27th August 2020

K-moduli stacks and K-moduli spaces of Fano varieties can be singular

Andrea Petracci (Freie Universität Berlin)

joint work with

Anne-Sophie Kaloghiros (Brunel University London)

Plan of the talk

- Fano varieties and their moduli/deformations
- Good moduli spaces and K-moduli
- An example where K-moduli have several branches
- An example where K-moduli is a fat point
/C
Fano: normal projective variety X with $-K_{X} \mathbb{Q}$-Cartier and ample
For $n \in \mathbb{Z}_{>1}$ and $V \in \mathbb{Q}>0$,
$\mathcal{M}_{n, V}^{\text {Fano }}=$ stack of Fano n-folds with anticanonical volume V
$\mathcal{M}_{n, V}^{\text {Fano }}:(\text { Schemes })^{\mathrm{op}} \longrightarrow$ (Groupoids)
甘T scheme
$\mathcal{M}_{n, V}^{\mathrm{Fano}}(T):=\left\{\begin{array}{c}\begin{array}{c}\mathcal{X} \rightarrow T \text { flat, proper, of finite presentation s.t. } \\ \bullet \text { fibres are Fano } n \text {-folds with volume } V \\ \bullet \text { Kollár condition / Q-Gorenstein }(\mathrm{qG}) \text { families }\end{array}\end{array}\right\}$

X Fano, $\operatorname{dim} X=n,\left(-K_{X}\right)^{n}=V \quad \rightsquigarrow \quad[X] \in \mathcal{M}_{n, V}^{\text {Fan }}(\mathbb{C})$.
The local structure of $\mathcal{M}_{n, V}^{F \text { arno }}$ at the point $[X]$ is controlled by the action of Put (X) on the functor of infinitesimal deformations of X : Def $_{X}:(\text { Fat points })^{\text {op }}=($ Local finite \mathbb{C}-algebras $) \longrightarrow$ (Sets)
$\operatorname{Def}_{X}(T):=\int\left\{\begin{array}{l}\frac{\mathcal{X} \rightarrow T \text { flat, proper, of finite type s.t. }}{\bullet \text { the closed fibre is } X}\end{array}\right.$
- Kollár condition / \mathbb{Q}-Gorenstein (qG) families
restriction of $M_{n, V}^{\operatorname{Fan}}$

$\mathbb{T}_{x}^{1}=\operatorname{Ext}^{1}\left(\Omega_{X}, \mathcal{O}_{X}\right)$ is the tangent space of $\operatorname{Def}_{X}=$
$\operatorname{Def}_{x}\left(\mathbb{C}[t] /\left(t^{2}\right)\right)$
$\mathbb{T}_{X}^{2}=\operatorname{Ext}^{2}\left(\Omega_{X}, \mathcal{O}_{X}\right)$ is an obstruction space of Def_{X}
- X smooth Fano $\Rightarrow \operatorname{Def}_{X}$ smooth

Proof: $n=\operatorname{dim} X . T_{X}=\Omega_{X}^{n-1} \otimes \omega_{X}^{\vee} \cdot \mathbb{T}_{X}^{2}=H^{2}\left(T_{X}\right) \stackrel{V}{=} 0$ by Kodaira-Nakano vanishing.

- $\operatorname{dim} X=2, X$ Fano with cyclic quotient singularities $\Rightarrow \operatorname{Def}_{X}$ smooth [Odaka-Spotti-Sun, Akhtar-Coates-Corti-Heuberger-Kasprzyk-Oneto-P.-Prince-Tveiten]
- $\operatorname{dim} X=3, X$ Fans with terminal singularities $\Rightarrow \operatorname{Def}_{X}$ smooth [Namikawa, Sano] $\quad d=8 \quad d P_{8} \hookrightarrow \mathbb{P}^{8} \quad \frac{\mathbb{C}[t]}{\left(t^{2}\right)}$

But:

$$
d P_{s}=\mathbb{F}_{1}
$$

- \exists obstructed Kano 3-folds with Gorenstein canonical singularities, e.g. the projective cone over $d P_{d} \hookrightarrow \mathbb{P}^{d}$ for $d \in\{8,7,6\}$ [Altman]
$d=6:$
$d P_{6} \rightarrow \mathbb{P}^{6}$$\frac{\left.\mathbb{C}\left[t_{1}, t_{2}, t_{3}\right]\right]}{\left(t_{1}, t_{2}, t_{1}, t_{3}\right)}$

\mathcal{M} algebraic stack of finite type over \mathbb{C}.
[Alper] A good moduli space for \mathcal{M} is a morphism $\phi: \mathcal{M} \rightarrow M$ such that
- M is an algebraic space,
- $\phi_{*}: \operatorname{QCoh}(\mathcal{M}) \rightarrow \mathrm{QCoh}(M)$ is exact,
- $\mathcal{O}_{M}=\phi_{*} \mathcal{O}_{\mathcal{M}}$.

