Quantum theta bases

Travis Mandel

в

 [Fock-Goncharov]: Cluster algebras should have canonical bases satisfying nice positivity properties.

Outline

- [Fock-Goncharov]: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry (the Gross-Siebert program) ~~

Canonical "theta bases" for classical cluster algebras.

Outline

- [Fock-Goncharov]: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

 Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).

Outline

- [Fock-Goncharov]: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

- Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).
- ▶ [Davison-M]: GHKK arguments + DT theory ~→ Quantum theta bases.

Cluster algebras

Cluster algebras — certain combinatorially constructed commutative rings. **Fomin-Zelevinsky (2002)** — to create an algebraic/combinatorial framework for understanding Lusztig's dual canonical bases and total positivity for semisimple (quantum) groups.

Cluster algebras

Cluster algebras — certain combinatorially constructed commutative rings. **Fomin-Zelevinsky (2002)** — to create an algebraic/combinatorial framework for understanding Lusztig's dual canonical bases and total positivity for semisimple (quantum) groups.

Applications:

- Representation theory and quantum groups;
- (Higher) Teichmüller theory and Poisson geometry;
- DT-theory and quiver representations;
- Mirror symmetry;

▶ ...

Examples:

- Semisimple Lie groups;
- Grassmannians, other partial flag varieties, and Schubert varieties;
- Higher Teichmüller spaces;
- All log Calabi-Yau surfaces;

Fock-Goncharov:

Cluster varieties constructed by gluing together algebraic tori, called **clusters**, via certain birational maps called **mutations**.

nac

Fock-Goncharov:

Cluster varieties constructed by gluing together algebraic tori, called **clusters**, via certain birational maps called **mutations**.

Gross-Hacking-Keel: Interpret mutations as a blow-up followed by a blow-down.

Fock-Goncharov:

Cluster varieties constructed by gluing together algebraic tori, called **clusters**, via certain birational maps called **mutations**.

- Gross-Hacking-Keel: Interpret mutations as a blow-up followed by a blow-down.
- Upper cluster algebra ring of global regular functions on the cluster variety.

Fock-Goncharov:

Cluster varieties constructed by gluing together algebraic tori, called **clusters**, via certain birational maps called **mutations**.

- Gross-Hacking-Keel: Interpret mutations as a blow-up followed by a blow-down.
- Upper cluster algebra ring of global regular functions on the cluster variety.
- Cluster algebra subring generated by the "cluster monomials," i.e., elements which are monomials in some cluster.

A (skew-symmetric) **seed** is the data S = (N, I, E, B), where

- N is a finite-rank lattice;
- $E = \{e_i | i \in I\}$ is part of a basis for *N*, indexed by *I*;
- $B(\cdot, \cdot)$ is a \mathbb{Z} -valued skew-symmetric form on N.

A (skew-symmetric) **seed** is the data S = (N, I, E, B), where

- N is a finite-rank lattice;
- $E = \{e_i | i \in I\}$ is part of a basis for *N*, indexed by *I*;
- $B(\cdot, \cdot)$ is a \mathbb{Z} -valued skew-symmetric form on N.

<u>The dual lattice</u>: Denote $M = \text{Hom}(N, \mathbb{Z})$.

nac

A (skew-symmetric) **seed** is the data S = (N, I, E, B), where

- N is a finite-rank lattice;
- $E = \{e_i | i \in I\}$ is part of a basis for *N*, indexed by *I*;
- $B(\cdot, \cdot)$ is a \mathbb{Z} -valued skew-symmetric form on N.

<u>The dual lattice</u>: Denote $M = \text{Hom}(N, \mathbb{Z})$.

• Let $\langle \cdot, \cdot \rangle : N \oplus M \to \mathbb{Z}$ denote the dual pairing.

A (skew-symmetric) **seed** is the data S = (N, I, E, B), where

- N is a finite-rank lattice;
- $E = \{e_i | i \in I\}$ is part of a basis for *N*, indexed by *I*;
- $B(\cdot, \cdot)$ is a \mathbb{Z} -valued skew-symmetric form on N.

<u>The dual lattice</u>: Denote $M = \text{Hom}(N, \mathbb{Z})$.

- Let $\langle \cdot, \cdot \rangle : N \oplus M \to \mathbb{Z}$ denote the dual pairing.
- Let $v_i := B(e_i, \cdot) \in M$.

