Convexity in tropical spaces and compactifications of cluster varieties

Timothy Magee
King's College London

Joint work with Man-Wai Cheung and Alfredo Nájera Chávez arXiv:1912.13052 [math.AG]

Goal and Background

The Goal
Generalize the polytope construction of projective toric varieties to the non-toric world

Goal and Background

The Goal
Generalize the polytope construction of projective toric varieties to the cluster world

Goal and Background

The Goal

Generalize the polytope construction of projective toric varieties to the cluster world

Toric Picture:
 A d-dimensional convex rational polytope defines a d-dimensional (polarized) projective toric variety.

Goal and Background

The Goal

Generalize the polytope construction of projective toric varieties to the cluster world

Toric Picture:

A d-dimensional convex rational polytope defines a d-dimensional (polarized) projective toric variety.

- Integral points of polytope $P \rightsquigarrow$ Sections of line bundle \mathcal{L}

Goal and Background

The Goal

Generalize the polytope construction of projective toric varieties to the cluster world

Toric Picture:

A d-dimensional convex rational polytope defines a d-dimensional (polarized) projective toric variety.

- Integral points of polytope $P \rightsquigarrow$ Sections of line bundle \mathcal{L}
- Integral points of dilations of $P \rightsquigarrow$ Sections of powers of \mathcal{L}

Convexity is key!

Example

Convexity is key!

Example

Convexity is key!

Example

Convexity is key!

Example

Convexity is key!

Example $\left(\mathbb{P}^{2}, \mathcal{O}(1)\right)$

Convexity is key!

Non-example

Convexity is key!

Non-example

Picture to Generalize

Let $T \cong\left(\mathbb{C}^{*}\right)^{n}$ and $M=\operatorname{char}(T)$.
Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$

Picture to Generalize

Let $T \cong\left(\mathbb{C}^{*}\right)^{n}$ and $M=\operatorname{char}(T)$.
Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T

Picture to Generalize

Let $T \cong\left(\mathbb{C}^{*}\right)^{n}$ and $M=\operatorname{char}(T)$.
Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The M-points of S and its dilations give a basis for the section ring of \mathcal{L}

Cluster Varieties: Context and Definition

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Cluster Varieties: Context and Definition

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus $T=\left(\mathbb{C}^{*}\right)^{n}, \Omega=\frac{d z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d z_{n}}{z_{n}}$

Cluster Varieties: Context and Definition

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus $T=\left(\mathbb{C}^{*}\right)^{n}, \Omega=\frac{d z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d z_{n}}{z_{n}}$

Example

Carefully glued tori

$$
U=\bigcup_{i} T_{i} / \sim
$$

$$
\mu_{i j}: T_{i} \rightarrow T_{j}, \quad \mu_{i j}^{*}\left(\Omega_{j}\right)=\Omega_{i}
$$

Cluster Varieties: Context and Definition

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus $T=\left(\mathbb{C}^{*}\right)^{n}, \Omega=\frac{d z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d z_{n}}{z_{n}}$

Example

Carefully glued tori

$$
U=\bigcup_{i} T_{i} / \sim
$$

$$
\mu_{i j}: T_{i} \rightarrow T_{j}, \quad \mu_{i j}^{*}\left(\Omega_{j}\right)=\Omega_{i}
$$

Cluster variety

Why Cluster Varieties?

- Almost toric

Why Cluster Varieties?

- Almost toric
- Simpler than general Log CYs.

Why Cluster Varieties?

- Almost toric
- Simpler than general Log CYs. ("Correct" setting should be affine log CYs with maximal boundary)

Why Cluster Varieties?

- Almost toric
- Simpler than general Log CYs. ("Correct" setting should be affine log CYs with maximal boundary)
- Machinery isn't fully developed for general Log CYs yet.

Why Cluster Varieties?

- Almost toric
- Simpler than general Log CYs. ("Correct" setting should be affine log CYs with maximal boundary)
- Machinery isn't fully developed for general Log CYs yet.
- Interesting in many areas of math: Representation theory, Integrable systems, Hyperbolic geometry, Quantum groups, Scattering amplitudes...

