Online Nottingham algebraic geometry seminar

Actions of connected algebraic groups on rational 3-dimensional Mori fibrations

(joint work with Jérémy Blanc and Andrea Fanelli)

References :

- arXiv:1707.01462, "Automorphisms of $\mathbb{P}^1\text{-bundles}$ over rational surfaces", 52 p.
- arXiv:1912.11364, "Connected algebraic groups acting on 3-dimensional Mori fibrations", 81 p.

Motivation and question

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

Ξ.

イロン イ理 とく ヨン イ ヨン

Motivation and question

We work over the field of complex numbers \mathbb{C} .

э

< □ > < 同 > < 回 > < 回 > < 回 >

Goal: study the *Cremona group* $Bir(\mathbb{P}^n)$, which is the group of birational transformations of the *n*-dimensional projective space over \mathbb{C} .

< □ > < □ > < □ > < □ > < □ > < □ >

Goal: study the *Cremona group* $Bir(\mathbb{P}^n)$, which is the group of birational transformations of the *n*-dimensional projective space over \mathbb{C} .

• If n = 1, then $\operatorname{Bir}(\mathbb{P}^1) = \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Goal: study the *Cremona group* $Bir(\mathbb{P}^n)$, which is the group of birational transformations of the *n*-dimensional projective space over \mathbb{C} .

- If n = 1, then $\operatorname{Bir}(\mathbb{P}^1) = \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$.
- But if n ≥ 2, then Bir(Pⁿ) is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal: study the *Cremona group* $Bir(\mathbb{P}^n)$, which is the group of birational transformations of the *n*-dimensional projective space over \mathbb{C} .

- If n = 1, then $\operatorname{Bir}(\mathbb{P}^1) = \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$.
- But if n ≥ 2, then Bir(Pⁿ) is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

However, $Bir(\mathbb{P}^n)$ contains algebraic subgroups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal: study the *Cremona group* $Bir(\mathbb{P}^n)$, which is the group of birational transformations of the *n*-dimensional projective space over \mathbb{C} .

- If n = 1, then $\operatorname{Bir}(\mathbb{P}^1) = \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$.
- But if n ≥ 2, then Bir(Pⁿ) is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

However, $\operatorname{Bir}(\mathbb{P}^n)$ contains algebraic subgroups. For instance, it contains all the $\operatorname{Aut}^0(X)$ with X a rational projective *n*-fold. (In fact $\operatorname{Bir}(\mathbb{P}^n)$ contains $\varphi \operatorname{Aut}^0(X)\varphi^{-1}$ with $\varphi \colon X \dashrightarrow \mathbb{P}^n$.)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Goal: study the *Cremona group* $Bir(\mathbb{P}^n)$, which is the group of birational transformations of the *n*-dimensional projective space over \mathbb{C} .

- If n = 1, then $\operatorname{Bir}(\mathbb{P}^1) = \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$.
- But if n ≥ 2, then Bir(Pⁿ) is neither an algebraic group nor an ind-algebraic group (i.e. an "infinite dimensional algebraic group").

However, $\operatorname{Bir}(\mathbb{P}^n)$ contains algebraic subgroups. For instance, it contains all the $\operatorname{Aut}^0(X)$ with X a rational projective *n*-fold. (In fact $\operatorname{Bir}(\mathbb{P}^n)$ contains $\varphi \operatorname{Aut}^0(X)\varphi^{-1}$ with $\varphi \colon X \dashrightarrow \mathbb{P}^n$.)

Question: What are the (maximal) connected algebraic subgroups of $Bir(\mathbb{P}^n)$ when $n \ge 2$?

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

= 990

イロト イヨト イヨト イヨト

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

э

イロト 不得 トイヨト イヨト

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

• Non-essential observation: G must be linear.

< □ > < □ > < □ > < □ > < □ > < □ >

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

 Non-essential observation: G must be linear. This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

- Non-essential observation: G must be linear. This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
- Apply the regularization theorem of Weil [1955]:

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

- Non-essential observation: G must be linear. This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
- Apply the regularization theorem of Weil [1955]: There exist a smooth *rational n-fold X*₁ and a birational map φ₁: ℙⁿ --→ X₁ such that φ₁Gφ₁⁻¹ ⊆ Aut⁰(X₁).