A (skew-symmetric) **seed** is the data S = (N, I, E, B), where

- N is a finite-rank lattice;
- $E = \{e_i | i \in I\}$ is part of a basis for *N*, indexed by *I*;
- $B(\cdot, \cdot)$ is a \mathbb{Z} -valued skew-symmetric form on N.

<u>The dual lattice</u>: Denote $M = \text{Hom}(N, \mathbb{Z})$.

- Let $\langle \cdot, \cdot \rangle : N \oplus M \to \mathbb{Z}$ denote the dual pairing.
- Let $v_i := B(e_i, \cdot) \in M$.
- Let M^{\oplus} denote the positive span of the v_i 's.

A (skew-symmetric) **seed** is the data S = (N, I, E, B), where

- N is a finite-rank lattice;
- $E = \{e_i | i \in I\}$ is part of a basis for *N*, indexed by *I*;
- $B(\cdot, \cdot)$ is a \mathbb{Z} -valued skew-symmetric form on N.

<u>The dual lattice</u>: Denote $M = Hom(N, \mathbb{Z})$.

- Let $\langle \cdot, \cdot \rangle : N \oplus M \to \mathbb{Z}$ denote the dual pairing.
- Let $v_i := B(e_i, \cdot) \in M$.
- Let M^{\oplus} denote the positive span of the v_i 's.
- To quantize, need a Z-valued skew-symmetric form Λ on M such that

$$\Lambda(\cdot, v_i) = e_i$$
 for all $i \in I$.

Quantum tori

Define the **classical torus algebra** (coordinate ring on $N \otimes \mathbb{C}^*$):

$$\mathcal{A}^{\mathcal{S}} := \mathbb{C}[\mathbf{M}] := \mathbb{C}[z^{u}|u \in \mathbf{M}]/\langle z^{u}z^{v} = z^{u+v}\rangle.$$

в

Quantum tori

Define the **classical torus algebra** (coordinate ring on $N \otimes \mathbb{C}^*$):

$$\mathcal{A}^{\mathcal{S}} := \mathbb{C}[\mathbf{M}] := \mathbb{C}[z^{u}|u \in \mathbf{M}]/\langle z^{u}z^{v} = z^{u+v}\rangle.$$

Use Λ to define the quantum torus algebra

$$\mathcal{A}_t^{\mathcal{S}}: \mathbb{C}_t^{\Lambda}[M] := \mathbb{C}[t^{\pm 1}][z^u | u \in M] / \langle z^u z^v = t^{\Lambda(u,v)} z^{u+v} \rangle.$$

Seed mutation

Given *S* and $j \in I$, define a new seed $\mu_j(S)$ by replacing each e_i with

$$oldsymbol{e}_i'\coloneqq \mu_j(oldsymbol{e}_i)\coloneqq \left\{egin{array}{ll} oldsymbol{e}_i+\max(0,oldsymbol{B}(oldsymbol{e}_i,oldsymbol{e}_j))oldsymbol{e}_i & ext{if } i\neq j\ -oldsymbol{e}_j & ext{if } i=j. \end{array}
ight.$$

while keeping the rest of the seed data the same.

Seed mutation

Given *S* and $j \in I$, define a new seed $\mu_j(S)$ by replacing each e_i with

$$oldsymbol{e}_i'\coloneqq \mu_j(oldsymbol{e}_i)\coloneqq \left\{egin{array}{cc} oldsymbol{e}_i+\max(oldsymbol{0},oldsymbol{B}(oldsymbol{e}_i,oldsymbol{e}_j))oldsymbol{e}_j & ext{if } i\neq j\ -oldsymbol{e}_j & ext{if } i=j. \end{array}
ight.$$

while keeping the rest of the seed data the same.

Classical cluster mutation:

$$\mu_j^{\mathcal{A}}: \mathcal{A}^{\mathcal{S}} \dashrightarrow \mathcal{A}^{\mu_j(\mathcal{S})}, \, z^m \mapsto z^m (1+z^{v_j})^{\langle e_j, m \rangle}.$$

Seed mutation

Given *S* and $j \in I$, define a new seed $\mu_j(S)$ by replacing each e_i with

$$oldsymbol{e}_i'\coloneqq \mu_j(oldsymbol{e}_i)\coloneqq \left\{egin{array}{cc} oldsymbol{e}_i+\max(oldsymbol{0},oldsymbol{B}(oldsymbol{e}_i,oldsymbol{e}_j))oldsymbol{e}_j & ext{if } i\neq j\ -oldsymbol{e}_j & ext{if } i=j. \end{array}
ight.$$

while keeping the rest of the seed data the same.