Scattering Diagrams and Broken Lines

- Tools from Gross-Seibert Mirror Symmetry program

Scattering Diagrams and Broken Lines

- Tools from Gross-Seibert Mirror Symmetry program

Rough idea

A scattering diagram is a collection of walls in a piecewise linear manifold $U^{\text {trop }}(\mathbb{R})$.

Scattering Diagrams and Broken Lines

- Tools from Gross-Seibert Mirror Symmetry program

Rough idea

A scattering diagram is a collection of walls in a piecewise linear manifold $U^{\text {trop }}(\mathbb{R})$.
Think \mathbb{R}^{n}, or $N_{\mathbb{R}}$ in the toric case. Encodes log geometry of U.

Scattering Diagrams and Broken Lines

- Tools from Gross-Seibert Mirror Symmetry program

Rough idea

A scattering diagram is a collection of walls in a piecewise linear manifold $U^{\text {trop }}(\mathbb{R})$.
Think \mathbb{R}^{n}, or $N_{\mathbb{R}}$ in the toric case. Encodes log geometry of U.
Wall: Codim 1 rational convex cone, decorated with a function (scattering function)

Scattering Diagrams and Broken Lines

- Tools from Gross-Seibert Mirror Symmetry program

Rough idea

A scattering diagram is a collection of walls in a piecewise linear manifold $U^{\text {trop }}(\mathbb{R})$.
Think \mathbb{R}^{n}, or $N_{\mathbb{R}}$ in the toric case. Encodes log geometry of U.
Wall: Codim 1 rational convex cone, decorated with a function (scattering function)
Used to construct a canonical algebra- determined by logarithmic geometry of U - which is conjectured to be $\mathcal{O}\left(U^{\vee}\right)$ when U is an "affine log CY with maximal boundary".

Scattering Diagrams and Broken Lines

Example

$Y=$ del Pezzo surface of degree 5
$D=$ anticanonical pentagon in Y
$U=Y \backslash D$

Scattering Diagrams and Broken Lines

Broken Lines

The canonical algebra is defined in terms of broken lines．

Scattering Diagrams and Broken Lines

Broken Lines

The canonical algebra is defined in terms of broken lines.
Broken line: a ray in $U^{\text {trop }}(\mathbb{R})$ allowed to bend in prescribed fashion at walls. Each linear segment decorated with a monomial, monomial and scattering function determine allowed bendings.

Scattering Diagrams and Broken Lines

Broken Lines

The canonical algebra is defined in terms of broken lines.
Broken line: a ray in $U^{\text {trop }}(\mathbb{R})$ allowed to bend in prescribed fashion at walls. Each linear segment decorated with a monomial, monomial and scattering function determine allowed bendings.

Scattering Diagrams and Broken Lines

Broken Lines

Get " ϑ-function" for each $p \in U^{\text {trop }}(\mathbb{Z})$ - think N is basis for $\mathcal{O}\left(T^{\vee}\right)$.

Scattering Diagrams and Broken Lines

Broken Lines

Get " ϑ-function" for each $p \in U^{\text {trop }}(\mathbb{Z})$ - think N is basis for $\mathcal{O}\left(T^{\vee}\right)$. Local coordinates for ϑ_{p} : pick $Q \in U^{\text {trop }}(\mathbb{R})$. Write ϑ_{p} as sum of decorating monomials of broken lines starting from direction p and ending at Q.

