# Abelianisation of Meromorphic Connections

based on arXiv: 1902.03384 and work in progress with Marco Gualtieri

# Nikita Nikolaev



16 September 2021

## Online Nottingham Algebraic Geometry Seminar

- Let (X, D) := compact Riemann surface with divisor Require  $D \neq \emptyset$ ; and  $|D| \ge 3$  if  $X \cong \mathbb{P}^1$
- Goal: develop a correspondence between flat vector bundles on X and flat line bundles on an appropriate cover.
- i.e., express the analytic complexity of flat vector bundles in terms of algebraic geometry of complex curves.
- Procedure proposed by [Gaiotto-Moore-Neitzke] and [Neitzke-Hollands]. Intimately related to exact WKB analysis.

## Abelianisation of Higgs Bundles

- Recall: *Higgs bundle* on (X, D) is  $(\mathcal{E}, \phi)$  where
  - $\mathcal{E}$  = holomorphic vector bundle on X;
  - $\phi = \mathcal{O}_X$ -linear map  $\mathcal{E} \to \omega_X(\mathsf{D}) \otimes \mathcal{E}$  (i.e., twisted endomorphism a.k.a *Higgs field*).
- **①** Extract *spectral data* := coefficients of characteristic polynomial of  $\phi$ :

$$\mathfrak{s} = (\mathfrak{s}_1, \dots, \mathfrak{s}_n) \in \bigoplus_{i=1}^n \mathsf{H}^0_{\mathsf{X}} \Big( \omega_{\mathsf{X}}(\mathsf{D})^{\otimes i} \Big)$$

- **2** Twisted cotangent bundle  $\pi : \mathsf{T}_{\mathsf{X}}^{\vee}(\mathsf{D}) := \mathsf{tot}\left(\omega_{\mathsf{X}}(\mathsf{D})\right) \to \mathsf{X}$  has tautological one-form  $\eta$ . The characteristic polynomial is  $\chi := \eta^n + \mathfrak{s}_1 \eta^{n-1} + \dots + \mathfrak{s}_n \in \mathsf{H}^0_{\mathsf{T}_{\mathsf{Y}}^{\vee}(\mathsf{D})}\left(\pi^* \omega_{\mathsf{X}}(\mathsf{D})^{\otimes n}\right)$
- **3** Get *spectral curve*  $\Sigma := \operatorname{Zero}(\chi) \hookrightarrow \mathsf{T}_{\mathsf{X}}^{\vee}(\mathsf{D}).$
- For generic  $\mathfrak{s}$ ,  $\Sigma$  is smooth and  $\pi: \Sigma \to X$  is n: 1 cover with simple ramification.
- $g_{\Sigma} = n^2(g_{\mathsf{X}} 1) + \frac{1}{2}n(n-1)|\mathsf{D}| + 1.$
- $\eta$  defines meromorphic one-form on  $\Sigma$  with poles along  $\Delta := \pi^* \mathsf{D}$ .

# Theorem (Hitchin, Beauville-Narasimhan-Ramanan)

$$\begin{cases} \text{Higgs bundles } (\mathcal{E}, \phi) \text{ on } (\mathsf{X}, \mathsf{D}) \\ \text{with spectral data } \mathfrak{s} \end{cases} \xleftarrow{^{1:1}} \begin{cases} \text{line bundles } \mathcal{L} \\ \text{on } \Sigma \end{cases} = \begin{cases} \text{Higgs line bundles} \\ (\mathcal{L}, \eta) \text{ on } (\Sigma, \Delta) \\ \eta : \mathcal{L} \to \omega_{\Sigma}(\Delta) \otimes \mathcal{L} \end{cases}$$

**Construction**:  $\longrightarrow$ :  $\mathcal{L}$  ":="  $ker(\pi^*\phi - \eta)$ ;  $\leftarrow$ :  $\mathcal{E} := \pi_*\mathcal{L}$  and  $\phi := \pi_*\eta$ .