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

- Non-essential observation: G must be linear. This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
- Apply the regularization theorem of Weil [1955]: There exist a smooth *rational n-fold X*₁ and a birational map φ₁: ℙⁿ --→ X₁ such that φ₁Gφ₁⁻¹ ⊆ Aut⁰(X₁).
- Compactify G-equivariantly X₁ (Sumihiro [1974]) to obtain a rational projective n-fold ι: X₁ → X₂ such that φ₂Gφ₂⁻¹ ⊆ Aut⁰(X₂) with φ₂ = ι ∘ φ₁.

Let G be a connected algebraic subgroup of $Bir(\mathbb{P}^n)$.

- Non-essential observation: G must be linear. This follows from the Nishi-Matsumura theorem [1963] and the Chevalley's structure theorem (Barsotti [1955] and Rosenlicht [1956]).
- Apply the regularization theorem of Weil [1955]: There exist a smooth rational n-fold X₁ and a birational map φ₁: ℙⁿ --→ X₁ such that φ₁Gφ₁⁻¹ ⊆ Aut⁰(X₁).
- Compactify G-equivariantly X₁ (Sumihiro [1974]) to obtain a rational projective n-fold ι: X₁ → X₂ such that φ₂Gφ₂⁻¹ ⊆ Aut⁰(X₂) with φ₂ = ι ∘ φ₁.
- Resolve G-equivariantly the singularities of X₂ (Kollár [2007]) to obtain a rational smooth projective n-fold X₃ such that φ₃Gφ₃⁻¹ ⊆ Aut⁰(X₃) with φ₃: Pⁿ --→ X₃ a birational map.

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

= 990

イロト イヨト イヨト イヨト

Definition (Mori fibration)

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

э

A D N A B N A B N A B N

Definition (Mori fibration)

A *Mori fibration* $\pi: X \to Y$ is a dominant projective morphism between normal projective varieties such that

э

イロト イポト イヨト イヨト

Definition (Mori fibration)

A *Mori fibration* $\pi: X \to Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_*(\mathcal{O}_X) = \mathcal{O}_Y$ and dim $(Y) < \dim(X)$;
- X is \mathbb{Q} -factorial with terminal singularities; and
- ω_X^{\vee} is π -ample and the relative Picard number $\rho(X/Y)$ is 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Mori fibration)

A *Mori fibration* $\pi: X \to Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_*(\mathcal{O}_X) = \mathcal{O}_Y$ and dim $(Y) < \dim(X)$;
- X is \mathbb{Q} -factorial with terminal singularities; and
- ω_X^{\vee} is π -ample and the relative Picard number $\rho(X/Y)$ is 1.
- Apply a Minimal Model Program to X₃ to get a Mori fibration
 π: X → Y such that φGφ⁻¹ ⊆ Aut⁰(X) for some birational map
 φ: ℙⁿ → X.

Definition (Mori fibration)

A *Mori fibration* $\pi: X \to Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_*(\mathcal{O}_X) = \mathcal{O}_Y$ and dim $(Y) < \dim(X)$;
- X is \mathbb{Q} -factorial with terminal singularities; and
- ω_X^{\vee} is π -ample and the relative Picard number $\rho(X/Y)$ is 1.
- Apply a Minimal Model Program to X₃ to get a Mori fibration
 π: X → Y such that φGφ⁻¹ ⊆ Aut⁰(X) for some birational map
 φ: ℙⁿ --→ X. Moreover, by Blanchard's lemma [1956], the group G
 acts also on Y and π is G-equivariant.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition (Mori fibration)

A *Mori fibration* $\pi: X \to Y$ is a dominant projective morphism between normal projective varieties such that

- $\pi_*(\mathcal{O}_X) = \mathcal{O}_Y$ and dim $(Y) < \dim(X)$;
- X is \mathbb{Q} -factorial with terminal singularities; and
- ω_X^{\vee} is π -ample and the relative Picard number $\rho(X/Y)$ is 1.
- Apply a Minimal Model Program to X₃ to get a Mori fibration
 π: X → Y such that φGφ⁻¹ ⊆ Aut⁰(X) for some birational map
 φ: ℙⁿ --→ X. Moreover, by Blanchard's lemma [1956], the group G
 acts also on Y and π is G-equivariant.

Partial conclusion: The connected algebraic subgroups of $Bir(\mathbb{P}^n)$ are those acting biregularly on rational Mori fiber spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○○

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^2)$.

3

イロト 不得 トイヨト イヨト

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $Bir(\mathbb{P}^2)$.

