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Motivation and question

We work over the field of complex numbers C.

Goal: study the Cremona group Bir(Pn), which is the group of birational
transformations of the n-dimensional projective space over C.

If n = 1, then Bir(P1) = Aut(P1) = PGL2(C).

But if n ≥ 2, then Bir(Pn) is neither an algebraic group nor an
ind-algebraic group (i.e. an ”infinite dimensional algebraic group”).

However, Bir(Pn) contains algebraic subgroups. For instance, it contains
all the Aut0(X ) with X a rational projective n-fold.
(In fact Bir(Pn) contains ϕAut0(X )ϕ−1 with ϕ : X 99K Pn.)

Question: What are the (maximal) connected algebraic subgroups of
Bir(Pn) when n ≥ 2?
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Strategy to answer the question

Let G be a connected algebraic subgroup of Bir(Pn).

0 Non-essential observation: G must be linear.
This follows from the Nishi-Matsumura theorem [1963] and the
Chevalley’s structure theorem (Barsotti [1955] and Rosenlicht [1956]).

1 Apply the regularization theorem of Weil [1955]:
There exist a smooth rational n-fold X1 and a birational map
ϕ1 : Pn 99K X1 such that ϕ1Gϕ

−1
1 ⊆ Aut0(X1).

2 Compactify G -equivariantly X1 (Sumihiro [1974]) to obtain a rational
projective n-fold ι : X1 ↪→ X2 such that ϕ2Gϕ

−1
2 ⊆ Aut0(X2) with

ϕ2 = ι ◦ ϕ1.

3 Resolve G -equivariantly the singularities of X2 (Kollár [2007]) to
obtain a rational smooth projective n-fold X3 such that
ϕ3Gϕ

−1
3 ⊆ Aut0(X3) with ϕ3 : Pn 99K X3 a birational map.
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Strategy to answer the question

Definition (Mori fibration)

A Mori fibration π : X → Y is a dominant projective morphism between
normal projective varieties such that

π∗(OX ) = OY and dim(Y ) < dim(X );

X is Q-factorial with terminal singularities; and

ω∨X is π-ample and the relative Picard number ρ(X/Y ) is 1.

4 Apply a Minimal Model Program to X3 to get a Mori fibration
π : X → Y such that ϕGϕ−1 ⊆ Aut0(X ) for some birational map
ϕ : Pn 99K X . Moreover, by Blanchard’s lemma [1956], the group G
acts also on Y and π is G -equivariant.

Partial conclusion: The connected algebraic subgroups of Bir(Pn) are
those acting biregularly on rational Mori fiber spaces.
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Warm-up: case n = 2

Let us apply the previous strategy to determine the maximal connected
algebraic subgroups of Bir(P2).

Definition (Hirzebruch surfaces)

Let k be a non-negative integer. The Hirzebruch surface Fk is the
P1-bundle over P1 defined by Fk = P(OP1(−k)⊕OP1).

The Hirzebruch surfaces, together with P2, are precisely the rational Mori
fiber spaces in dimension 2.

Proposition (Case n = 2, Enriques [1893])

Any connected algebraic subgroup of Bir(P2) is conjugate to a subgroup
of Aut(P2), Aut0(P1 × P1) or Aut(Fk) with k ≥ 2. Moreover, these
algebraic subgroups are maximal in Bir(P2), and so any connected
algebraic subgroup of Bir(P2) is contained into a maximal one.
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Case n = 3

A full classification of the maximal connected algebraic subgroups of
Bir(P3) was obtained by Umemura and Mukai in a series of six papers
(about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of Bir(P3) is conjugate to a subgroup of
one of the following maximal connected algebraic subgroups of Bir(P3):

Aut(P3), Aut(Q3), Aut(V5), Aut(V22), Aut0(P1 × P1 × P1),
Aut(P1 × P2), Aut0(P(TP2));

8 discrete families of P1-bundles and P2-bundles depending on 1 or 2
parameters (e.g. Aut(P1 × Fk), Aut(P(OP2(−k)⊕OP2)),
Aut(P(OP1(−k1)⊕OP1(−k2)⊕OP1)) etc); or

1 continuous family of automorphism groups of smooth quadric
fibrations over P1.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



Case n = 3

A full classification of the maximal connected algebraic subgroups of
Bir(P3) was obtained by Umemura and Mukai in a series of six papers
(about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of Bir(P3) is conjugate to a subgroup of
one of the following maximal connected algebraic subgroups of Bir(P3):

Aut(P3), Aut(Q3), Aut(V5), Aut(V22), Aut0(P1 × P1 × P1),
Aut(P1 × P2), Aut0(P(TP2));