Example

$A \mathbb{C}$-algebra of finite type with an action of a reductive group G. Then
$[\operatorname{Spec} A / G] \longrightarrow \operatorname{Spec} A^{G}$ is a good moduli space.
stack theoretic quotient
This is the local structure of every good moduli space (Luna étale slice theorem [Alper-Hall-Rydh])
[Tian, Donaldson, ...] There exist notions of K-semistable/K-polystable/K-stable kIt Fano variety

Related to existence of Kähler-Einstein metrics on Fano varieties Ksennistable open
$\mathcal{M}_{n, V}^{\mathrm{Kss}} \subseteq \mathcal{M}_{n, V}^{\mathrm{Fano}}$ substack made up of families $\mathcal{X} \rightarrow T$ where all fibres are kIt and K-semistable

Theorem (Alper, Blum, Fujita, Halpern-Leistner, Li, Liu, Odaka, Spotti, Sun, Wang, Xu, Zhuang, ...)
$\left(\mathcal{M}_{n, V}^{K s s}\right.$ is an algebraic stack of finite type over \mathbb{C} and admits a good moduli space $M_{n, V}^{K p s}$. which is a separated algebraic space of finite type over \mathbb{C}. Moreover, $M_{n, V}^{K p s}(\mathbb{C})$ is the set of K-polystable Fano n-folds with anticanonical volume V.

$$
{ }^{\prime} K \text {-moduli space }
$$

Question

What are the geometric properties of $\mathcal{M}_{n, V}^{\mathrm{Kss}}$ and of $\mathrm{M}_{n, V}^{\mathrm{Kps}}$? Are these smooth?

Example [Liu-Xu]

For cubic 3-folds: K-stability $=$ GIT-stability.

Goal of this talk

Via toric geometry, show examples where $\mathcal{M}_{n, V}^{\mathrm{Kss}}$ and $\mathrm{M}_{n, V}^{\mathrm{Kps}}$ are not unibranch or not reduced.

$$
\langle\cdot,\rangle: \begin{aligned}
\langle\prime & M \times N \rightarrow \underset{R}{Z} \\
& M_{\mathbb{R}} \times N_{\mathbb{R}} \rightarrow \mathbb{R}
\end{aligned}
$$

Q is the polar of P :

$$
Q=\left\{x \in M_{\mathbb{R}} \mid \forall y \in P,\langle x, y\rangle \geqslant-1\right\}
$$

$\Sigma=$ face fan of $P=$ normal fan of Q
$X=$ toric variety associated to Σ
Q is the moment polytope of $\left(X,-K_{X}\right)$

Theorem [Kaloghiros-P.]

- X is a K-polystable Fino 3 -fold with Gorenstein canonical singularities and degree $\underbrace{\left(-K_{X}\right)^{3}}_{\rightarrow \text { volume }}=12$.
- $\operatorname{Def}_{X} \simeq \operatorname{Spf} \mathbb{C}\left[\left[t_{1}, \ldots, t_{24}\right]\right] /\left(t_{1} t_{2}, t_{1} t_{3}, t_{4} t_{5}, t_{4} t_{6}\right)$.
- X deforms to the following 3 smooth Fano 3-folds as follows.

$$
\begin{array}{lccc}
\operatorname{dim} 22 \longrightarrow \text { On }\left(t_{1}=t_{4}=0\right) & \mathrm{MM}_{2-6} & \rho=2 & h^{1,2}=9 \\
\operatorname{dim} 21 \longrightarrow \text { On }\left(t_{1}=t_{5}=t_{6}=0\right) & V_{12} & \rho=1 & h^{1,2}=7 \\
\operatorname{On}\left(t_{2}=t_{3}=t_{4}=0\right) & V_{12} & \rho=1 & h^{1,2}=7 \\
\operatorname{dim} 20 \rightarrow \text { On }\left(t_{2}=t_{3}=t_{5}=t_{6}=0\right) & \mathrm{MM}_{3-1} & \rho=3 & h^{1,2}=8 \\
& & \uparrow \\
& & \text { Picard rank }
\end{array}
$$