Scattering Diagrams and Broken Lines

Broken Lines

Get " ϑ-function" for each $p \in U^{\text {trop }}(\mathbb{Z})$ - think N is basis for $\mathcal{O}\left(T^{\vee}\right)$. Local coordinates for ϑ_{p} : pick $Q \in U^{\text {trop }}(\mathbb{R})$. Write ϑ_{p} as sum of decorating monomials of broken lines starting from direction p and ending at Q. $\vartheta_{(-1,0)}=z^{(-1,1)}+z^{(-1,0)}$

Ө-function multiplication

Structure constants $\alpha_{p q}^{r}$

$$
\vartheta_{p} \cdot \vartheta_{q}=\sum_{r \in U^{\operatorname{trop}}(\mathbb{Z})} \alpha_{p q}^{r} \vartheta_{r}
$$

ϑ-function multiplication

Structure constants $\alpha_{p q}^{r}$

$$
\vartheta_{p} \cdot \vartheta_{q}=\sum_{r \in U^{\text {trop }}(\mathbb{Z})} \alpha_{p q}^{r} \vartheta_{r}
$$

Theorem (Gross-Hacking-Keel-Kontsevich)

$$
\alpha_{p q}^{r}=\sum_{\substack{\left(\gamma_{1}, \gamma_{2}\right) \\ I\left(\gamma_{1}\right)=p, I\left(\gamma_{2}\right)=q \\ \gamma_{1}(0)=\gamma_{2}(0)=r \\ F\left(\gamma_{1}\right)+F\left(\gamma_{2}\right)=r}} c\left(\gamma_{1}\right) c\left(\gamma_{2}\right)
$$

ϑ-function multiplication

Example

$$
\vartheta_{(-1,0)} \cdot \vartheta_{(2,1)}=\vartheta_{(1,1)}+\vartheta_{(1,2)}
$$

Status Report

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The M-points of S and its dilations give a basis for the section ring of \mathcal{L}

Status Report

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The M-points of S and its dilations give a basis for the section ring of \mathcal{L}

So far have:

- $U^{\text {trop }}(\mathbb{Z})$ "is" ϑ-basis for $\mathcal{O}\left(U^{\vee}\right)$

Convexity in $U^{\text {trop }}(\mathbb{R})$

Question

Is there a convexity notion that says when $S \subset U^{\text {trop }}(\mathbb{R})$ defines a compactification of U^{\vee} ?

Convexity in $U^{\text {trop }}(\mathbb{R})$

Question

Is there a convexity notion that says when $S \subset U^{\text {trop }}(\mathbb{R})$ defines a compactification of U^{\vee} ?
When do S and its dilations define a graded ring?

Convexity in $U^{\text {trop }}(\mathbb{R})$

Question

Is there a convexity notion that says when $S \subset U^{\text {trop }}(\mathbb{R})$ defines a compactification of U^{\vee} ?
When do S and its dilations define a graded ring?
Let's make this more precise.

Definition (Positive subset)

A closed subset $S \subset U^{\operatorname{trop}}(\mathbb{R})$ is positive if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in a S(\mathbb{Z}), q \in b S(\mathbb{Z})$, and $r \in U^{\text {trop }}(\mathbb{Z})$ with $\alpha_{p, q}^{r} \neq 0$ we have: $r \in(a+b) S$.

Convexity in $U^{\text {trop }}(\mathbb{R})$

Question

Is there a convexity notion that says when $S \subset U^{\text {trop }}(\mathbb{R})$ defines a compactification of U^{\vee} ?
When do S and its dilations define a graded ring?
Let's make this more precise.

Definition (Positive subset)

A closed subset $S \subset U^{\operatorname{trop}}(\mathbb{R})$ is positive if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in a S(\mathbb{Z}), q \in b S(\mathbb{Z})$, and $r \in U^{\text {trop }}(\mathbb{Z})$ with $\alpha_{p, q}^{r} \neq 0$ we have: $r \in(a+b) S$.

Question

When is S positive?

Convexity in $U^{\text {trop }}(\mathbb{R})$

Definition (Broken line convex [Cheung, M., Nájera Chávez])

A closed subset $S \subset U^{\text {trop }}(\mathbb{R})$ is broken line convex if for every $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Convexity in $U^{\text {trop }}(\mathbb{R})$

Definition (Broken line convex [Cheung, M., Nájera Chávez])

A closed subset $S \subset U^{\text {trop }}(\mathbb{R})$ is broken line convex if for every $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Theorem (Cheung, M., Nájera Chávez)

S is positive if and only if S is broken line convex.