Classical cluster mutation:

$$\mu_j^{\mathcal{A}}: \mathcal{A}^{\mathcal{S}} \dashrightarrow \mathcal{A}^{\mu_j(\mathcal{S})}, \, z^m \mapsto z^m (1+z^{v_j})^{\langle e_j, m \rangle}.$$

The cluster variety ${\cal A}$ is constructed by gluing algebraic tori via all possible sequences of mutations as above.

Quantum binomial coefficients

▶ For $k \in \mathbb{Z}_{\geq 0}$, define

$$[k]_t := \frac{t^k - t^{-k}}{t - t^{-1}} = t^{-k+1} + t^{-k+3} + \ldots + t^{k-3} + t^{k-1} \in \mathbb{C}[t^{\pm 1}].$$

Note $\lim_{t\to 1} [k]_t = k$.

Define

$$[k]_t! := [k]_t [k-1]_t \cdots [2]_t [1]_t$$

For $r, k \in \mathbb{Z}_{\geq 0}$, $r \geq k$, define

$$\binom{r}{k}_t := \frac{[r]_t!}{[k]_t![r-k]_t!}$$

▶ 4 臣

Quantum cluster mutation

Recall $\mathcal{A}_t^{\mathcal{S}} := \mathbb{C}_t^{\wedge}[M]$, and recall

$$\mu_j^{\mathcal{A}}: z^m \mapsto z^m (1+z^{v_j})^{\langle e_j, m \rangle}$$

-

590

Quantum cluster mutation

Recall $\mathcal{A}_t^{\mathcal{S}} := \mathbb{C}_t^{\Lambda}[M]$, and recall

$$\mu_j^{\mathcal{A}}: z^m \mapsto z^m (1+z^{v_j})^{\langle e_j, m \rangle}.$$

For quantum mutation $\mu_j^{\mathcal{A}_t} : \mathcal{A}_t^{\mathcal{S}} \dashrightarrow \mathcal{A}_t^{\mu_j(\mathcal{S})}$, say that for $\langle e_j, m \rangle \ge 0$, we have

$$\mu_j^{\mathcal{A}_t}: z^m \mapsto \sum_{k=0}^{\langle \boldsymbol{e}_j, m \rangle} \begin{pmatrix} \langle \boldsymbol{e}_j, m \rangle \\ k \end{pmatrix}_t z^{m+kv_j}.$$

[Berenstein-Zelevinsky]

Quantum cluster mutation

Recall $\mathcal{A}_t^{\mathcal{S}} := \mathbb{C}_t^{\Lambda}[M]$, and recall

$$\mu_j^{\mathcal{A}}: z^m \mapsto z^m (1+z^{v_j})^{\langle e_j, m \rangle}.$$

For quantum mutation $\mu_j^{\mathcal{A}_t} : \mathcal{A}_t^{\mathcal{S}} \dashrightarrow \mathcal{A}_t^{\mu_j(\mathcal{S})}$, say that for $\langle e_j, m \rangle \ge 0$, we have

$$\mu_j^{\mathcal{A}_t}: z^m \mapsto \sum_{k=0}^{\langle e_j, m \rangle} \begin{pmatrix} \langle e_j, m \rangle \\ k \end{pmatrix}_t z^{m+kv_j}.$$

[Berenstein-Zelevinsky]

Typically defined in terms of conjugation by a quantum dilogarithm: $\mu_i^{A_t}(z^n) := \Psi_t(z^{v_j}) z^n \Psi_t(z^{v_j})^{-1}$ where

$$-\operatorname{Li}(-x;t) := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k[k]_t} x^k,$$
$$\Psi_t(z^{v_j}) := \exp(-\operatorname{Li}(-z^{v_j};t))$$

Quantum cluster varieties

• Given
$$\vec{j} = (j_1, \ldots, j_k) \in I^k$$
, let

$$\mu_{\vec{j}} = \mu_{j_k} \circ \cdots \circ \mu_{j_1}.$$

Denote $S_{\vec{j}} := \mu_{\vec{j}}(S)$.

Similarly define $\mu_{\vec{j}}^{\mathcal{A}_t}$.

Quantum cluster varieties

• Given
$$\vec{j} = (j_1, \ldots, j_k) \in I^k$$
, let

$$\mu_{\vec{j}} = \mu_{j_k} \circ \cdots \circ \mu_{j_1}.$$

Denote $S_{\vec{j}} := \mu_{\vec{j}}(S)$.

