Online Nottingham algebraic geometry seminar

Actions of connected algebraic groups on rational 3-dimensional Mori fibrations
(joint work with Jérémy Blanc and Andrea Fanelli)

References:

- arXiv:1707.01462, "Automorphisms of \mathbb{P}^{1}-bundles over rational surfaces", 52 p.
- arXiv:1912.11364, "Connected algebraic groups acting on 3-dimensional Mori fibrations", 81 p.

Motivation and question

Motivation and question

We work over the field of complex numbers \mathbb{C}.

Motivation and question

We work over the field of complex numbers \mathbb{C}.
Goal: study the Cremona group $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, which is the group of birational transformations of the n-dimensional projective space over \mathbb{C}.

Motivation and question

We work over the field of complex numbers \mathbb{C}.
Goal: study the Cremona group $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, which is the group of birational transformations of the n-dimensional projective space over \mathbb{C}.

- If $n=1$, then $\operatorname{Bir}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$.

Motivation and question

We work over the field of complex numbers \mathbb{C}.
Goal: study the Cremona group $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, which is the group of birational transformations of the n-dimensional projective space over \mathbb{C}.

- If $n=1$, then $\operatorname{Bir}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- But if $n \geq 2$, then $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

Motivation and question

We work over the field of complex numbers \mathbb{C}.
Goal: study the Cremona group $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, which is the group of birational transformations of the n-dimensional projective space over \mathbb{C}.

- If $n=1$, then $\operatorname{Bir}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$.
- But if $n \geq 2$, then $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

However, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ contains algebraic subgroups.

Motivation and question

We work over the field of complex numbers \mathbb{C}.
Goal: study the Cremona group $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, which is the group of birational transformations of the n-dimensional projective space over \mathbb{C}.

- If $n=1$, then $\operatorname{Bir}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- But if $n \geq 2$, then $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

However, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ contains algebraic subgroups. For instance, it contains all the $\operatorname{Aut}^{0}(X)$ with X a rational projective n-fold. (In fact $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ contains $\varphi \operatorname{Aut}^{0}(X) \varphi^{-1}$ with $\varphi: X \rightarrow \mathbb{P}^{n}$.)

Motivation and question

We work over the field of complex numbers \mathbb{C}.
Goal: study the Cremona group $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, which is the group of birational transformations of the n-dimensional projective space over \mathbb{C}.

- If $n=1$, then $\operatorname{Bir}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- But if $n \geq 2$, then $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

However, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ contains algebraic subgroups. For instance, it contains all the $\operatorname{Aut}^{0}(X)$ with X a rational projective n-fold.
(In fact $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ contains $\varphi \operatorname{Aut}^{0}(X) \varphi^{-1}$ with $\varphi: X \rightarrow \mathbb{P}^{n}$.)
Question: What are the (maximal) connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ when $n \geq 2$?

Strategy to answer the question

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(0) Non-essential observation: G must be linear.

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(0 Non-essential observation: G must be linear.
This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(0) Non-essential observation: G must be linear.

This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
(1) Apply the regularization theorem of Weil [1955]:

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(0) Non-essential observation: G must be linear.

This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
(1) Apply the regularization theorem of Weil [1955]:

There exist a smooth rational n-fold X_{1} and a birational map $\varphi_{1}: \mathbb{P}^{n} \rightarrow X_{1}$ such that $\varphi_{1} G \varphi_{1}^{-1} \subseteq \operatorname{Aut}^{0}\left(X_{1}\right)$.

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(0) Non-essential observation: G must be linear.

This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
(1) Apply the regularization theorem of Weil [1955]:

There exist a smooth rational n-fold X_{1} and a birational map $\varphi_{1}: \mathbb{P}^{n} \rightarrow X_{1}$ such that $\varphi_{1} G \varphi_{1}^{-1} \subseteq \operatorname{Aut}^{0}\left(X_{1}\right)$.
(2) Compactify G-equivariantly X_{1} (Sumihiro [1974]) to obtain a rational projective n-fold $\iota: X_{1} \hookrightarrow X_{2}$ such that $\varphi_{2} G \varphi_{2}^{-1} \subseteq \operatorname{Aut}^{0}\left(X_{2}\right)$ with $\varphi_{2}=\iota \circ \varphi_{1}$.