- Goal: generalise this procedure from Higgs bundles to flat bundles.
- *Meromorphic connection* on (X, D) is  $(\mathcal{E}, \nabla)$  where
  - $\mathcal{E}$  = holomorphic vector bundle on X;
  - $\nabla = a \underline{\mathbb{C}}$ -linear map  $\mathcal{E} \to \omega_X(D) \otimes \mathcal{E}$  satisfying Leibniz rule:

$$\nabla(fe) = f\nabla e + \mathrm{d}f \otimes e \qquad \forall f \in \mathcal{O}_{\mathsf{X}}, e \in \mathcal{E}$$

- i.e.:  $\nabla = 1^{st}$ -order meromorphic differential operator on sections of  $\mathcal{E}$
- Locally,  $\nabla = d + \phi$  where  $\phi =$  Higgs field on  $\mathcal{E}$
- If  $p \in D$  has multiplicity  $m \ge 1$  and z(p) = 0, then  $\nabla = d + A(z)z^{-m} dz$ where A(z) = holomorphic matrix
- Locally, the same as a singular ODE  $\nabla_{\partial_z} e(z) = \partial_z e(z) + A(z)z^{-m}e(z) = 0.$

• Want some statement of the form

$$\left\{ \begin{array}{c} \text{meromorphic connections} \\ (\mathcal{E}, \nabla) \text{ on } (\mathsf{X}, \mathsf{D}) \\ \text{ of rank } n \end{array} \right\} " \qquad \stackrel{1:1}{\longleftrightarrow} \qquad " \left\{ \begin{array}{c} \text{meromorphic connections} \\ (\mathcal{L}, \partial) \text{ on } (\Sigma, \Delta) \\ \text{ of rank } 1 \end{array} \right\} "$$

#### **Problems:**

- **1** connections don't have invariant notion of eigenvalues, so what is  $\Sigma$ ?
- 2 connections don't have invariant notion of eigenvectors, so what replaces  $\mathcal{L}$ ?
- (most serious!) direct image  $\pi_*$  cannot be the right thing because any  $\pi_*\partial$  necessarily has non-trivial singularities along branch locus of special type given by the permutation representation of  $\pi$ .

#### **Polar Spectral Data and Levelt Filtrations**

- We fix generic **polar spectral data** for connections along D:
  - Restricting  $(\mathcal{E},\nabla)$  to the subscheme  $\mathsf{D}\subset\mathsf{X}$  gives  $\mathcal{O}_\mathsf{D}\text{-linear}$  map

 $\nabla_{\mathsf{D}}: \mathcal{E}_{\mathsf{D}} o \omega_{\mathsf{X}}(\mathsf{D})|_{\mathsf{D}} \otimes \mathcal{E}_{\mathsf{D}}$ 

- i.e.,  $(\mathcal{E}_D, \nabla_D) =$  holomorphic Higgs bundle on D (the *polar Higgs bundle*)
- Get well-defined *polar spectral data*  $\mathfrak{s}_{\mathsf{D}} \in \bigoplus_{i=1}^{n} \mathsf{H}_{\mathsf{D}}^{0} (\omega_{\mathsf{X}}(\mathsf{D})|_{\mathsf{D}}^{\otimes i}).$
- For example,  $\nabla_{D}$  = residue if D is reduced.
- Main Analytic Fact (existence of *Levelt filtrations*): if s<sub>D</sub> is generic, (E, ∇) is locally filtered near D by growth rates of flat sections:

$$\mathcal{E}^{ullet}_{\mathsf{p}} = \left(\mathcal{E}^1_{\mathsf{p}} \subset \cdots \subset \mathcal{E}^n_{\mathsf{p}} = \mathcal{E}_{\mathsf{p}}\right) \qquad ext{with} \qquad 
abla_{\mathsf{p}}(\mathcal{E}^k_{\mathsf{p}}) \subset \omega_{\mathsf{X}}(\mathsf{D}) \otimes \mathcal{E}^k_{\mathsf{p}}$$