- Similarly define $\mu_{\vec{j}}^{\mathcal{A}_t}$.
- Define

$$\mathcal{A}^{\mathsf{up}}_t := \left\{ f \in \mathcal{A}^{S}_t \middle| \begin{array}{c} \mu^{\mathcal{A}_t}_{\vec{\jmath}}(f) \in \mathcal{A}^{S_{\vec{\jmath}}}_t \text{ for all tuples } \vec{\jmath} \text{ of indices in } I \right\}.$$

в

Positivity

Let $f \in \mathcal{A}_t^{up} \setminus \{0\}$.

- *f* is **universally positive** if each $\mu_{\vec{i}}^{\mathcal{A}_t}(f)$ has positive integer coefficients.
- f is atomic if it is universally positive, but is not a sum of two other universally positive elements.

Positivity

Let $f \in \mathcal{A}_t^{up} \setminus \{0\}$.

- *f* is **universally positive** if each $\mu_{\vec{i}}^{\mathcal{A}_t}(f)$ has positive integer coefficients.
- f is atomic if it is universally positive, but is not a sum of two other universally positive elements.
- A basis is **strongly positive** if the structure constants are non-negative.

The Fock-Goncharov conjecture

Conjecture (Fock-Goncharov)

The atomic elements are indexed by M and form a basis for A_t^{up} which includes all the quantum cluster monomials.

Note: atomic \implies strong positivity \implies universal positivity.

The Fock-Goncharov conjecture

Conjecture (Fock-Goncharov)

The atomic elements are indexed by M and form a basis for A_t^{up} which includes all the quantum cluster monomials.

Note: atomic \implies strong positivity \implies universal positivity.

This conjecture is not quite right:

- ► Lee-Li-Zelevinsky: The atomic elements may be linearly dependent.
- Gross-Hacking-Keel: \mathcal{X}^{up} is often just \mathbb{C} and so cannot have a basis indexed by *N*.

Modified Fock-Goncharov conjectures

Corrections to the Fock-Goncharov conjecture:

▶ Need more charts when defining universal positivity, not just the clusters.

Sometimes need to work with a formal completion:

$$\widehat{\mathcal{A}}_t := \mathbb{C}_t^{\Lambda}[M] \otimes_{\mathbb{C}_t^{\Lambda}[M^{\oplus}]} \mathbb{C}_t^{\Lambda}\llbracket M^{\oplus} \rrbracket.$$

Then the basis should only be a "topological basis."

Theorem: Quantum theta bases

Theorem (Davison-M)

Subject to the above modifications, the quantum Fock-Goncharov conjectures are true.

▶ In the classical limit, we recover [Gross-Hacking-Keel-Kontsevich].

Theorem: Quantum theta bases

Theorem (Davison-M)

Subject to the above modifications, the quantum Fock-Goncharov conjectures are true.

- ▶ In the classical limit, we recover [Gross-Hacking-Keel-Kontsevich].
- ► The "full Fock-Goncharov conjecture" holds in nice situations.

SYZ Mirror Symmetry

The geometric intuition behind [GHKK] comes from SYZ mirror symmetry.

Local coordinates from cylinders

- Mirror Y locally looks like $TB/T_{\mathbb{Z}}B$.
- Local algebraic coordinates on Y: $z_i := \exp[2\pi i(dy_i + iy_i)]$.

Global coordinates from holomorphic disks

$$\vartheta_{p,Q} := \sum_{\Gamma} \exp(2\pi i (dy_{\Gamma} + iy_{\Gamma}))$$

More complicated holomorphic disks

Singular SYZ fibers result in more complicated disks.

Wall-crossing

This leads to "wall-crossing," or non-trivial transition maps between different local coordinate systems.

► E.g.,
$$(\mathbb{C}^*)^2 \dashrightarrow (\mathbb{C}^*)^2$$
, $x^{-1} \mapsto x^{-1}(1+y)$.

Scattering

Initial walls can interact to form new walls.

DQC

The data of these walls is encoded in a "scattering diagram."

Walls labelled with functions indicating the corresponding transition functions.

Broken lines

Broken lines are essentially tropical versions of the holomorphic disks used to construct the theta functions.

► A scattering diagram \mathfrak{D} is a collection of codimension one walls \mathfrak{d} in $M_{\mathbb{R}}$ with attached elements $f_{\mathfrak{d}} = 1 + \sum_{k=1}^{\infty} c_k z^{kv_{\mathfrak{d}}} \in \mathbb{C}_t^{\Lambda} \llbracket M^{\oplus} \rrbracket$, where $\mathfrak{d} \subset v_{\mathfrak{d}}^{\Lambda \perp}$.