Strategy to answer the question

Let G be a connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(Non-essential observation: G must be linear.
This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
(1) Apply the regularization theorem of Weil [1955]:

There exist a smooth rational n-fold X_{1} and a birational map $\varphi_{1}: \mathbb{P}^{n} \rightarrow X_{1}$ such that $\varphi_{1} G \varphi_{1}^{-1} \subseteq \operatorname{Aut}^{0}\left(X_{1}\right)$.
(2) Compactify G-equivariantly X_{1} (Sumihiro [1974]) to obtain a rational projective n-fold $\iota: X_{1} \hookrightarrow X_{2}$ such that $\varphi_{2} G \varphi_{2}^{-1} \subseteq \operatorname{Aut}^{0}\left(X_{2}\right)$ with $\varphi_{2}=\iota \circ \varphi_{1}$.
(3) Resolve G-equivariantly the singularities of X_{2} (Kollár [2007]) to obtain a rational smooth projective n-fold X_{3} such that $\varphi_{3} G \varphi_{3}^{-1} \subseteq \operatorname{Aut}^{0}\left(X_{3}\right)$ with $\varphi_{3}: \mathbb{P}^{n} \rightarrow X_{3}$ a birational map.

Strategy to answer the question

Strategy to answer the question

Definition (Mori fibration)

Strategy to answer the question

Definition (Mori fibration)

A Mori fibration $\pi: X \rightarrow Y$ is a dominant projective morphism between normal projective varieties such that

Strategy to answer the question

Definition (Mori fibration)

A Mori fibration $\pi: X \rightarrow Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$ and $\operatorname{dim}(Y)<\operatorname{dim}(X)$;
- X is \mathbb{Q}-factorial with terminal singularities; and
- ω_{X}^{\vee} is π-ample and the relative Picard number $\rho(X / Y)$ is 1 .

Strategy to answer the question

Definition (Mori fibration)

A Mori fibration $\pi: X \rightarrow Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$ and $\operatorname{dim}(Y)<\operatorname{dim}(X)$;
- X is \mathbb{Q}-factorial with terminal singularities; and
- ω_{X}^{\vee} is π-ample and the relative Picard number $\rho(X / Y)$ is 1 .
(9) Apply a Minimal Model Program to X_{3} to get a Mori fibration $\pi: X \rightarrow Y$ such that $\varphi G \varphi^{-1} \subseteq \operatorname{Aut}^{0}(X)$ for some birational map $\varphi: \mathbb{P}^{n} \rightarrow X$.

Strategy to answer the question

Definition (Mori fibration)

A Mori fibration $\pi: X \rightarrow Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$ and $\operatorname{dim}(Y)<\operatorname{dim}(X)$;
- X is \mathbb{Q}-factorial with terminal singularities; and
- ω_{X}^{\vee} is π-ample and the relative Picard number $\rho(X / Y)$ is 1 .
(9) Apply a Minimal Model Program to X_{3} to get a Mori fibration $\pi: X \rightarrow Y$ such that $\varphi G \varphi^{-1} \subseteq \operatorname{Aut}^{0}(X)$ for some birational map $\varphi: \mathbb{P}^{n} \rightarrow X$. Moreover, by Blanchard's lemma [1956], the group G acts also on Y and π is G-equivariant.

Strategy to answer the question

Definition (Mori fibration)

A Mori fibration $\pi: X \rightarrow Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$ and $\operatorname{dim}(Y)<\operatorname{dim}(X)$;
- X is \mathbb{Q}-factorial with terminal singularities; and
- ω_{X}^{\vee} is π-ample and the relative Picard number $\rho(X / Y)$ is 1 .
(9) Apply a Minimal Model Program to X_{3} to get a Mori fibration $\pi: X \rightarrow Y$ such that $\varphi G \varphi^{-1} \subseteq \operatorname{Aut}^{0}(X)$ for some birational map $\varphi: \mathbb{P}^{n} \rightarrow X$. Moreover, by Blanchard's lemma [1956], the group G acts also on Y and π is G-equivariant.