• Locally near D, we obtain a natural diagonal connection

$$\operatorname{gr} \mathcal{E}^{\bullet}_{\mathsf{p}} = \mathcal{L}^{1}_{\mathsf{p}} \oplus \cdots \oplus \mathcal{L}^{n}_{\mathsf{p}} \quad \text{with} \quad \operatorname{gr} \nabla_{\mathsf{p}} = \partial^{1}_{\mathsf{p}} \oplus \cdots \oplus \partial^{n}_{\mathsf{p}}$$

• **Observation**: flat line bundles  $(\mathcal{L}_{p}^{k}, \partial_{p}^{k})$  are what replaces the spectral line bundle  $\mathcal{L}$ .

**1** Choose any smooth simply ramified cover  $\pi : \Sigma \to X$  of degree n with

$$\mathsf{Branch}(\pi) \cap \mathsf{D} = \varnothing \qquad \text{and} \qquad g_\Sigma = n^2 (g_\mathsf{X} - 1) + \tfrac{1}{2} n(n-1) |\mathsf{D}| + 1.$$

- For example, choose generic spectral data  $\mathfrak s$  which restricts to  $\mathfrak s_D$  along D.
- Aside: effectively, we are enriching our setting to the cartoonish diagram

$$\begin{array}{ccc} \mathfrak{M}(\mathsf{X},\mathcal{E},\nabla,\mathfrak{s}) & \longrightarrow & \mathfrak{M}(\mathsf{X},\mathcal{E},\nabla) \\ & & & \downarrow \\ & & & \downarrow \\ \mathfrak{M}(\mathsf{X},\mathfrak{s}) & \longrightarrow & \mathfrak{M}(\mathsf{X}) \end{array}$$

2 Idea: near each p ∈ D, lift piece (L<sup>k</sup><sub>p</sub>, ∂<sup>k</sup><sub>p</sub>) of gr(E<sup>•</sup><sub>p</sub>, gr ∇<sub>p</sub>) to k-th sheet of Σ above p. Need to choose combinatorial data.





- Fact:  $\widehat{\Sigma}$  is smooth and  $\widehat{\pi}: \widehat{\Sigma} \to \mathsf{X}$  is simply ramified with degree  $\frac{1}{2}n(n-1)$ .
- Also: Branch $(\hat{\pi}) = Branch(\pi)$ .
- If n = 2, then  $\vec{\Sigma} \cong \Sigma$  and  $\widehat{\Sigma} \cong X$ .
- If Σ = spectral curve with canonical one-form η, then Σ gets a one-form η := π<sup>\*</sup><sub>+</sub>η − π<sup>\*</sup><sub>-</sub>η, and Σ gets a quadratic differential q such that η<sup>2</sup> = q.

- Let  $\widehat{\mathsf{R}} := \mathsf{Ram}(\widehat{\pi})$  and  $\widehat{\mathsf{D}} := \widehat{\pi}^*\mathsf{D}$ .
- Choose a *Stokes graph*  $\widehat{\Gamma}$  on  $\widehat{\Sigma} :=$  bipartite squaregraph on  $\widehat{\Sigma}$  with vertices  $(\widehat{\mathsf{R}}, \widehat{\mathsf{D}})$  which is trivalent at each ramification point in  $\widehat{\mathsf{R}}$  (plus assumption along  $\widehat{\mathsf{D}}$  if D has higher multiplicity).



- For example, if 
   *q* = quadratic differential on Σ
   *x*, then generically Γ
   = locus of critical leaves of the horizontal foliation determined by *q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q*
- Amounts to choosing an ideal triangulation of  $\widehat{\Sigma}$ .

**6** Over each face of  $\widehat{\Gamma}$ ,  $(\mathcal{E}, \nabla)$  is filtered in two ways:  $\mathcal{E}_i^{\bullet\prime}, \mathcal{E}_i^{\bullet\prime\prime}$  coming from poles  $\bigcirc', \bigcirc''$ .