8 discrete families of P1-bundles and P2-bundles depending on 1 or 2
parameters (e.g. Aut(P1 × Fk), Aut(P(OP2(−k)⊕OP2)),
Aut(P(OP1(−k1)⊕OP1(−k2)⊕OP1)) etc); or

1 continuous family of automorphism groups of smooth quadric
fibrations over P1.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



Case n = 3

A full classification of the maximal connected algebraic subgroups of
Bir(P3) was obtained by Umemura and Mukai in a series of six papers
(about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of Bir(P3) is conjugate to a subgroup of
one of the following maximal connected algebraic subgroups of Bir(P3):

Aut(P3), Aut(Q3), Aut(V5), Aut(V22), Aut0(P1 × P1 × P1),
Aut(P1 × P2), Aut0(P(TP2));

8 discrete families of P1-bundles and P2-bundles depending on 1 or 2
parameters (e.g. Aut(P1 × Fk), Aut(P(OP2(−k)⊕OP2)),
Aut(P(OP1(−k1)⊕OP1(−k2)⊕OP1)) etc); or

1 continuous family of automorphism groups of smooth quadric
fibrations over P1.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



Case n = 3

A full classification of the maximal connected algebraic subgroups of
Bir(P3) was obtained by Umemura and Mukai in a series of six papers
(about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of Bir(P3) is conjugate to a subgroup of
one of the following maximal connected algebraic subgroups of Bir(P3):

Aut(P3), Aut(Q3), Aut(V5), Aut(V22), Aut0(P1 × P1 × P1),
Aut(P1 × P2), Aut0(P(TP2));

8 discrete families of P1-bundles and P2-bundles depending on 1 or 2
parameters (e.g. Aut(P1 × Fk), Aut(P(OP2(−k)⊕OP2)),
Aut(P(OP1(−k1)⊕OP1(−k2)⊕OP1)) etc); or

1 continuous family of automorphism groups of smooth quadric
fibrations over P1.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



Case n = 3

A full classification of the maximal connected algebraic subgroups of
Bir(P3) was obtained by Umemura and Mukai in a series of six papers
(about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of Bir(P3) is conjugate to a subgroup of
one of the following maximal connected algebraic subgroups of Bir(P3):

Aut(P3), Aut(Q3), Aut(V5), Aut(V22), Aut0(P1 × P1 × P1),
Aut(P1 × P2), Aut0(P(TP2));

8 discrete families of P1-bundles and P2-bundles depending on 1 or 2
parameters (e.g. Aut(P1 × Fk), Aut(P(OP2(−k)⊕OP2)),
Aut(P(OP1(−k1)⊕OP1(−k2)⊕OP1)) etc); or

1 continuous family of automorphism groups of smooth quadric
fibrations over P1.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



Case n = 3

A full classification of the maximal connected algebraic subgroups of
Bir(P3) was obtained by Umemura and Mukai in a series of six papers
(about 250 p.) published between 1980 and 1988.

Theorem (Umemura [1980-1988] and Mukai-Umemura [1983])

Any connected algebraic subgroup of Bir(P3) is conjugate to a subgroup of
one of the following maximal connected algebraic subgroups of Bir(P3):

Aut(P3), Aut(Q3), Aut(V5), Aut(V22), Aut0(P1 × P1 × P1),
Aut(P1 × P2), Aut0(P(TP2));

8 discrete families of P1-bundles and P2-bundles depending on 1 or 2
parameters (e.g. Aut(P1 × Fk), Aut(P(OP2(−k)⊕OP2)),
Aut(P(OP1(−k1)⊕OP1(−k2)⊕OP1)) etc); or

1 continuous family of automorphism groups of smooth quadric
fibrations over P1.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



New question (in the case n = 3)

Question: Why do so few Mori fibrations π : X → Y appear in this list?

There are three cases to consider:

If dim(Y ) = 0, then X is a rational Fano threefold with terminal
singularities and ρ(X ) = 1. The smooth ones are P3, Q3, V5, V22,
but there are also singular ones, e.g. P(1, 1, 1, 2) or P(1, 1, 2, 3).

If dim(Y ) = 1, then X → Y = P1 is a Mori del Pezzo fibration over
P1, i.e. a general fiber of π is a del Pezzo surface.
(Recall that the smooth del Pezzo surfaces are P2, P1 × P1, and P2

blown-up at r points in general position with 1 ≤ r ≤ 8.)

If dim(Y ) = 2, then X → Y is a Mori P1-fibration over a rational
surface.
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Case of Mori del Pezzo fibrations: a first result

Lemma (well-known, see Mori [1982] for the smooth case)

If π : X → P1 is a Mori del Pezzo fibration, then a general fiber of π
cannot be P2 blown-up at one or two points.