Definition (Hirzebruch surfaces)

< □ > < □ > < □ > < □ > < □ > < □ >

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^2)$.

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The *Hirzebruch surface* \mathbb{F}_k is the \mathbb{P}^1 -bundle over \mathbb{P}^1 defined by $\mathbb{F}_k = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $Bir(\mathbb{P}^2)$.

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The *Hirzebruch surface* \mathbb{F}_k is the \mathbb{P}^1 -bundle over \mathbb{P}^1 defined by $\mathbb{F}_k = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}).$

The Hirzebruch surfaces, together with \mathbb{P}^2 , are precisely the rational Mori fiber spaces in dimension 2.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Let us apply the previous strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^2)$.

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The Hirzebruch surface \mathbb{F}_k is the \mathbb{P}^1 -bundle over \mathbb{P}^1 defined by $\mathbb{F}_k = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}).$

The Hirzebruch surfaces, together with \mathbb{P}^2 , are precisely the rational Mori fiber spaces in dimension 2.

Proposition (Case n = 2, Enriques [1893])

Any connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^2)$ is conjugate to a subgroup of $\operatorname{Aut}(\mathbb{P}^2)$, $\operatorname{Aut}^0(\mathbb{P}^1 \times \mathbb{P}^1)$ or $\operatorname{Aut}(\mathbb{F}_k)$ with $k \ge 2$. Moreover, these algebraic subgroups are maximal in $\operatorname{Bir}(\mathbb{P}^2)$, and so any connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^2)$ is contained into a maximal one.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ○○○

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

э

イロト 不得 トイヨト イヨト

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $Bir(\mathbb{P}^3)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $Bir(\mathbb{P}^3)$:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $Bir(\mathbb{P}^3)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $Bir(\mathbb{P}^3)$:

• Aut(\mathbb{P}^3), Aut(Q_3), Aut(V_5), Aut(V_{22}), Aut⁰($\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$), Aut($\mathbb{P}^1 \times \mathbb{P}^2$), Aut⁰($\mathbb{P}(T_{\mathbb{P}^2})$);

э.

< □ > < □ > < □ > < □ > < □ > < □ >

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $Bir(\mathbb{P}^3)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $Bir(\mathbb{P}^3)$:

- Aut(\mathbb{P}^3), Aut(Q_3), Aut(V_5), Aut(V_{22}), Aut⁰($\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$), Aut($\mathbb{P}^1 \times \mathbb{P}^2$), Aut⁰($\mathbb{P}(T_{\mathbb{P}^2})$);
- 8 discrete families of P¹-bundles and P²-bundles depending on 1 or 2 parameters (e.g. Aut(P¹× F_k), Aut(P(O_{P²}(-k) ⊕ O_{P²})), Aut(P(O_{P¹}(-k₁) ⊕ O_{P¹}(-k₂) ⊕ O_{P¹})) etc); or

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

A full classification of the maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3)$ was obtained by Umemura and Mukai in a series of six papers (about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of $Bir(\mathbb{P}^3)$ is conjugate to a subgroup of one of the following maximal connected algebraic subgroups of $Bir(\mathbb{P}^3)$:

- Aut(\mathbb{P}^3), Aut(Q_3), Aut(V_5), Aut(V_{22}), Aut⁰($\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$), Aut($\mathbb{P}^1 \times \mathbb{P}^2$), Aut⁰($\mathbb{P}(T_{\mathbb{P}^2})$);
- 8 discrete families of P¹-bundles and P²-bundles depending on 1 or 2 parameters (e.g. Aut(P¹× F_k), Aut(P(O_{P²}(-k) ⊕ O_{P²})), Aut(P(O_{P¹}(-k₁) ⊕ O_{P¹}(-k₂) ⊕ O_{P¹})) etc); or
- 1 continuous family of automorphism groups of smooth quadric fibrations over ℙ¹.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

New question (in the case n = 3)

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

3

イロト 不得 トイヨト イヨト

There are three cases to consider:

- 20

イロト 不得 トイヨト イヨト

There are three cases to consider:

If dim(Y) = 0, then X is a rational Fano threefold with terminal singularities and ρ(X) = 1. The smooth ones are P³, Q₃, V₅, V₂₂, but there are also singular ones, e.g. P(1, 1, 1, 2) or P(1, 1, 2, 3).