P hexagonal prim or
Ingredients of the proof:

- the two hexagonal facets of P give two isolated singularities q_{1}, q_{2} which are the vertex of the affine cone over the anticanonical embedding of $d P_{6}$ into \mathbb{P}^{6}

$$
\operatorname{Def}_{q_{i}}=\operatorname{Spf} \frac{\left.\mathbb{C}\left[t_{1}, t_{2}, t_{3}\right]\right]}{\left(t_{1} t_{2}, t_{1}, t_{3}\right)}
$$

- Computation of $\mathbb{T}_{X}^{1}=\underline{H^{0}\left(\mathcal{T}_{X}^{1}\right)}$
- $\operatorname{Def}_{x} \rightarrow$ Def $_{g_{1}} \times \operatorname{Def}_{q_{2}}$ is smooth of relative dimension 18
forgetful Def $\simeq \mathbb{C}^{18} \times \operatorname{Spf} \frac{\left.\mathbb{C}\left[t_{1}, t_{2}, t_{0}\right]\right]}{\left(t_{1}, t_{2}, t_{1}, t_{3}\right)} \times \operatorname{spf} \frac{\mathbb{C}\left[t_{4}, t_{5}, t_{6}\right)}{\left(t_{4} t_{5}, t_{4} t_{6}\right)}$
- Computation with vanishing cycles to understand the topology of the 4 smoothing

Set $A=\mathbb{C}\left[\left[t_{1}, \ldots, t_{24}\right]\right] /\left(t_{1} t_{2}, t_{1} t_{3}, t_{4} t_{5}, t_{4} t_{6}\right)$ and $G=\operatorname{Aut}(X)=$ big towe $_{\left(\mathbb{C}^{*}\right)^{3}}^{>} \rtimes \underbrace{\left(D_{6} \rtimes C_{2}\right)}_{\operatorname{Aut}(P)}$.

$$
C_{2}=\mathbb{Z} / 2 \begin{aligned}
& \text { swapping } \\
& \text { top\& bottow in } P
\end{aligned}
$$

The local structure of the K -moduli stack and the K -moduli space at the point $[X]$ is

where Spec A^{G} has 3 irreducible components.

Theorem [Kaloghiros-P.]

X gives a non-smooth point in $\mathcal{M}_{3,12}^{\mathrm{Kss}}$ and in $\mathrm{M}_{3,12}^{\mathrm{Kps}}$. $\forall n \geq 4, X \times \mathbb{P}^{n-3}$ gives a non-smooth point in $\mathcal{M}_{n, V}^{\mathrm{Kss}}$ and in $\mathrm{M}_{n, V}^{\mathrm{Kps}}$, where $V=2 n(n-1)(n-2)^{n-2}$.

$\Sigma=$ face for of P
$X=$ tonic variety ass to Σ
Singularities of X :

- $2 \times \begin{gathered}\text { verterof } \\ \text { cone }\end{gathered}\left(\mathbb{F}_{1} \hookrightarrow \mathbb{P}^{8}\right)$
$\mathbb{G}[t] /\left(t^{2}\right)$
- $4 \times \frac{1}{3}(1,1,2)$
canonical cover is A^{3} qG-rigid, they don't contribute
- $2 \times C, \quad X$ has transverse $C \simeq \mathbb{P}^{1} \quad A_{1}$ sing along C $\tau_{x}^{1} \simeq O_{C}(-2)$ don't contribute to π_{x}^{1}

Theorem [Kaloghiros-P.]
X is a K -polystable Fano 3-fold with canonical singularities, degree $\left(-K_{X}\right)^{3}=\frac{44}{3}$, and $\operatorname{Def}_{X} \simeq \operatorname{Spf} \mathbb{C}\left[\left[t_{1}, t_{2}\right]\right] /\left(t_{1}^{2}, t_{2}^{2}\right)$.
$A=\mathbb{C}\left[t_{1}, t_{2}\right] /\left(t_{1}^{2}, t_{2}^{2}\right)$ and
$G=\operatorname{Aut}(X)=\left(\mathbb{C}^{*}\right)^{3} \rtimes\left(C_{2} \times C_{2}\right)$
$A^{G}=\mathbb{C}[t] /\left(t^{2}\right)$ torns $\operatorname{Ant}(P)$
Local structure:

Theorem [Kaloghiros-P.]
There exists a connected component of $M_{3,44 / 3}^{K p s}$ which is isomorphic to $\operatorname{Spec} \mathbb{C}[t] /\left(t^{2}\right)$.

Thanks for your attention!

