=\sum_{j_{1}=1}^{n_{1}} \cdots \sum_{j_{k+1}=1}^{n_{k+1}} \mathcal{F}_{j_{1}, \ldots, j_{k+1}} \mathbf{e}_{j_{1}}^{1 *} \otimes \cdots \otimes \mathbf{e}_{j_{k}}^{k *} \otimes \mathbf{e}_{j_{k+1}}^{k+1} .
$$

Then, the multilinear multiplication of these maps with \mathcal{F} is defined as ${ }^{10}$

$$
\left(U_{1}^{*} \otimes \cdots \otimes U_{k}^{*} \otimes U_{k+1}\right)(\mathcal{F}):=\sum_{j_{1}=1}^{n_{1}} \cdots \sum_{j_{k+1}=1}^{n_{k+1}} \mathcal{F}_{j_{1}, \ldots, j_{k+1}}\left(U_{1}^{*} \mathbf{e}_{j_{1}}^{1 *}\right) \otimes \cdots \otimes\left(U_{k}^{*} \mathbf{e}_{j_{k}}^{k *}\right) \otimes\left(U_{k+1} \mathbf{e}_{j_{k+1}}^{k+1}\right)
$$

[^8]
Proposition (Sprangers, Vannieuwenhoven, 2022)

Let $f: V_{1} \times \cdots \times V_{k} \rightarrow V_{k+1}$ be a multilinear map, $\mathcal{F} \in V_{1}^{*} \otimes \cdots \otimes V_{k}^{*} \otimes V_{k+1}$ the associated tensor, $G=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ a finitely-generated group, and $\rho_{i}: G \rightarrow \operatorname{Aut}\left(V_{i}\right)$ representations. Then, f is G-invariant if and only if

$$
\mathcal{F}=\left(\rho_{1}^{*}(g) \otimes \cdots \otimes \rho_{k}^{*}(g) \otimes \rho_{k+1}(g)\right)(\mathcal{F}), \quad \forall g \in\left\{g_{1}, \ldots, g_{s}\right\}
$$

where $\rho^{*}(g)=(\rho(g))^{-\top}$ is the dual representation.

Note that the inversion and transposition make sense in the dual representation ${ }^{11}$ because if $f: V \rightarrow W$ then

$$
f^{-1}: W \rightarrow V, \quad f^{\top}: W^{*} \rightarrow V^{*}, \quad \text { so } f^{-\top}: V^{*} \rightarrow W^{*}
$$

[^9]
Example

Consider the case of a linear map $\mathcal{F}: V \rightarrow W$ that satisfies the following equality

$$
\forall \mathbf{v} \in V: \quad L \mathcal{F} \mathbf{v}=\mathcal{F} M \mathbf{v}
$$

for $L \in \operatorname{Aut}(W)$ and $M \in \operatorname{Aut}(V)$.
As this holds for all \mathbf{v}, we have equality of linear maps: $L \mathcal{F}=\mathcal{F} M$. Hence, equivalently,

$$
L \mathcal{F} M^{-1}=\mathcal{F} .
$$

Vectorizing, this is equivalent to

$$
\left(M^{-\top} \otimes L\right)(\operatorname{vec}(\mathcal{F}))=\operatorname{vec}(\mathcal{F})
$$

having used a standard property of the Kronecker product.

Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors
(4) Group-invariant tensor train networks
(5) Experimental results
(6) Conclusions

3. Efficiently constructing group-invariant tensors

Inspecting the definition of G-invariant tensors, we see that for all $g \in G$:

$$
\begin{aligned}
\mathcal{F} & =\left(\rho_{1}^{*}(g), \ldots, \rho_{k}^{*}(g), \rho_{k+1}(g), \ldots, \rho_{d}(g)\right) \cdot \mathcal{F} \\
& :=\left(\rho_{1}^{-\top}(g) \otimes \cdots \otimes \rho_{k}^{-\top}(g) \otimes \rho_{k+1}(g) \otimes \cdots \otimes \rho_{d}(g)\right)(\mathcal{F}),
\end{aligned}
$$

where \otimes can be interpreted as the Kronecker product.
This is an interesting simultaneous eigenvector problem in which \mathcal{F} is the common eigenvector corresponding to eigenvalue 1 of the tensor-structured matrices

$$
\rho_{1}^{-\top}(g) \otimes \cdots \otimes \rho_{k}^{-\top}(g) \otimes \rho_{k+1}(g) \otimes \cdots \otimes \rho_{d}(g), \quad g \in G
$$

Corollary

The G-invariant tensors form a linear subspace of $V_{1}^{*} \otimes \cdots \otimes V_{k}^{*} \otimes V_{k+1} \otimes \cdots \otimes V_{d}$.