Partial conclusion: The connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ are those acting biregularly on rational Mori fiber spaces.

Warm-up: case $n=2$

Warm-up: case $n=2$

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

Warm-up: case $n=2$

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

Definition (Hirzebruch surfaces)

Warm-up: case $n=2$

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The Hirzebruch surface \mathbb{F}_{k} is the \mathbb{P}^{1}-bundle over \mathbb{P}^{1} defined by $\mathbb{F}_{k}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(-k) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)$.

Warm-up: case $n=2$

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The Hirzebruch surface \mathbb{F}_{k} is the \mathbb{P}^{1}-bundle over \mathbb{P}^{1} defined by $\mathbb{F}_{k}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(-k) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)$.

The Hirzebruch surfaces, together with \mathbb{P}^{2}, are precisely the rational Mori fiber spaces in dimension 2.

Warm-up: case $n=2$

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The Hirzebruch surface \mathbb{F}_{k} is the \mathbb{P}^{1}-bundle over \mathbb{P}^{1} defined by $\mathbb{F}_{k}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(-k) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)$.

The Hirzebruch surfaces, together with \mathbb{P}^{2}, are precisely the rational Mori fiber spaces in dimension 2.

Proposition (Case $n=2$, Enriques [1893])

Any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is conjugate to a subgroup of $\operatorname{Aut}\left(\mathbb{P}^{2}\right)$, $\operatorname{Aut}^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ or $\operatorname{Aut}\left(\mathbb{F}_{k}\right)$ with $k \geq 2$. Moreover, these algebraic subgroups are maximal in $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$, and so any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is contained into a maximal one.

Case $n=3$

Case $n=3$

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Case $n=3$

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])
Any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$:

Case $n=3$

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$:

- $\operatorname{Aut}\left(\mathbb{P}^{3}\right), \operatorname{Aut}\left(Q_{3}\right), \operatorname{Aut}\left(V_{5}\right), \operatorname{Aut}\left(V_{22}\right), \operatorname{Aut}^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, $\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right), \operatorname{Aut}^{0}\left(\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)\right)$;

Case $n=3$

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$:

- $\operatorname{Aut}\left(\mathbb{P}^{3}\right), \operatorname{Aut}\left(Q_{3}\right), \operatorname{Aut}\left(V_{5}\right), \operatorname{Aut}\left(V_{22}\right), \operatorname{Aut}^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, $\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right), \operatorname{Aut}{ }^{0}\left(\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)\right)$;
- 8 discrete families of \mathbb{P}^{1}-bundles and \mathbb{P}^{2}-bundles depending on 1 or 2 parameters $\left(e . g . \operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{F}_{k}\right), \operatorname{Aut}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{2}}(-k) \oplus \mathcal{O}_{\mathbb{P}^{2}}\right)\right)\right.$, $\operatorname{Aut}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(-k_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-k_{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)\right)$ etc $)$; or

Case $n=3$

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$:

- $\operatorname{Aut}\left(\mathbb{P}^{3}\right), \operatorname{Aut}\left(Q_{3}\right), \operatorname{Aut}\left(V_{5}\right), \operatorname{Aut}\left(V_{22}\right), \operatorname{Aut}^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, $\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right), \operatorname{Aut}{ }^{0}\left(\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)\right)$;
- 8 discrete families of \mathbb{P}^{1}-bundles and \mathbb{P}^{2}-bundles depending on 1 or 2 parameters (e.g. $\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{F}_{k}\right), \operatorname{Aut}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{2}}(-k) \oplus \mathcal{O}_{\mathbb{P}^{2}}\right)\right)$, $\operatorname{Aut}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(-k_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-k_{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)\right)$ etc $)$; or
- 1 continuous family of automorphism groups of smooth quadric fibrations over \mathbb{P}^{1}.