Status Report

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The M-points of S and its dilations give a basis for the section ring of \mathcal{L}

Status Report

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The M-points of S and its dilations give a basis for the section ring of \mathcal{L}

The generalization:

- $U^{\text {trop }}(\mathbb{Z})$ "is" ϑ-basis for $\mathcal{O}\left(U^{\vee}\right)$
- Broken line convexity in $U^{\text {trop }}(\mathbb{R})$ determines which $S \subset U^{\text {trop }}(\mathbb{R})$ define polarized projective compactifications (X, \mathcal{L}) of U^{\vee}
- The $U^{\text {trop }}(\mathbb{Z})$-points of S and its dilations give a basis for the section ring of \mathcal{L}

Examples

Example (Anticanonical "polytope" of degree 5 del Pezzo surface)

Examples

Non-example

Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

- X a d-dimensional variety

Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

- X a d-dimensional variety
- D a divisor on X

Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

- X a d-dimensional variety
- D a divisor on X
- R_{D} the section ring of D

Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

- X a d-dimensional variety
- D a divisor on X
- R_{D} the section ring of D
- $R_{D}:=\bigoplus_{j \geq 0} R_{j}, \quad R_{j}:=\Gamma\left(X, \mathcal{O}_{X}(j D)\right)$

Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

- X a d-dimensional variety
- D a divisor on X
- R_{D} the section ring of D
- $R_{D}:=\bigoplus_{j \geq 0} R_{j}, \quad R_{j}:=\Gamma\left(X, \mathcal{O}_{X}(j D)\right)$
- $\nu: R_{D} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a valuation

Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

- X a d-dimensional variety
- D a divisor on X
- R_{D} the section ring of D

$$
\text { - } R_{D}:=\bigoplus_{j \geq 0} R_{j}, \quad R_{j}:=\Gamma\left(X, \mathcal{O}_{X}(j D)\right)
$$

- $\nu: R_{D} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a valuation

Newton-Okounkov Body: $\Delta_{\nu}(D):=\overline{\operatorname{conv}\left(\bigcup_{j \geq 1} \frac{1}{j} \nu\left(R_{j}\right)\right)}$

Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model

Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X

Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_{D} the section ring of D

Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_{D} the section ring of D
- ϑ-function analogue of Newton polytope:

$$
\operatorname{Newt}_{\vartheta}\left(\sum_{p \in U^{\text {trop }}(\mathbb{Z})} a_{p} \vartheta_{p}\right):=\operatorname{conv}_{\mathrm{BL}}\left\{p: a_{p} \neq 0\right\} .
$$

Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_{D} the section ring of D
- ϑ-function analogue of Newton polytope:

$$
\operatorname{Newt}_{\vartheta}\left(\sum_{p \in U^{\text {trop }}(\mathbb{Z})} a_{p} \vartheta_{p}\right):=\operatorname{conv}_{\mathrm{BL}}\left\{p: a_{p} \neq 0\right\} .
$$

Intrinsic Newton-Okounkov Body:

$$
\Delta_{\mathrm{BL}}(D):=\overline{\operatorname{conv}_{\mathrm{BL}}\left(\bigcup_{j \geq 1}\left(\bigcup_{f \in R_{j}(D)} \frac{1}{j} \operatorname{Newt}_{\vartheta}(f)\right)\right)}
$$

Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_{D} the section ring of D
- ϑ-function analogue of Newton polytope:

$$
\operatorname{Newt}_{\vartheta}\left(\sum_{p \in U^{\text {trop }}(\mathbb{Z})} a_{p} \vartheta_{p}\right):=\operatorname{conv}_{\mathrm{BL}}\left\{p: a_{p} \neq 0\right\} .
$$

Intrinsic Newton-Okounkov Body:

$$
\Delta_{\mathrm{BL}}(D):=\overline{\operatorname{conv}_{\mathrm{BL}}\left(\bigcup_{j \geq 1}\left(\bigcup_{f \in R_{j}(D)} \frac{1}{j} \mathrm{Newt}_{\vartheta}(f)\right)\right)}
$$

- Choice of torus chart gives identification of $\Delta_{\mathrm{BL}}(D)$ with a usual Newton-Okounkov body.