There are three cases to consider:

- If dim(Y) = 0, then X is a rational Fano threefold with terminal singularities and ρ(X) = 1. The smooth ones are P³, Q₃, V₅, V₂₂, but there are also singular ones, e.g. P(1, 1, 1, 2) or P(1, 1, 2, 3).
- If dim(Y) = 1, then X → Y = P¹ is a Mori del Pezzo fibration over P¹, i.e. a general fiber of π is a del Pezzo surface. (Recall that the smooth del Pezzo surfaces are P², P¹ × P¹, and P² blown-up at r points in general position with 1 ≤ r ≤ 8.)

・ロト ・ 同ト ・ ヨト ・ ヨト

There are three cases to consider:

- If dim(Y) = 0, then X is a rational Fano threefold with terminal singularities and ρ(X) = 1. The smooth ones are P³, Q₃, V₅, V₂₂, but there are also singular ones, e.g. P(1, 1, 1, 2) or P(1, 1, 2, 3).
- If dim(Y) = 1, then X → Y = P¹ is a Mori del Pezzo fibration over P¹, i.e. a general fiber of π is a del Pezzo surface. (Recall that the smooth del Pezzo surfaces are P², P¹ × P¹, and P² blown-up at r points in general position with 1 ≤ r ≤ 8.)
- If dim(Y) = 2, then X → Y is a Mori P¹-fibration over a rational surface.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

= 990

イロト 不得 トイヨト イヨト

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

(4) (日本)

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point.

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $K = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π .

< /□ > < ∃

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $K = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor.

< /□ > < Ξ

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $K = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\overline{K}/K)$ fixes E and the canonical class -3L + E, hence $\operatorname{Pic}(X_{\overline{K}})^{\operatorname{Gal}(\overline{K}/K)}$ is a sublattice of rank 2.

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $\mathcal{K} = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\overline{K}/K)$ fixes E and the canonical class -3L + E, hence $\operatorname{Pic}(X_{\overline{K}})^{\operatorname{Gal}(\overline{K}/K)}$ is a sublattice of rank 2. Thus

$$1 = \rho(X/\mathbb{P}^1)$$

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $\mathcal{K} = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\overline{K}/\mathcal{K})$ fixes E and the canonical class -3L + E, hence $\operatorname{Pic}(X_{\overline{K}})^{\operatorname{Gal}(\overline{K}/\mathcal{K})}$ is a sublattice of rank 2. Thus

$$1 = \rho(X/\mathbb{P}^1) = \operatorname{rg}(\operatorname{Pic}(X_{\mathcal{K}}))$$

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $\mathcal{K} = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\overline{K}/\mathcal{K})$ fixes E and the canonical class -3L + E, hence $\operatorname{Pic}(X_{\overline{K}})^{\operatorname{Gal}(\overline{K}/\mathcal{K})}$ is a sublattice of rank 2. Thus

$$1 = \rho(X/\mathbb{P}^1) = \operatorname{rg}(\operatorname{Pic}(X_{\mathcal{K}})) = \operatorname{rg}(\operatorname{Pic}(X_{\overline{\mathcal{K}}})^{\operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K})})$$

э

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $K = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\overline{K}/K)$ fixes E and the canonical class -3L + E, hence $\operatorname{Pic}(X_{\overline{K}})^{\operatorname{Gal}(\overline{K}/K)}$ is a sublattice of rank 2. Thus

$$1 = \rho(X/\mathbb{P}^1) = \operatorname{rg}(\operatorname{Pic}(X_{\mathcal{K}})) = \operatorname{rg}(\operatorname{Pic}(X_{\overline{\mathcal{K}}})^{\operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K})}) = \operatorname{rg}(\mathbb{Z}^2) = 2.$$

э

- ∢ ⊒ →

Lemma (well-known, see Mori [1982] for the smooth case)

If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration, then a general fiber of π cannot be \mathbb{P}^2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is \mathbb{P}^2 blown-up at one point. Let $K = \mathbb{C}(\mathbb{P}^1)$ and let $X_{\overline{K}} \simeq BL_p(\mathbb{P}^2_{\overline{K}})$ be the geometric generic fiber of π . Then $\operatorname{Pic}(X_{\overline{K}}) = \mathbb{Z} \langle L, E \rangle \simeq \mathbb{Z}^2$, with L a generic line and E the exceptional divisor. Also $\operatorname{Gal}(\overline{K}/K)$ fixes E and the canonical class -3L + E, hence $\operatorname{Pic}(X_{\overline{K}})^{\operatorname{Gal}(\overline{K}/K)}$ is a sublattice of rank 2. Thus

$$1 = \rho(X/\mathbb{P}^1) = \operatorname{rg}(\operatorname{Pic}(X_{\mathcal{K}})) = \operatorname{rg}(\operatorname{Pic}(X_{\overline{\mathcal{K}}})^{\operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K})}) = \operatorname{rg}(\mathbb{Z}^2) = 2.$$

The proof for \mathbb{P}^2 blown-up at two points is similar.