In the remainder, we consider orthogonal group representations. The results can be extended to normal group representations as well.

Orthogonal representation

Let h be an inner product on V. A representation is orthogonal if $\rho(g): V \rightarrow V$ is an isometry $\forall g \in G$.

For orthogonal representations $\rho^{-\top}(g)=\rho(g)$, so we can simplify the notation.

Returning to our eigenvalue problem, we have

$$
\rho_{1}(g) \otimes \cdots \otimes \rho_{d}(g)=\left(U^{1} \otimes \cdots \otimes U^{d}\right)\left(\Lambda^{1} \otimes \cdots \otimes \Lambda^{d}\right)\left(U^{1} \otimes \cdots \otimes U^{d}\right)^{H}
$$

where U^{i} is a unitary matrix and Λ^{i} is a diagonal matrix containing the (complex) eigenvalues such that

$$
\rho_{i}(g)=U^{i} \Lambda^{i}\left(U^{i}\right)^{H} .
$$

Let

$$
U_{\star}^{1} \odot \cdots \odot U_{\star}^{d}=\left[\mathbf{u}_{i_{1}}^{1} \otimes \cdots \otimes \mathbf{u}_{i_{d}}^{d}\right]_{i_{1}, \ldots, i_{d}}
$$

be the matrix of eigenvectors corresponding to eigenvalue 1 , i.e.,

$$
\Lambda_{i_{1}, i_{1}}^{1} \cdots \Lambda_{i_{d}, i_{d}}^{d}=1
$$

The space of G-invariant tensors is a subspace of $U_{\star}^{1} \odot \cdots \odot U_{\star}^{d}$, so that

$$
\mathcal{F}=\left(U_{\star}^{1} \odot \cdots \odot U_{\star}^{d}\right) \mathbf{v}
$$

for some v. Plugging this into our eigenvalue problem, we get

$$
\mathbf{v}=\underbrace{\left(U_{\star}^{1} \odot \cdots \odot U_{\star}^{d}\right)^{H}}_{U_{\star}^{H}} \underbrace{\left(\rho_{1}(g) \otimes \cdots \otimes \rho_{d}(g)\right)}_{B_{g}} \underbrace{\left(U_{\star}^{1} \odot \cdots \odot U_{\star}^{d}\right)}_{U_{\star}} \mathbf{v}, \quad \forall g \in G .
$$

This tensor-structured matrix can be computed efficiently.

Our key result is that the projected simultaneous eigenproblem can be reduced to a single eigenproblem. This result can be viewed as a version of the first projection formula in representation theory more suitable for tensor product representations. ${ }^{12}$

Proposition (Sprangers, Vannieuwenhoven, 2022)

Let $B_{g} \in \mathbb{C}^{m \times m}$ be unitary matrices whose rightmost eigenvalue is real. Let $U_{\star} \in \mathbb{C}^{m \times n}$ be a matrix with orthogonal columns, i.e., $U_{\star}^{H} U_{\star}=I_{n}$. Let $A_{g}=U_{\star}^{H} B_{g} U_{\star}$. Then,

$$
A_{1} \mathbf{v}=\lambda_{1} \mathbf{v}, \ldots, A_{s} \mathbf{v}=\lambda_{s} \mathbf{v}
$$

if and only if $\frac{1}{s}\left(\frac{1}{\lambda_{1}} A_{1}+\cdots+\frac{1}{\lambda_{s}} A_{s}\right) \mathbf{v}=\mathbf{v}$.