Newton-Okounkov Bodies

Example ($X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad$ (+ Lara Bossinger))

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs

Newton-Okounkov Bodies

Example ($X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad$ (+ Lara Bossinger))

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs
- D pullback of hyperplane class under Plücker embedding

Newton-Okounkov Bodies

Example $\left(X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad(+\right.$ Lara Bossinger $\left.)\right)$

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs
- D pullback of hyperplane class under Plücker embedding
- For certain plabic graphs (\rightsquigarrow torus charts):

$$
\Delta_{\text {val }}(D)=\operatorname{conv}\left(\operatorname{val}\left(p_{J}\right)\right)_{J \in\binom{[n]}{k}}
$$

Newton-Okounkov Bodies

Example $\left(X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad(+\right.$ Lara Bossinger $\left.)\right)$

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs
- D pullback of hyperplane class under Plücker embedding
- For certain plabic graphs (\rightsquigarrow torus charts):

$$
\Delta_{\text {val }}(D)=\operatorname{conv}\left(\operatorname{val}\left(p_{J}\right)\right)_{J \in\binom{[n]}{k}}
$$

- This description fails for other plabic graphs/torus charts

Newton-Okounkov Bodies

Example $\left(X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad(+\right.$ Lara Bossinger $\left.)\right)$

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs
- D pullback of hyperplane class under Plücker embedding
- For certain plabic graphs (\rightsquigarrow torus charts):

$$
\Delta_{\mathrm{val}}(D)=\operatorname{conv}\left(\operatorname{val}\left(p_{J}\right)\right)_{J \in\binom{[n]}{k}}
$$

- This description fails for other plabic graphs/torus charts
- Every p_{J} is a ϑ-function, say $\vartheta_{\nu_{J}}=p_{J}$

Newton-Okounkov Bodies

Example $\left(X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad(+\right.$ Lara Bossinger $\left.)\right)$

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs
- D pullback of hyperplane class under Plücker embedding
- For certain plabic graphs (\rightsquigarrow torus charts):

$$
\Delta_{\text {val }}(D)=\operatorname{conv}\left(\operatorname{val}\left(p_{J}\right)\right)_{J \in\binom{[n]}{k}}
$$

- This description fails for other plabic graphs/torus charts
- Every p_{J} is a ϑ-function, say $\vartheta_{\nu_{J}}=p_{J}$
- $\Delta_{\mathrm{BL}}(D)=\operatorname{conv}_{\mathrm{BL}}\left(\nu_{J}\right)_{J \in\binom{[n]}{k}}$, independent of torus chart

Newton-Okounkov Bodies

Example $\left(X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \quad(+\right.$ Lara Bossinger $\left.)\right)$

- Rietsch-Williams study NO bodies for $X=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ using a valuation val associated to plabic graphs
- D pullback of hyperplane class under Plücker embedding
- For certain plabic graphs (\rightsquigarrow torus charts):

$$
\Delta_{\mathrm{val}}(D)=\operatorname{conv}\left(\operatorname{val}\left(p_{J}\right)\right)_{J \in\binom{[n]}{k}}
$$

- This description fails for other plabic graphs/torus charts
- Every p_{J} is a ϑ-function, say $\vartheta_{\nu_{J}}=p_{J}$
- $\Delta_{\mathrm{BL}}(D)=\operatorname{conv}_{\mathrm{BL}}\left(\nu_{J}\right)_{J \in\binom{[n]}{k}}$, independent of torus chart
- Analogous result holds for complete flag variety

Batyrev Duality for Cluster Varieties?

Based on various joint works with subsets of the following people: Lara Bossinger, Man-Wai Cheung, Bosco Frías Medina y Alfredo Nájera Chávez

Basic Definitions

Definition (Gorenstein Fano variety)

A normal variety X is Gorenstein Fano if $-K_{X}$ is Cartier (\rightsquigarrow Gorenstein) and ample (\rightsquigarrow Fano).