New question (in the case $n=3$)

New question (in the case $n=3$)

Question: Why do so few Mori fibrations $\pi: X \rightarrow Y$ appear in this list?

New question (in the case $n=3$)

Question: Why do so few Mori fibrations $\pi: X \rightarrow Y$ appear in this list?
There are three cases to consider:

New question (in the case $n=3$)

Question: Why do so few Mori fibrations $\pi: X \rightarrow Y$ appear in this list?
There are three cases to consider:

- If $\operatorname{dim}(Y)=0$, then X is a rational Fano threefold with terminal singularities and $\rho(X)=1$. The smooth ones are $\mathbb{P}^{3}, Q_{3}, V_{5}, V_{22}$, but there are also singular ones, e.g. $\mathbb{P}(1,1,1,2)$ or $\mathbb{P}(1,1,2,3)$.

New question (in the case $n=3$)

Question: Why do so few Mori fibrations $\pi: X \rightarrow Y$ appear in this list?
There are three cases to consider:

- If $\operatorname{dim}(Y)=0$, then X is a rational Fano threefold with terminal singularities and $\rho(X)=1$. The smooth ones are $\mathbb{P}^{3}, Q_{3}, V_{5}, V_{22}$, but there are also singular ones, e.g. $\mathbb{P}(1,1,1,2)$ or $\mathbb{P}(1,1,2,3)$.
- If $\operatorname{dim}(Y)=1$, then $X \rightarrow Y=\mathbb{P}^{1}$ is a Mori del Pezzo fibration over \mathbb{P}^{1}, i.e. a general fiber of π is a del Pezzo surface. (Recall that the smooth del Pezzo surfaces are $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$, and \mathbb{P}^{2} blown-up at r points in general position with $1 \leq r \leq 8$.)

New question (in the case $n=3$)

Question: Why do so few Mori fibrations $\pi: X \rightarrow Y$ appear in this list?
There are three cases to consider:

- If $\operatorname{dim}(Y)=0$, then X is a rational Fano threefold with terminal singularities and $\rho(X)=1$. The smooth ones are $\mathbb{P}^{3}, Q_{3}, V_{5}, V_{22}$, but there are also singular ones, e.g. $\mathbb{P}(1,1,1,2)$ or $\mathbb{P}(1,1,2,3)$.
- If $\operatorname{dim}(Y)=1$, then $X \rightarrow Y=\mathbb{P}^{1}$ is a Mori del Pezzo fibration over \mathbb{P}^{1}, i.e. a general fiber of π is a del Pezzo surface. (Recall that the smooth del Pezzo surfaces are $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$, and \mathbb{P}^{2} blown-up at r points in general position with $1 \leq r \leq 8$.)
- If $\operatorname{dim}(Y)=2$, then $X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

Case of Mori del Pezzo fibrations: a first result

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)
If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).
Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point.

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)
If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).
Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point. Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point. Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor.

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point. Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\bar{K} / K)$ fixes E and the canonical class $-3 L+E$, hence $\operatorname{Pic}\left(X_{\bar{K}}\right)^{\mathrm{Gal}(\bar{K} / K)}$ is a sublattice of rank 2 .

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point.
Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\bar{K} / K)$ fixes E and the canonical class $-3 L+E$, hence $\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}$ is a sublattice of rank 2. Thus

$$
1=\rho\left(X / \mathbb{P}^{1}\right)
$$

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point.
Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\bar{K} / K)$ fixes E and the canonical class $-3 L+E$, hence $\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}$ is a sublattice of rank 2. Thus

$$
1=\rho\left(X / \mathbb{P}^{1}\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{K}\right)\right)
$$

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point.
Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\bar{K} / K)$ fixes E and the canonical class $-3 L+E$, hence $\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}$ is a sublattice of rank 2. Thus

$$
1=\rho\left(X / \mathbb{P}^{1}\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{K}\right)\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}\right)
$$