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

= 990

イロト 不得 トイヨト イヨト

If a general fiber of the del Pezzo fibration $\pi: X \to \mathbb{P}^1$ is \mathbb{P}^2 blown-up at three points or more, then $\operatorname{Aut}^0(X)$ is an algebraic torus.

If a general fiber of the del Pezzo fibration $\pi: X \to \mathbb{P}^1$ is \mathbb{P}^2 blown-up at three points or more, then $\operatorname{Aut}^0(X)$ is an algebraic torus.

Idea of the proof.

By Blanchard's lemma [1956], the morphism $\pi \colon X \to \mathbb{P}^1$ is $\operatorname{Aut}^0(X)$ -equivariant and therefore it induces an exact sequence

• • • • • • • • • • • •

If a general fiber of the del Pezzo fibration $\pi: X \to \mathbb{P}^1$ is \mathbb{P}^2 blown-up at three points or more, then $\operatorname{Aut}^0(X)$ is an algebraic torus.

Idea of the proof.

By Blanchard's lemma [1956], the morphism $\pi \colon X \to \mathbb{P}^1$ is $\operatorname{Aut}^0(X)$ -equivariant and therefore it induces an exact sequence

$$1 \to \operatorname{Aut}^0(X)_{\mathbb{P}^1} \to \operatorname{Aut}^0(X) \to H \to 1,$$

where $H \subseteq \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}^0(X)_{\mathbb{P}^1}$ acts trivially on \mathbb{P}^1 .

э

(日)

If a general fiber of the del Pezzo fibration $\pi: X \to \mathbb{P}^1$ is \mathbb{P}^2 blown-up at three points or more, then $\operatorname{Aut}^0(X)$ is an algebraic torus.

Idea of the proof.

By Blanchard's lemma [1956], the morphism $\pi \colon X \to \mathbb{P}^1$ is $\operatorname{Aut}^0(X)$ -equivariant and therefore it induces an exact sequence

$$1 \to \operatorname{Aut}^0(X)_{\mathbb{P}^1} \to \operatorname{Aut}^0(X) \to H \to 1,$$

where $H \subseteq \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}^0(X)_{\mathbb{P}^1}$ acts trivially on \mathbb{P}^1 . We verify that H must fix at least two points in \mathbb{P}^1 , so it is contained in \mathbb{G}_m .

3

A D N A B N A B N A B N

If a general fiber of the del Pezzo fibration $\pi: X \to \mathbb{P}^1$ is \mathbb{P}^2 blown-up at three points or more, then $\operatorname{Aut}^0(X)$ is an algebraic torus.

Idea of the proof.

By Blanchard's lemma [1956], the morphism $\pi: X \to \mathbb{P}^1$ is $\operatorname{Aut}^0(X)$ -equivariant and therefore it induces an exact sequence

$$1 \to \operatorname{Aut}^0(X)_{\mathbb{P}^1} \to \operatorname{Aut}^0(X) \to H \to 1,$$

where $H \subseteq \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}^0(X)_{\mathbb{P}^1}$ acts trivially on \mathbb{P}^1 . We verify that H must fix at least two points in \mathbb{P}^1 , so it is contained in \mathbb{G}_m . Also, $\operatorname{Aut}^0(X)_{\mathbb{P}^1} \subseteq \operatorname{Aut}(X_{\overline{K}})$, which is either finite or an extension of a finite group with \mathbb{G}_m^2 .

3

イロト イボト イヨト イヨト

If a general fiber of the del Pezzo fibration $\pi: X \to \mathbb{P}^1$ is \mathbb{P}^2 blown-up at three points or more, then $\operatorname{Aut}^0(X)$ is an algebraic torus.

Idea of the proof.