Batyrev Duality for Cluster Varieties?

Based on various joint works with subsets of the following people: Lara Bossinger, Man-Wai Cheung, Bosco Frías Medina y Alfredo Nájera Chávez

Basic Definitions

Definition (Gorenstein Fano variety)

A normal variety X is Gorenstein Fano if $-K_{X}$ is Cartier (\rightsquigarrow Gorenstein) and ample (\rightsquigarrow Fano).

Definition (Reflexive polytope)

A lattice polytope $P \subset M_{\mathbb{R}}$ is reflexive if its dual

$$
P^{\circ}:=\left\{n \in N_{\mathbb{R}}:\langle m, n\rangle \geq-1 \text { for all } m \in P\right\}
$$

is also a lattice polytope.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then $P_{-K_{X}}$ is a d-dimensional reflexive polytope.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then $P_{-K_{X}}$ is a d-dimensional reflexive polytope.
- If P is a d-dimensional reflexive polytope, then the projective toric variety associated to P is Gorenstein Fano.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then $P_{-K_{X}}$ is a d-dimensional reflexive polytope.
- If P is a d-dimensional reflexive polytope, then the projective toric variety associated to P is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and $D \in\left|-K_{X}\right|$. By the adjunction formula $K_{D}=\left.\left(K_{X}+D\right)\right|_{D}=0$.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then $P_{-K_{X}}$ is a d-dimensional reflexive polytope.
- If P is a d-dimensional reflexive polytope, then the projective toric variety associated to P is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and $D \in\left|-K_{X}\right|$. By the adjunction formula $K_{D}=\left.\left(K_{X}+D\right)\right|_{D}=0$. The Gorenstein property implies generic D have at worst canonical singularities.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then $P_{-K_{X}}$ is a d-dimensional reflexive polytope.
- If P is a d-dimensional reflexive polytope, then the projective toric variety associated to P is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and $D \in\left|-K_{X}\right|$. By the adjunction formula $K_{D}=\left.\left(K_{X}+D\right)\right|_{D}=0$. The Gorenstein property implies generic D have at worst canonical singularities. So $\left|-K_{X}\right|$ consists of mildly singular Calabi-Yau hypersurfaces of X.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev dual

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev dual

- The level sets of W are almost CY, but are not compact.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev dual

- The level sets of W are almost CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_{Y}\left(D^{\prime}\right), Y \supset T^{\vee}$.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev dual

- The level sets of W are almost CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_{Y}\left(D^{\prime}\right), Y \supset T^{\vee}$.
- Minimalistic approach: $Y:=\operatorname{TV}(\operatorname{Newt}(W))$.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev dual

- The level sets of W are almost CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_{Y}\left(D^{\prime}\right), Y \supset T^{\vee}$.
- Minimalistic approach: $Y:=\mathrm{TV}(\operatorname{Newt}(W))$.
- Result: $\operatorname{Newt}(W)=P^{\circ}$, so Y is also Gorenstein Fano. W and the other sections of $\mathcal{O}_{Y}\left(D^{\prime}\right)$ are (mildly singular) CYs.

Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D=\sum_{i} D_{n_{i}}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$.

Batyrev dual

- The level sets of W are almost CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_{Y}\left(D^{\prime}\right), Y \supset T^{\vee}$.
- Minimalistic approach: $Y:=\mathrm{TV}(\operatorname{Newt}(W))$.
- Result: $\operatorname{Newt}(W)=P^{\circ}$, so Y is also Gorenstein Fano. W and the other sections of $\mathcal{O}_{Y}\left(D^{\prime}\right)$ are (mildly singular) CYs.
- Sections of $\mathcal{O}_{X}(D)$ and $\mathcal{O}_{Y}\left(D^{\prime}\right)$ are mirror CYs.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D=\sum_{i} D_{\nu_{i}}$.

- The Landau-Ginzburg potential is $W=\sum_{i} \vartheta_{\nu_{i}}: U^{\vee} \rightarrow \mathbb{C}$.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D=\sum_{i} D_{\nu_{i}}$.