- ► A scattering diagram \mathfrak{D} is a collection of codimension one walls \mathfrak{d} in $M_{\mathbb{R}}$ with attached elements $f_{\mathfrak{d}} = 1 + \sum_{k=1}^{\infty} c_k z^{kv_{\mathfrak{d}}} \in \mathbb{C}_t^{\Lambda} \llbracket M^{\oplus} \rrbracket$, where $\mathfrak{d} \subset v_{\mathfrak{d}}^{\Lambda \perp}$.
- ▶ Path $\gamma \subset M_{\mathbb{R}} \rightsquigarrow$ path-ordered product $\theta_{\gamma,\mathfrak{D}} : \mathbb{C}_{t}^{\wedge} \llbracket M^{\oplus} \rrbracket \xrightarrow{\sim} \mathbb{C}_{t}^{\wedge} \llbracket M^{\oplus} \rrbracket$:
 - Whenever γ crosses a wall, conjugate by the function f_{0} attached to the wall (or its inverse).
 - \mathfrak{D} is called **consistent** if $\theta_{\gamma,\mathfrak{D}}$ only depends on the endpoints of γ .
 - $(\mathfrak{d}, f_{\mathfrak{d}})$ called **incoming** if $v_{\mathfrak{d}} \in \mathfrak{d}$.

- ► A scattering diagram \mathfrak{D} is a collection of codimension one walls \mathfrak{d} in $M_{\mathbb{R}}$ with attached elements $f_{\mathfrak{d}} = 1 + \sum_{k=1}^{\infty} c_k z^{kv_{\mathfrak{d}}} \in \mathbb{C}_t^{\Lambda} \llbracket M^{\oplus} \rrbracket$, where $\mathfrak{d} \subset v_{\mathfrak{d}}^{\Lambda \perp}$.
- Path $\gamma \subset M_{\mathbb{R}} \rightsquigarrow$ path-ordered product $\theta_{\gamma,\mathfrak{D}} : \mathbb{C}_{t}^{\Lambda}\llbracket M^{\oplus}\rrbracket \xrightarrow{\sim} \mathbb{C}_{t}^{\Lambda}\llbracket M^{\oplus}\rrbracket$:
 - Whenever γ crosses a wall, conjugate by the function f_{0} attached to the wall (or its inverse).
 - \mathfrak{D} is called **consistent** if $\theta_{\gamma,\mathfrak{D}}$ only depends on the endpoints of γ .
 - $(\mathfrak{d}, f_{\mathfrak{d}})$ called **incoming** if $v_{\mathfrak{d}} \in \mathfrak{d}$.

Let

$$\mathfrak{D}_{in}^{\mathcal{A}} := \{ (\boldsymbol{e}_i^{\perp}, \Psi_t(\boldsymbol{z}^{\boldsymbol{v}_i})) | i \in I \}.$$

► This uniquely determines a consistent scattering diagram $\mathfrak{D}^{\mathcal{A}} = \mathsf{Scat}(\mathfrak{D}_{\mathsf{in}}^{\mathcal{A}})$ with $\mathfrak{D}_{\mathsf{in}}^{\mathcal{A}}$ as the only incoming walls.

Broken lines

Broken line with ends (p, Q), $p \in M$, Q generic in $M_{\mathbb{R}}$ — a piecewise-straight path $\gamma : (-\infty, 0] \to M_{\mathbb{R}}$, bending only at walls, with a monomial $a_i z^{p_i} \in \mathbb{C}_t[M]$ attached to each straight segment, such that:

- The first attached monomial is z^p,
- γ(0) = Q,
- $p_i = -\gamma'_i$
- $a_{i+1}z^{p_{i+1}}$ is a term in $\theta_{\mathfrak{d}_i}(a_i z^{p_i}).$

Theta functions

For $p \in M$, $Q \in M_{\mathbb{R}}$, define

$$\vartheta_{p,Q} := \sum_{\operatorname{Ends}(\gamma)=(p,Q)} a_{\gamma} z^{m_{\gamma}},$$

 $a_{\gamma}z^{m_{\gamma}}$:= monomial attached to the last straight segment of γ .

→ 4 Ξ

Theta functions

For $p \in M$, $Q \in M_{\mathbb{R}}$, define

$$\vartheta_{p,Q} := \sum_{\operatorname{Ends}(\gamma)=(p,Q)} a_{\gamma} z^{m_{\gamma}},$$

 $a_{\gamma}z^{m_{\gamma}}$:= monomial attached to the last straight segment of γ .