By Blanchard's lemma [1956], the morphism $\pi: X \to \mathbb{P}^1$ is $\operatorname{Aut}^0(X)$ -equivariant and therefore it induces an exact sequence

$$1 \to \operatorname{Aut}^0(X)_{\mathbb{P}^1} \to \operatorname{Aut}^0(X) \to H \to 1,$$

where $H \subseteq \operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}^0(X)_{\mathbb{P}^1}$ acts trivially on \mathbb{P}^1 . We verify that H must fix at least two points in \mathbb{P}^1 , so it is contained in \mathbb{G}_m . Also, $\operatorname{Aut}^0(X)_{\mathbb{P}^1} \subseteq \operatorname{Aut}(X_{\overline{K}})$, which is either finite or an extension of a finite group with \mathbb{G}_m^2 . This implies that $\operatorname{Aut}^0(X)$ is contained in \mathbb{G}_m^3 . \Box

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Case of Mori del Pezzo fibrations: conclusion

= 990

イロト 不得 トイヨト イヨト

All tori of dimension $d \in \{1, 2, 3\}$ are conjugate in $Bir(\mathbb{P}^3)$. In particular, they are all conjugate to a strict subgroup of $Aut(\mathbb{P}^3) = PGL_4(\mathbb{C})$.

All tori of dimension $d \in \{1, 2, 3\}$ are conjugate in $Bir(\mathbb{P}^3)$. In particular, they are all conjugate to a strict subgroup of $Aut(\mathbb{P}^3) = PGL_4(\mathbb{C})$.

Consequence: If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^2 nor $\mathbb{P}^1 \times \mathbb{P}^1$, then $\operatorname{Aut}^0(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}(\mathbb{P}^3)$.

All tori of dimension $d \in \{1, 2, 3\}$ are conjugate in $Bir(\mathbb{P}^3)$. In particular, they are all conjugate to a strict subgroup of $Aut(\mathbb{P}^3) = PGL_4(\mathbb{C})$.

Consequence: If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^2 nor $\mathbb{P}^1 \times \mathbb{P}^1$, then $\operatorname{Aut}^0(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}(\mathbb{P}^3)$. Therefore, it remains two cases to consider:

All tori of dimension $d \in \{1, 2, 3\}$ are conjugate in $Bir(\mathbb{P}^3)$. In particular, they are all conjugate to a strict subgroup of $Aut(\mathbb{P}^3) = PGL_4(\mathbb{C})$.

Consequence: If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^2 nor $\mathbb{P}^1 \times \mathbb{P}^1$, then $\operatorname{Aut}^0(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}(\mathbb{P}^3)$. Therefore, it remains two cases to consider:

• a general fiber of π is \mathbb{P}^2 , then we can reduce to the case where $X \to \mathbb{P}^1$ is a (decomposable) \mathbb{P}^2 -bundle over \mathbb{P}^1 ; or

All tori of dimension $d \in \{1, 2, 3\}$ are conjugate in $Bir(\mathbb{P}^3)$. In particular, they are all conjugate to a strict subgroup of $Aut(\mathbb{P}^3) = PGL_4(\mathbb{C})$.

Consequence: If $\pi: X \to \mathbb{P}^1$ is a Mori del Pezzo fibration whose a general fiber is neither \mathbb{P}^2 nor $\mathbb{P}^1 \times \mathbb{P}^1$, then $\operatorname{Aut}^0(X)$ is conjugate to a strict subgroup of $\operatorname{Aut}(\mathbb{P}^3)$. Therefore, it remains two cases to consider:

- a general fiber of π is \mathbb{P}^2 , then we can reduce to the case where $X \to \mathbb{P}^1$ is a (decomposable) \mathbb{P}^2 -bundle over \mathbb{P}^1 ; or
- a general fiber of π is $\mathbb{P}^1 \times \mathbb{P}^1$, then we reduce to an element of the continuous family of quadric fibrations over \mathbb{P}^1 mentioned earlier.

・ロト ・ 同ト ・ ヨト ・ ヨト

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < □> < □> ○ < ○

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

A D F A B F A B F A B

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

• By the work of Sarkisov [1982], we can reduce to the case where $\pi: X \to Y$ is a *standard conic bundle* over the surface Y.

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

 By the work of Sarkisov [1982], we can reduce to the case where π: X → Y is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a P²-bundle over Y.