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point.
Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\bar{K} / K)$ fixes E and the canonical class $-3 L+E$, hence $\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}$ is a sublattice of rank 2. Thus

$$
1=\rho\left(X / \mathbb{P}^{1}\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{K}\right)\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}\right)=\operatorname{rg}\left(\mathbb{Z}^{2}\right)=2
$$

Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^{2} blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^{2} blown-up at one point.
Let $K=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $X_{\bar{K}} \simeq B L_{p}\left(\mathbb{P}_{\bar{K}}^{2}\right)$ be the geometric generic fiber of π. Then $\operatorname{Pic}\left(X_{\bar{K}}\right)=\mathbb{Z}\langle L, E\rangle \simeq \mathbb{Z}^{2}$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\bar{K} / K)$ fixes E and the canonical class $-3 L+E$, hence $\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}$ is a sublattice of rank 2. Thus

$$
1=\rho\left(X / \mathbb{P}^{1}\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{K}\right)\right)=\operatorname{rg}\left(\operatorname{Pic}\left(X_{\bar{K}}\right)^{\operatorname{Gal}(\bar{K} / K)}\right)=\operatorname{rg}\left(\mathbb{Z}^{2}\right)=2
$$

The proof for \mathbb{P}^{2} blown-up at two points is similar.

Case of Mori del Pezzo fibrations: a second result

Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration $\pi: X \rightarrow \mathbb{P}^{1}$ is \mathbb{P}^{2} blown-up at three points or more, then $\operatorname{Aut}^{0}(X)$ is an algebraic torus.

Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration $\pi: X \rightarrow \mathbb{P}^{1}$ is \mathbb{P}^{2} blown-up at three points or more, then $\operatorname{Aut}^{0}(X)$ is an algebraic torus.

Idea of the proof.
By Blanchard's lemma [1956], the morphism $\pi: X \rightarrow \mathbb{P}^{1}$ is Aut $^{0}(X)$-equivariant and therefore it induces an exact sequence

Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration $\pi: X \rightarrow \mathbb{P}^{1}$ is \mathbb{P}^{2} blown-up at three points or more, then $\operatorname{Aut}^{0}(X)$ is an algebraic torus.

Idea of the proof.
By Blanchard's lemma [1956], the morphism $\pi: X \rightarrow \mathbb{P}^{1}$ is Aut $^{0}(X)$-equivariant and therefore it induces an exact sequence

$$
1 \rightarrow \operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}} \rightarrow \operatorname{Aut}^{0}(X) \rightarrow H \rightarrow 1,
$$

where $H \subseteq \operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$ and $\operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}}$ acts trivially on \mathbb{P}^{1}.

Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration $\pi: X \rightarrow \mathbb{P}^{1}$ is \mathbb{P}^{2} blown-up at three points or more, then $\operatorname{Aut}^{0}(X)$ is an algebraic torus.

Idea of the proof.
By Blanchard's lemma [1956], the morphism $\pi: X \rightarrow \mathbb{P}^{1}$ is Aut $^{0}(X)$-equivariant and therefore it induces an exact sequence

$$
1 \rightarrow \operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}} \rightarrow \operatorname{Aut}^{0}(X) \rightarrow H \rightarrow 1,
$$

where $H \subseteq \operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$ and $\operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}}$ acts trivially on \mathbb{P}^{1}.
We verify that H must fix at least two points in \mathbb{P}^{1}, so it is contained in \mathbb{G}_{m}.

Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration $\pi: X \rightarrow \mathbb{P}^{1}$ is \mathbb{P}^{2} blown-up at three points or more, then $\operatorname{Aut}^{0}(X)$ is an algebraic torus.

Idea of the proof.
By Blanchard's lemma [1956], the morphism $\pi: X \rightarrow \mathbb{P}^{1}$ is Aut $^{0}(X)$-equivariant and therefore it induces an exact sequence

$$
1 \rightarrow \operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}} \rightarrow \operatorname{Aut}^{0}(X) \rightarrow H \rightarrow 1,
$$

where $H \subseteq \operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$ and $\operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}}$ acts trivially on \mathbb{P}^{1}.
We verify that H must fix at least two points in \mathbb{P}^{1}, so it is contained in \mathbb{G}_{m}. Also, $\operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}} \subseteq \operatorname{Aut}\left(X_{\bar{K}}\right)$, which is either finite or an extension of a finite group with \mathbb{G}_{m}^{2}.

Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration $\pi: X \rightarrow \mathbb{P}^{1}$ is \mathbb{P}^{2} blown-up at three points or more, then $\operatorname{Aut}^{0}(X)$ is an algebraic torus.

Idea of the proof.
By Blanchard's lemma [1956], the morphism $\pi: X \rightarrow \mathbb{P}^{1}$ is Aut $^{0}(X)$-equivariant and therefore it induces an exact sequence

$$
1 \rightarrow \operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}} \rightarrow \operatorname{Aut}^{0}(X) \rightarrow H \rightarrow 1,
$$

where $H \subseteq \operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$ and $\operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}}$ acts trivially on \mathbb{P}^{1}.
We verify that H must fix at least two points in \mathbb{P}^{1}, so it is contained in \mathbb{G}_{m}. Also, $\operatorname{Aut}^{0}(X)_{\mathbb{P}^{1}} \subseteq \operatorname{Aut}\left(X_{\bar{K}}\right)$, which is either finite or an extension of a finite group with \mathbb{G}_{m}^{2}. This implies that $\operatorname{Aut}^{0}(X)$ is contained in \mathbb{G}_{m}^{3}.

Case of Mori del Pezzo fibrations: conclusion

Case of Mori del Pezzo fibrations: conclusion

Proposition (well-known, Popov [2013])

All tori of dimension $d \in\{1,2,3\}$ are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$. In particular, they are all conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)=\mathrm{PGL}_{4}(\mathbb{C})$.

Case of Mori del Pezzo fibrations: conclusion

Proposition (well-known, Popov [2013])

All tori of dimension $d \in\{1,2,3\}$ are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$. In particular, they are all conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)=\mathrm{PGL}_{4}(\mathbb{C})$.

Consequence: If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^{2} nor $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then $\operatorname{Aut}^{0}(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)$.

Case of Mori del Pezzo fibrations: conclusion

Proposition (well-known, Popov [2013])

All tori of dimension $d \in\{1,2,3\}$ are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$. In particular, they are all conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)=\mathrm{PGL}_{4}(\mathbb{C})$.

Consequence: If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^{2} nor $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then $\operatorname{Aut}^{0}(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)$. Therefore, it remains two cases to consider:

Case of Mori del Pezzo fibrations: conclusion

Proposition (well-known, Popov [2013])

All tori of dimension $d \in\{1,2,3\}$ are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$. In particular, they are all conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)=\mathrm{PGL}_{4}(\mathbb{C})$.

Consequence: If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^{2} nor $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then $\operatorname{Aut}^{0}(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)$. Therefore, it remains two cases to consider:

- a general fiber of π is \mathbb{P}^{2}, then we can reduce to the case where $X \rightarrow \mathbb{P}^{1}$ is a (decomposable) \mathbb{P}^{2}-bundle over \mathbb{P}^{1}; or

Case of Mori del Pezzo fibrations: conclusion

Proposition (well-known, Popov [2013])

All tori of dimension $d \in\{1,2,3\}$ are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$. In particular, they are all conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)=\mathrm{PGL}_{4}(\mathbb{C})$.

Consequence: If $\pi: X \rightarrow \mathbb{P}^{1}$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^{2} nor $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then $\operatorname{Aut}^{0}(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}\left(\mathbb{P}^{3}\right)$. Therefore, it remains two cases to consider:

- a general fiber of π is \mathbb{P}^{2}, then we can reduce to the case where $X \rightarrow \mathbb{P}^{1}$ is a (decomposable) \mathbb{P}^{2}-bundle over \mathbb{P}^{1}; or
- a general fiber of π is $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then we reduce to an element of the continuous family of quadric fibrations over \mathbb{P}^{1} mentioned earlier.