Proof (by reductio ad absurdum).

Assume that a general fiber of π is P2 blown-up at one point.
Let K = C(P1) and let XK ' BLp(P2

K
) be the geometric generic fiber of

π. Then Pic(XK ) = Z 〈L,E 〉 ' Z2, with L a generic line and E the
exceptional divisor. Also Gal(K/K ) fixes E and the canonical class

−3L + E , hence Pic(XK )Gal(K/K) is a sublattice of rank 2. Thus

1 = ρ(X/P1) = rg(Pic(XK )) = rg(Pic(XK )Gal(K/K)) = rg(Z2) = 2.

The proof for P2 blown-up at two points is similar.
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Case of Mori del Pezzo fibrations: a second result

Proposition (BFT)

If a general fiber of the del Pezzo fibration π : X → P1 is P2 blown-up at
three points or more, then Aut0(X ) is an algebraic torus.

Idea of the proof.

By Blanchard’s lemma [1956], the morphism π : X → P1 is
Aut0(X )-equivariant and therefore it induces an exact sequence

1→ Aut0(X )P1 → Aut0(X )→ H → 1,

where H ⊆ Aut(P1) = PGL2(C) and Aut0(X )P1 acts trivially on P1.
We verify that H must fix at least two points in P1, so it is contained in
Gm. Also, Aut0(X )P1 ⊆ Aut(XK ), which is either finite or an extension of
a finite group with G2

m. This implies that Aut0(X ) is contained in G3
m.
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Case of Mori del Pezzo fibrations: conclusion

Proposition (well-known, Popov [2013])

All tori of dimension d ∈ {1, 2, 3} are conjugate in Bir(P3). In particular,
they are all conjugate to a strict subgroup of Aut(P3) = PGL4(C).

Consequence: If π : X → P1 is a Mori del Pezzo fibration whose a general
fiber is neither P2 nor P1 × P1, then Aut0(X ) is conjugate to a strict
subgroup of Aut(P3). Therefore, it remains two cases to consider:

a general fiber of π is P2, then we can reduce to the case where
X → P1 is a (decomposable) P2-bundle over P1; or

a general fiber of π is P1 × P1, then we reduce to an element of the
continuous family of quadric fibrations over P1 mentioned earlier.
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An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that
I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic

torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that
I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic

torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .

This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that
I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic

torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that
I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic

torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:

I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;
and that

I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic
torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that

I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic
torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that
I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic

torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



An overview of the case of Mori P1-fibrations

We now consider the case where π : X → Y is a Mori P1-fibration over a
rational surface.

By the work of Sarkisov [1982], we can reduce to the case where
π : X → Y is a standard conic bundle over the surface Y .
This means that X and Y are smooth, and that π is induced by the
inclusion of some quadric into a P2-bundle over Y .

We verify that:
I if the generic fiber of π is P1, then π is actually a P1-bundle over Y ;

and that
I if the generic fiber of π is not P1, then Aut0(X ) is again an algebraic

torus.

When π : X → Y is a P1-bundle, we have a descent lemma to reduce
to the case where Y is a minimal smooth rational surface, i.e. Y is
P2, P1 × P1, or Fk with k ≥ 2.

Ronan Terpereau University of Burgundy (Dijon, France) September 17, 2020



What remains to be done

It remains to study the automorphism groups of

the P1-bundles over the minimal smooth rational surfaces;

the P2-bundles and the quadric fibrations over P1; and of

the rational Fano threefolds of Picard rank 1 with terminal
singularities.

Then we have to determine which ones yield maximal connected algebraic
subgroups of Bir(P3) and which ones are conjugate in Bir(P3).

The main tool for this last step is the equivariant Sarkisov program for
threefolds (whose validity follows from the work of Corti [1995], for the
dimension 3, and of Floris [2020], for the dimension ≥ 3).
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Some open questions

Can we extend the previous classification to arbitrary algebraically
closed base fields instead of C?

What are the (possibly disconnected) maximal algebraic subgroups of
Bir(P3)? (The case of Bir(P2) was addressed by Blanc in 2009.)

Let X be a non-rational threefold such that Bir(X ) is not an
algebraic group. Can we apply the same strategy to determine the
maximal connected algebraic subgroups of Bir(X )?

What are the maximal connected algebraic subgroups of Bir(Pn)
when n ≥ 4? Is there a pattern? Is any connected algebraic subgroup
of Bir(Pn) always contained into a maximal one?
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Thank you for your attention!
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