[^10]With these ingredients, we propose the following algorithm.
Input: Normal representation matrices B_{i}^{k} of $\rho_{k}\left(g_{i}\right)$ for $G=\left\langle g_{0}, g_{1}, \ldots, g_{s}\right\rangle$.
(1) Compute for $k=1, \ldots, d$ the small-scale eigendecompositions

$$
\rho_{k}\left(g_{0}\right)=B_{0}^{k}=U^{k} \Lambda^{k}\left(U^{k}\right)^{H} .
$$

(2) Find all indices $\left(i_{1}, \ldots, i_{d}\right)$ such that $\Lambda_{i_{1}, i_{1}}^{1} \cdots \Lambda_{i_{d}, i_{d}}^{d}=1$ and set $U_{\star}^{k}=\left[\mathbf{u}_{i_{k}}^{k}\right]_{i_{k}}$.
(3) Compute

$$
A=\frac{1}{s} \sum_{i=1}^{s}\left(\left(U_{\star}^{1}\right)^{H} B_{i}^{1} U_{\star}^{1}\right) \circledast \cdots \circledast\left(\left(U_{\star}^{d}\right)^{H} B_{i}^{d} U_{\star}^{d}\right) .
$$

(9) Compute a Schur decomposition $A=Q T Q^{H}$, where T is upper triangular, and extract the eigenspace Q corresponding to eigenvalue 1 .
Output: The orthonormal basis $\left(U_{\star}^{1} \odot \cdots \odot U_{\star}^{d}\right) Q$.

Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors

4 Group-invariant tensor train networks
(5) Experimental results
6) Conclusions

4. Group-invariant tensor train networks

Recall our supervised learning setup where we compose

$$
\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}} \simeq \mathbb{R}^{n_{1}+\cdots+n_{k+1}} \quad \text { and } \quad f: \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}} \rightarrow \mathbb{R}^{n_{k+1}}
$$

where Φ was called a kernel map and f is multilinear. Mathematically, this is equivalent to

$$
f \circ \Phi=\mathcal{F} \circ \otimes \circ \Phi
$$

where \mathcal{F} is the tensor representing f. This emphasizes that $\otimes \circ \Phi$ maps into a high-dimensional space. And $\mathcal{F} \in\left(\mathbb{R}^{n_{1} \times \cdots \times n_{k}}\right)^{*} \otimes \mathbb{R}^{n_{k+1}}$ is a linear map $\mathcal{F}: \mathbb{R}^{n_{1} \times \cdots \times n_{k}} \rightarrow \mathbb{R}^{n_{k+1}}$.

This has all the hallmarks of a kernel method. Except: we need a kernel trick because applying a linear map to vectors in $\mathbb{R}^{n_{1} \times \cdots \times n_{k}}$ is too costly (in memory and time)!

We say that $\mathcal{F} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{k+1}}$ admits a tensor trains decomposition ${ }^{13}$ with bond dimensions $\left(r_{1}, \ldots, r_{k}\right)$ if each entry of the tensor is a contracted matrix chain multiplication, like so

Graphically, the above is represented as

${ }^{13}$ Fannes, Nachtergaele, Werner, Comm. Math. Phys. 144, pp. 443-490, 1992.

In the case where $\mathcal{F} \in\left(V_{1}^{*} \otimes \cdots \otimes V_{k}^{*}\right) \otimes V_{k+1}$ represents a multilinear function with one output vector space V_{k+1}, we have

Note that you can play with the location of the output vector space V_{k+1}.

To impose G-invariance on multilinear maps that correspond to tensor trains decompositions with small bond dimensions no new theoretical developments are needed.
Singh, Pfeifer, and Vidal ${ }^{14}$ namely proved the following result.

Proposition (Singh, Pfeifer, Vidal, 2010)

There exists a tensor trains decomposition with minimal bond dimensions of a G-invariant tensor in which all core tensors are themselves G-invariant.

[^11]
Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors

4 Group-invariant tensor train networks
(5) Experimental results

5. Experimental results: Basis construction performance

5. Experimental results: Basis construction performance

5. Experimental results: G-invariant networks for transcription prediction

We applied group-invariant tensor train networks to a supervised learning task: Binary prediction whether a transcription factor (protein) will bind to a DNA sequence.

A data set with 3 transcription factors (MAX, CTCF, SPI1) was curated by Zhou, Shrikumar and Kundaje, ${ }^{15}$ along with 10,000 DNA strands per transcription factor. The dataset is already partitioned $40 \% / 30 \% / 30 \%$ into a training, test, and validation set.

DNA strands are reverse complement symmetric (Zhou, Shrikumar, Kundaje, 2020):

- Complement invariance arises from the nucleobase pairings in the double helix ($\mathrm{A} \leftrightarrow \mathrm{T}$, and $G \leftrightarrow C)$.
- Reverse invariance occurs because if a transcription factor binds to a DNA strand, then it also binds on the same strand rotated by π radians by rotating the protein likewise.