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where π: X → Y is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a P²-bundle over Y.
- We verify that:

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where π: X → Y is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a P²-bundle over Y.
- We verify that:
 - if the generic fiber of π is \mathbb{P}^1 , then π is actually a \mathbb{P}^1 -bundle over Y; and that

An overview of the case of Mori \mathbb{P}^1 -fibrations

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where π: X → Y is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a P²-bundle over Y.
- We verify that:
 - if the generic fiber of π is \mathbb{P}^1 , then π is actually a \mathbb{P}^1 -bundle over Y; and that
 - If the generic fiber of π is not P¹, then Aut⁰(X) is again an algebraic torus.

An overview of the case of Mori \mathbb{P}^1 -fibrations

We now consider the case where $\pi \colon X \to Y$ is a Mori \mathbb{P}^1 -fibration over a rational surface.

- By the work of Sarkisov [1982], we can reduce to the case where π: X → Y is a standard conic bundle over the surface Y. This means that X and Y are smooth, and that π is induced by the inclusion of some quadric into a P²-bundle over Y.
- We verify that:
 - if the generic fiber of π is \mathbb{P}^1 , then π is actually a \mathbb{P}^1 -bundle over Y; and that
 - if the generic fiber of π is not P¹, then Aut⁰(X) is again an algebraic torus.
- When π: X → Y is a P¹-bundle, we have a *descent lemma* to reduce to the case where Y is a minimal smooth rational surface, i.e. Y is P², P¹ × P¹, or F_k with k ≥ 2.

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

It remains to study the automorphism groups of

- the \mathbb{P}^1 -bundles over the minimal smooth rational surfaces;
- \bullet the $\mathbb{P}^2\text{-bundles}$ and the quadric fibrations over $\mathbb{P}^1;$ and of
- the rational Fano threefolds of Picard rank 1 with terminal singularities.

It remains to study the automorphism groups of

- the ℙ¹-bundles over the minimal smooth rational surfaces;
- \bullet the $\mathbb{P}^2\text{-bundles}$ and the quadric fibrations over $\mathbb{P}^1;$ and of
- the rational Fano threefolds of Picard rank 1 with terminal singularities.

Then we have to determine which ones yield maximal connected algebraic subgroups of $Bir(\mathbb{P}^3)$ and which ones are conjugate in $Bir(\mathbb{P}^3)$.

It remains to study the automorphism groups of

- the \mathbb{P}^1 -bundles over the minimal smooth rational surfaces;
- \bullet the $\mathbb{P}^2\text{-bundles}$ and the quadric fibrations over $\mathbb{P}^1;$ and of
- the rational Fano threefolds of Picard rank 1 with terminal singularities.

Then we have to determine which ones yield maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3)$ and which ones are conjugate in $\operatorname{Bir}(\mathbb{P}^3)$.

The main tool for this last step is the *equivariant Sarkisov program* for threefolds (whose validity follows from the work of Corti [1995], for the dimension 3, and of Floris [2020], for the dimension \geq 3).

・ロト ・ 同ト ・ ヨト ・ ヨト

Some open questions

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

• Can we extend the previous classification to arbitrary algebraically closed base fields instead of $\mathbb{C}?$

э

< □ > < 同 > < 回 > < 回 > < 回 >

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of $\mathbb{C}?$
- What are the (possibly disconnected) maximal algebraic subgroups of Bir(ℙ³)? (The case of Bir(ℙ²) was addressed by Blanc in 2009.)

イロト イヨト イヨト ・

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of $\mathbb{C}?$
- What are the (possibly disconnected) maximal algebraic subgroups of Bir(ℙ³)? (The case of Bir(ℙ²) was addressed by Blanc in 2009.)
- Let X be a non-rational threefold such that Bir(X) is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of Bir(X)?

イロト イヨト イヨト ・

- Can we extend the previous classification to arbitrary algebraically closed base fields instead of $\mathbb{C}?$
- What are the (possibly disconnected) maximal algebraic subgroups of Bir(ℙ³)? (The case of Bir(ℙ²) was addressed by Blanc in 2009.)
- Let X be a non-rational threefold such that Bir(X) is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of Bir(X)?
- What are the maximal connected algebraic subgroups of Bir(ℙⁿ) when n ≥ 4? Is there a pattern? Is any connected algebraic subgroup of Bir(ℙⁿ) always contained into a maximal one?

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Thank you for your attention!

Ronan Terpereau

University of Burgundy (Dijon, France)

September 17, 2020

3

A D N A B N A B N A B N