Lemma (Carl-Pumperla-Siebert, M)

For consistent scattering diagrams, different choices of Q are related by path-ordered product.

Theta functions

For $p \in M$, $Q \in M_{\mathbb{R}}$, define

$$\vartheta_{p,Q} := \sum_{\operatorname{Ends}(\gamma)=(p,Q)} a_{\gamma} z^{m_{\gamma}},$$

 $a_{\gamma}z^{m_{\gamma}}$:= monomial attached to the last straight segment of γ .

Lemma (Carl-Pumperla-Siebert, M)

For consistent scattering diagrams, different choices of Q are related by path-ordered product. Interpret this as saying that we actually have a single global function ϑ_p for each p, and then the $\vartheta_{p,Q}$'s are expansions in different local cooridnate systems.

Positivity of the scattering diagram

Theorem (Davison-M)

Up to equivalence, every scattering function of $\mathfrak{D}^{\mathcal{A}}$ has the form $\mathbb{E}(-p(t)z^{\nu})$ for some $p(t) \in \mathbb{Z}_{\geq 0}[t^{\pm 1}]$.

- ► Here, E is the "plethystic exponential," an algebraization of the graded symmetric product.
- $\blacktriangleright \mathbb{E}(-z^{\nu}) = \Psi_t(z^{\nu}).$
- ► Generally, $\mathbb{E}(-p(t)z^{\nu})$ factors as a product of $\Psi_{t^k}(t^a z^{k\nu})$ for $k \in \mathbb{Z}_{\geq 1}$, $a \in \mathbb{Z}$.

Positivity of the scattering diagram

Theorem (Davison-M)

Up to equivalence, every scattering function of $\mathfrak{D}^{\mathcal{A}}$ has the form $\mathbb{E}(-p(t)z^{\nu})$ for some $p(t) \in \mathbb{Z}_{\geq 0}[t^{\pm 1}]$.

- ► Here, E is the "plethystic exponential," an algebraization of the graded symmetric product.
- $\blacktriangleright \mathbb{E}(-z^{\nu}) = \Psi_t(z^{\nu}).$
- ► Generally, $\mathbb{E}(-p(t)z^{\nu})$ factors as a product of $\Psi_{t^k}(t^a z^{k\nu})$ for $k \in \mathbb{Z}_{\geq 1}$, $a \in \mathbb{Z}$.

Theorem \implies Positivity of broken lines

 \implies Universal and strong positivity and atomicity.

- Let Q be a quiver without oriented 2-cycles.
- ▶ $Q \rightsquigarrow$ a seed with $N = \mathbb{Z}^{Q_0}$, $I = Q_0$, $E = \{e_i | i \in I\}$, B = adjacency matrix for Q.

- Let *Q* be a quiver without oriented 2-cycles.
- ▶ $Q \rightsquigarrow$ a seed with $N = \mathbb{Z}^{Q_0}$, $I = Q_0$, $E = \{e_i | i \in I\}$, B = adjacency matrix for Q.
- $Q \rightsquigarrow$ a category rep(Q) of representations of Q:
 - ▶ $V \in \operatorname{rep}(Q)$: vector spaces V_i for each $i \in Q_0$ morphisms $V_i \to V_j$ for each arrow $i \to j$.

- Let *Q* be a quiver without oriented 2-cycles.
- ▶ $Q \rightsquigarrow$ a seed with $N = \mathbb{Z}^{Q_0}$, $I = Q_0$, $E = \{e_i | i \in I\}$, B = adjacency matrix for Q.
- $Q \rightsquigarrow$ a category rep(Q) of representations of Q:
 - ▶ $V \in \operatorname{rep}(Q)$: vector spaces V_i for each $i \in Q_0$ morphisms $V_i \to V_j$ for each arrow $i \to j$.
 - Let $n = \sum_{i \in I} a_i e_i \in N^{\oplus}$. Say dim(V) = n if dim $(V_i) = a_i$ for each $i \in I$.