An overview of the case of Mori \mathbb{P}^{1}-fibrations

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \rightarrow Y$ is a standard conic bundle over the surface Y.

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \rightarrow Y$ is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a \mathbb{P}^{2}-bundle over Y.

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \rightarrow Y$ is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a \mathbb{P}^{2}-bundle over Y.
- We verify that:

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \rightarrow Y$ is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a \mathbb{P}^{2}-bundle over Y.
- We verify that:
- if the generic fiber of π is \mathbb{P}^{1}, then π is actually a \mathbb{P}^{1}-bundle over Y; and that

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \rightarrow Y$ is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a \mathbb{P}^{2}-bundle over Y.
- We verify that:
- if the generic fiber of π is \mathbb{P}^{1}, then π is actually a \mathbb{P}^{1}-bundle over Y; and that
- if the generic fiber of π is not \mathbb{P}^{1}, then $\operatorname{Aut}^{0}(X)$ is again an algebraic torus.

An overview of the case of Mori \mathbb{P}^{1}-fibrations

We now consider the case where $\pi: X \rightarrow Y$ is a Mori \mathbb{P}^{1}-fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \rightarrow Y$ is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a \mathbb{P}^{2}-bundle over Y.
- We verify that:
- if the generic fiber of π is \mathbb{P}^{1}, then π is actually a \mathbb{P}^{1}-bundle over Y; and that
- if the generic fiber of π is not \mathbb{P}^{1}, then $\operatorname{Aut}^{0}(X)$ is again an algebraic torus.
- When $\pi: X \rightarrow Y$ is a \mathbb{P}^{1}-bundle, we have a descent lemma to reduce to the case where Y is a minimal smooth rational surface, i.e. Y is $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$, or \mathbb{F}_{k} with $k \geq 2$.

What remains to be done

What remains to be done

It remains to study the automorphism groups of

- the \mathbb{P}^{1}-bundles over the minimal smooth rational surfaces;
- the \mathbb{P}^{2}-bundles and the quadric fibrations over \mathbb{P}^{1}; and of
- the rational Fano threefolds of Picard rank 1 with terminal singularities.

What remains to be done

It remains to study the automorphism groups of

- the \mathbb{P}^{1}-bundles over the minimal smooth rational surfaces;
- the \mathbb{P}^{2}-bundles and the quadric fibrations over \mathbb{P}^{1}; and of
- the rational Fano threefolds of Picard rank 1 with terminal singularities.

Then we have to determine which ones yield maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ and which ones are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$.

What remains to be done

It remains to study the automorphism groups of

- the \mathbb{P}^{1}-bundles over the minimal smooth rational surfaces;
- the \mathbb{P}^{2}-bundles and the quadric fibrations over \mathbb{P}^{1}; and of
- the rational Fano threefolds of Picard rank 1 with terminal singularities.

Then we have to determine which ones yield maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ and which ones are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$.
The main tool for this last step is the equivariant Sarkisov program for threefolds (whose validity follows from the work of Corti [1995], for the dimension 3, and of Floris [2020], for the dimension ≥ 3).

Some open questions

Some open questions

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of \mathbb{C} ?

Some open questions

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of \mathbb{C} ?
- What are the (possibly disconnected) maximal algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$? (The case of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ was addressed by Blanc in 2009.)

Some open questions

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of \mathbb{C} ?
- What are the (possibly disconnected) maximal algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$? (The case of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ was addressed by Blanc in 2009.)
- Let X be a non-rational threefold such that $\operatorname{Bir}(X)$ is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(X)$?

Some open questions

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of \mathbb{C} ?
- What are the (possibly disconnected) maximal algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$? (The case of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ was addressed by Blanc in 2009.)
- Let X be a non-rational threefold such that $\operatorname{Bir}(X)$ is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(X)$?
- What are the maximal connected algebraic subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ when $n \geq 4$? Is there a pattern? Is any connected algebraic subgroup of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ always contained into a maximal one?

Thank you for your attention!