[^12]The tensor trains network has 1001 cores with output in the middle. All cores have bond dimension b.
The nucleobases are one-hot encoded as a length-4 binary vector.

The complement invariance can be modeled as the $\operatorname{group} G(G, *)=\left(\mathbb{Z}_{2},+{ }_{2}\right)$

The training setup was as follows:

- 100 epochs with batch size of 100 ,
- binary cross-entropy loss and 2-regularization on the variational parameters,
- softmax activation function at output node,
- stochastic gradient descent with Nesterov momentum with a fraction of 0.2

The optimal hyperparameters (found by non-exhaustive manual experimentation) vary depending on the prediction task:

Task	Bond dimension	Regularization	Epochs	Learning rate
MAX	3	0.005	100	0.001
CTCF	8	0.005	100	0.01
SPI1	8	0.003	100	0.01

Average* results over 5 runs of our model together with the results from the state-of-the-art convolutional neural network introduced by Mallet and Vert ${ }^{16}$, which in addition to reverse complement symmetry also takes into account a translation invariance, are as follows:

Dataset	Model	AUROC	Standard deviation
CTCF	Ours	94.10%	0.21%
	Benchmark	$\mathbf{9 8 . 8 4 \%}$	0.056%
SPI1	Ours	96.53%	0.030%
	Bechmark	$\mathbf{9 9 . 2 6 \%}$	0.034%
MAX	Ours	$\mathbf{9 7 . 0 6 \%}$	0.011%
	Benchmark	92.80%	0.26%

[^13]
Overview

(1) Introduction
(2) Group-invariant tensors
(3) Efficiently constructing group-invariant tensors

4 Group-invariant tensor train networks
(5) Experimental results
(6) Conclusions

6. Conclusions

Invariance relationships are naturally modeled with groups, leading to the concept of group-invariant tensor train networks. A new algorithm was proposed for constructing a basis of G-invariant tensors, outperforming the state of the art by several orders of magnitude.

For more details, see:
B. Sprangers and N. Vannieuwenhoven, Group-invariant tensor train networks for supervised learning, arXiv:2206.15051, 2022.

[^0]: ${ }^{1}$ Bishop, Pattern Recognition and Machine Learning, Springer, 2006

[^1]: ${ }^{2}$ Figure from Kayhan (2020). URL: https://medium.com/@oskyhn77789/current-convolutional-neural-networks-are-not-translation-equivariant-2f04bb9062e3

[^2]: ${ }^{3}$ Cohen, Equivariant convolutional networks, PhD thesis, 2021.

[^3]: ${ }^{4}$ Stoudenmire, Schwab, Supervised Learning with Tensor Networks, 30th Conference on Neural Information Processing Systems, 2016.
 ${ }^{5}$ Novikov, Trofimov, Oseledets, Exponential machines, Bull. Polish Acad. Sci.: Tech. Sci., 2018.

[^4]: ${ }^{6}$ Finzi, Welling, Wilson, A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups, Proceedings of the 38th International Conference on Machine Learning, 2021.

[^5]: ${ }^{7}$ Greub, Multilinear Algebra, Springer, 1978.

[^6]: ${ }^{8}$ Cohen, Welling, Group equivariant convolutional networks, Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016.

[^7]: ${ }^{9}$ Lang, Algebra, 3rd ed., Springer, 2002.

[^8]: ${ }^{10}$ Greub, Multilinear Algebra, Springer, 1978

[^9]: ${ }^{11}$ Lang, Algebra, 3rd ed., Springer, 2002.

[^10]: ${ }^{12}$ Fulton, Harris, Representation Theory: A First Course, Springer, 2004.

[^11]: ${ }^{14}$ Singh, Pfeifer, Vidal, Phys. Rev. A: At. Mol. Opt. Phys., 82, 2010.

[^12]: ${ }^{15}$ Zhou, Shrikumar, Kundaje, Benchmarking reverse-complement strategies for deep learning models in genomics, bioRxiv:2020.11.04.368803, 2020.

[^13]: ${ }^{16}$ Mallet, Vert, Reverse-Complement Equivariant Networks for DNA Sequences, NeurIPS, 2021.