We say the Levelt filtrations of  $(\mathcal{E}, \nabla)$  are *generic wrt*  $\widehat{\Gamma}$  if for each face,  $\mathcal{E}_i^{\bullet \prime} \pitchfork \mathcal{E}_i^{\bullet \prime \prime}$ .

Key property: if the Levelt filtrations of (*E*, ∇) are generic wrt Γ, then we get canonical isomorphisms over each face:

$$\mathcal{E}_i \cong \operatorname{gr} \mathcal{E}_i^{\bullet \prime} \cong \operatorname{gr} \mathcal{E}_i^{\bullet \prime \prime}$$
 and  $\nabla_i \simeq \operatorname{gr} \nabla_i^{\bullet \prime} \simeq \operatorname{gr} \nabla_i^{\bullet \prime \prime}$ 

- O Use these identifications as gluing data for a rank-one meromorphic connection (L, ∂) over Σ with poles along Δ := π\*D as well as simple poles along R := Ram(π) with residues -1/2. Call these *branched connections* on (Σ, Δ).
- Polar spectral data  $\mathfrak{p}_{\Delta}$  of  $\partial$  along  $\Delta$  is the spectrum of the polar spectral data  $\mathfrak{s}_{D}$ .

# Theorem ([N] for n = 2; [Gualtieri-N] for $n \ge 2$ (to be confirmed))

There is an equivalence of categories (abelianisation):



Key point: the inverse equivalence π<sup>Γ</sup><sub>ab</sub> (*nonabelianisation*) is a deformation of the direct image functor π<sub>\*</sub>.

• An oriented double cover graph  $\vec{\Gamma}$  of  $\hat{\Gamma}$  on  $\vec{\Sigma}$  determines a canonical cocycle

$$\alpha \in \check{\mathsf{Z}}^1_{\vec{\Gamma}}\Big(\mathcal{H}om(\pi^*_-,\pi^*_+)\Big)$$

which induces a unique cocycle

$$A ":=" 1 + \vec{\pi}_* \alpha \in \check{\mathsf{Z}}^1_{\vec{\pi}_* \vec{\Gamma}} \Big( \mathcal{A}ut(\pi_*) \Big)$$

by completing scattering diagrams.

#### Abelianisation of h-Connections

- This construction extends to  $\hbar$ -connections: i.e.,  $(\mathcal{E}, \nabla)$  where
  - $\mathcal{E}$  = holomorphic vector bundle on X × S where S  $\subset \mathbb{C}_{\hbar}$ ;
  - ∇ = a O<sub>S</sub>-linear map E → ω<sub>X</sub>(D) ⊗ E satisfying ħ-twisted Leibniz rule:

$$\nabla(fe) = f\nabla e + \hbar \,\mathrm{d}f \otimes e \qquad \forall f \in \mathcal{O}_{\mathsf{X} \times \mathsf{S}}, e \in \mathcal{E}$$

For fixed ħ ≠ 0, these are meromorphic connections in usual sense;
 For ħ = 0, these are Higgs bundles.

Theorem ([N] for n = 2; [Gualtieri-N] for  $n \ge 2$  (to be confirmed))

$$\lim_{\hbar \to 0} \pi_{\widehat{\Gamma}}^{ab}(\hbar) = \begin{pmatrix} abelianisation \\ of Higgs bundles \end{pmatrix} \quad and \quad \lim_{\hbar \to 0} \pi_{ab}^{\widehat{\Gamma}}(\hbar) = \pi_*$$

In other words, given (*E*, ∇), let (*E*, φ) be the corresponding Higgs bundle, and (*L*, η) the corresponding Higgs line bundle. Then have a commutative diagram:

$$\begin{array}{ccc} (\mathcal{E}, \nabla) & \xrightarrow{\hbar \to 0} & (E, \phi) \\ \pi^{\mathrm{ab}}_{\widehat{\Gamma}} & & & & \downarrow \text{abelianisation} \\ f & & & & \downarrow \text{of Higgs bundles} \\ (\mathcal{L}, \partial) & \xrightarrow{\hbar \to 0} & (L, \eta) \end{array}$$

"I Thank you for your attention! "