- Let Q be a quiver without oriented 2-cycles.
- ▶ $Q \rightsquigarrow$ a seed with $N = \mathbb{Z}^{Q_0}$, $I = Q_0$, $E = \{e_i | i \in I\}$, B = adjacency matrix for Q.
- $Q \rightsquigarrow$ a category rep(Q) of representations of Q:
 - ▶ $V \in \operatorname{rep}(Q)$: vector spaces V_i for each $i \in Q_0$ morphisms $V_i \to V_j$ for each arrow $i \to j$.
 - Let $n = \sum_{i \in I} a_i e_i \in N^{\oplus}$. Say dim(V) = n if dim $(V_i) = a_i$ for each $i \in I$.
 - Representations V with dim(V) = n form a smooth algebraic stack:

$$\mathfrak{M}_n(\mathcal{Q}) \coloneqq \prod_{a \in \mathcal{Q}_1} \mathsf{Hom}(\mathbb{C}^{n_{t(a)}}, \mathbb{C}^{n_{s(a)}}) / \prod_{i \in \mathcal{Q}_0} \mathsf{GL}_{n_i}$$

- Let Q be a quiver without oriented 2-cycles.
- ▶ $Q \rightsquigarrow$ a seed with $N = \mathbb{Z}^{Q_0}$, $I = Q_0$, $E = \{e_i | i \in I\}$, B = adjacency matrix for Q.
- $Q \rightsquigarrow$ a category rep(Q) of representations of Q:
 - ▶ $V \in \operatorname{rep}(Q)$: vector spaces V_i for each $i \in Q_0$ morphisms $V_i \to V_j$ for each arrow $i \to j$.
 - Let $n = \sum_{i \in I} a_i e_i \in N^{\oplus}$. Say dim(V) = n if dim $(V_i) = a_i$ for each $i \in I$.
 - Representations V with dim(V) = n form a smooth algebraic stack:

$$\mathfrak{M}_{n}(\mathcal{Q}) \coloneqq \prod_{a \in \mathcal{Q}_{1}} \mathsf{Hom}(\mathbb{C}^{n_{t(a)}}, \mathbb{C}^{n_{s(a)}}) / \prod_{i \in \mathcal{Q}_{0}} \mathsf{GL}_{n_{i}}$$

- $\zeta \in M_{\mathbb{R}} \rightsquigarrow$ stability conditions for rep(*Q*): Say *V* is ζ -semistable if:
 - $\langle \dim(V), \zeta \rangle = 0$, and
 - $\langle \dim(U), \zeta \rangle \leq 0$ for all subresentations *U* of *V*.

• Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.

- ► Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.
- ► There is a consistent \mathfrak{D}^{Stab} with scattering function *f* at generic $\zeta \in M_{\mathbb{R}}$ given by:

$$f^{-1} = \chi\left(\mathsf{H}_{c}(\mathfrak{M}^{\zeta\operatorname{-sst}}(\mathcal{Q}),\mathbb{Q})^{*}_{\mathsf{vir}}
ight).$$
 [Bridgeland]

$$\chi(V) := \sum_{m,r} \dim(V_{m,r}) t^r z^m \in \mathbb{Z}[t^{\pm 1}][M^{\oplus}].$$

- ► Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.
- ► There is a consistent \mathfrak{D}^{Stab} with scattering function *f* at generic $\zeta \in M_{\mathbb{R}}$ given by:

$$f^{-1} = \chi\left(\mathsf{H}_{c}(\mathfrak{M}^{\zeta\operatorname{-sst}}(\mathcal{Q}),\mathbb{Q})^{*}_{\mathsf{vir}}
ight).$$
 [Bridgeland]

Here, If *V* is an $(M^{\oplus} \oplus \mathbb{Z})$ -graded vector space, define

$$\chi(V) := \sum_{m,r} \dim(V_{m,r}) t^r z^m \in \mathbb{Z}[t^{\pm 1}][M^{\oplus}].$$

• $\mathfrak{D}^{Stab} = \mathfrak{D}^{\mathcal{A}}$ iff $Q \setminus \{vertex-loops\}$ is acyclic

- ► Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.
- ► There is a consistent \mathfrak{D}^{Stab} with scattering function *f* at generic $\zeta \in M_{\mathbb{R}}$ given by:

$$f^{-1} = \chi\left(\mathsf{H}_{c}(\mathfrak{M}^{\zeta\operatorname{-sst}}(\mathcal{Q}),\mathbb{Q})^{*}_{\mathsf{vir}}
ight).$$
 [Bridgeland]

Here, If *V* is an $(M^{\oplus} \oplus \mathbb{Z})$ -graded vector space, define

$$\chi(V) := \sum_{m,r} \dim(V_{m,r}) t^r z^m \in \mathbb{Z}[t^{\pm 1}][M^{\oplus}].$$

• $\mathfrak{D}^{Stab} = \mathfrak{D}^{\mathcal{A}}$ iff $Q \setminus \{\text{vertex-loops}\}$ is acyclic (otherwise need a potential function).

- ► Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.
- ► There is a consistent \mathfrak{D}^{Stab} with scattering function *f* at generic $\zeta \in M_{\mathbb{R}}$ given by:

$$f^{-1} = \chi \left(\mathsf{H}_{c}(\mathfrak{M}^{\zeta\operatorname{-sst}}(Q), \mathbb{Q})^{*}_{\mathsf{vir}}
ight).$$
 [Bridgeland]

$$\chi(V) := \sum_{m,r} \dim(V_{m,r}) t^r z^m \in \mathbb{Z}[t^{\pm 1}][M^{\oplus}].$$

- ▶ $\mathfrak{D}^{Stab} = \mathfrak{D}^{\mathcal{A}}$ iff $Q \setminus \{\text{vertex-loops}\}$ is acyclic (otherwise need a potential function).
- Davison-Meinhardt integrality theorem ⇒ χ (H_c(𝔐^{ζ-sst}(Q), ℚ)^{*}_{vir}) has the desired form 𝔼(ρ(t)z^ν).

- ► Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.
- ► There is a consistent \mathfrak{D}^{Stab} with scattering function *f* at generic $\zeta \in M_{\mathbb{R}}$ given by:

$$f^{-1} = \chi \left(\mathsf{H}_{c}(\mathfrak{M}^{\zeta\operatorname{-sst}}(Q), \mathbb{Q})^{*}_{\mathsf{vir}}
ight).$$
 [Bridgeland]

$$\chi(V) := \sum_{m,r} \dim(V_{m,r}) t^r z^m \in \mathbb{Z}[t^{\pm 1}][M^{\oplus}].$$

- ▶ $\mathfrak{D}^{Stab} = \mathfrak{D}^{\mathcal{A}}$ iff $Q \setminus \{\text{vertex-loops}\}$ is acyclic (otherwise need a potential function).
- Davison-Meinhardt integrality theorem ⇒ χ (H_c(𝔐^{ζ-sst}(Q), ℚ)^{*}_{vir}) has the desired form 𝔼(𝒫(t)z^ν).
- For non-acyclic cases, use techniques from [GHKK] to reduce to acyclic cases (allowing vertex loops).

- ► Let \mathfrak{M}_n^{ζ -sst be the moduli stack of ζ -semistable $V \in \operatorname{rep}(Q)$ with dim $(V) = n \in N$.
- ► There is a consistent \mathfrak{D}^{Stab} with scattering function *f* at generic $\zeta \in M_{\mathbb{R}}$ given by:

$$f^{-1} = \chi \left(\mathsf{H}_{c}(\mathfrak{M}^{\zeta\operatorname{-sst}}(Q), \mathbb{Q})^{*}_{\mathsf{vir}}
ight).$$
 [Bridgeland]

$$\chi(V) := \sum_{m,r} \dim(V_{m,r}) t^r z^m \in \mathbb{Z}[t^{\pm 1}][M^{\oplus}].$$

- ▶ $\mathfrak{D}^{Stab} = \mathfrak{D}^{\mathcal{A}}$ iff $Q \setminus \{\text{vertex-loops}\}$ is acyclic (otherwise need a potential function).
- Davison-Meinhardt integrality theorem ⇒ χ (H_c(𝔐^{ζ-sst}(Q), ℚ)^{*}_{vir}) has the desired form 𝔼(𝒫(t)z^ν).
- For non-acyclic cases, use techniques from [GHKK] to reduce to acyclic cases (allowing vertex loops).

Application in preparation (joint with F. Qin)

 Quantum skein algebras on marked surfaces have a quantum cluster algebra structure [Muller];

$$\bigcirc = t \bigcirc +t^{-1} \bigcirc$$

Application in preparation (joint with F. Qin)

 Quantum skein algebras on marked surfaces have a quantum cluster algebra structure [Muller];

$$\bigcirc = t \bigcirc +t^{-1} \bigcirc$$

 [D. Thurston]: these have canonical "quantum bracelet bases," conjecturally strongly positive;

Application in preparation (joint with F. Qin)

 Quantum skein algebras on marked surfaces have a quantum cluster algebra structure [Muller];

- [D. Thurston]: these have canonical "quantum bracelet bases," conjecturally strongly positive;
- ► Theorem [M-Qin]: Quantum bracelet bases are quantum theta bases.