- The Landau-Ginzburg potential is $W=\sum_{i} \vartheta_{\nu_{i}}: U^{\vee} \rightarrow \mathbb{C}$.
- The \mathbb{Z}-points of $r P:=\left\{p \in\left(U^{\vee}\right)^{\text {trop }}(\mathbb{R}): W^{\text {trop }}(p) \geq-r\right\}$ parametrize ϑ-basis for $\Gamma\left(X, \mathcal{O}_{X}(r D)\right)$.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D=\sum_{i} D_{\nu_{i}}$.

- The Landau-Ginzburg potential is $W=\sum_{i} \vartheta_{\nu_{i}}: U^{\vee} \rightarrow \mathbb{C}$.
- The \mathbb{Z}-points of $r P:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}): W^{\operatorname{trop}}(p) \geq-r\right\}$ parametrize ϑ-basis for $\Gamma\left(X, \mathcal{O}_{X}(r D)\right)$.

The Tropical Pairing

Batyrev Duality for Cluster Varieties?

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D=\sum_{i} D_{\nu_{i}}$.

- The Landau-Ginzburg potential is $W=\sum_{i} \vartheta_{\nu_{i}}: U^{\vee} \rightarrow \mathbb{C}$.
- The \mathbb{Z}-points of $r P:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}): W^{\operatorname{trop}}(p) \geq-r\right\}$ parametrize ϑ-basis for $\Gamma\left(X, \mathcal{O}_{X}(r D)\right)$.

The Tropical Pairing

- $U^{\text {trop }}(\mathbb{Z})$ consists of divisorial discrete valuations $\nu: \mathbb{C}(U) \backslash\{0\} \rightarrow \mathbb{Z}$.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D=\sum_{i} D_{\nu_{i}}$.

- The Landau-Ginzburg potential is $W=\sum_{i} \vartheta_{\nu_{i}}: U^{\vee} \rightarrow \mathbb{C}$.
- The \mathbb{Z}-points of $r P:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}): W^{\operatorname{trop}}(p) \geq-r\right\}$ parametrize ϑ-basis for $\Gamma\left(X, \mathcal{O}_{X}(r D)\right)$.

The Tropical Pairing

- $U^{\operatorname{trop}}(\mathbb{Z})$ consists of divisorial discrete valuations $\nu: \mathbb{C}(U) \backslash\{0\} \rightarrow \mathbb{Z}$.
- $\left(U^{\vee}\right)^{\text {trop }}(\mathbb{Z})$ parametrizes ϑ-functions on U.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D=\sum_{i} D_{\nu_{i}}$.

- The Landau-Ginzburg potential is $W=\sum_{i} \vartheta_{\nu_{i}}: U^{\vee} \rightarrow \mathbb{C}$.
- The \mathbb{Z}-points of $r P:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}): W^{\text {trop }}(p) \geq-r\right\}$ parametrize ϑ-basis for $\Gamma\left(X, \mathcal{O}_{X}(r D)\right)$.

The Tropical Pairing

- $U^{\operatorname{trop}}(\mathbb{Z})$ consists of divisorial discrete valuations $\nu: \mathbb{C}(U) \backslash\{0\} \rightarrow \mathbb{Z}$.
- $\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{Z})$ parametrizes ϑ-functions on U.
- We have the evaluation pairing:

$$
\begin{aligned}
\langle\cdot, \cdot\rangle: U^{\operatorname{trop}}(\mathbb{Z}) \times\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{Z}) & \rightarrow \mathbb{Z} \\
(\nu, p) & \mapsto \nu\left(\vartheta_{p}\right)
\end{aligned}
$$

Batyrev Duality for Cluster Varieties?

The Cluster Case

Dual "Polytope" and the Potential

- Define $\operatorname{Newt}_{\vartheta}(W):=\operatorname{conv}_{\mathrm{BL}}\left(\nu_{i}\right) \subset U^{\text {trop }}(\mathbb{R})$.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Dual "Polytope" and the Potential

- Define $\operatorname{Newt}_{\vartheta}(W):=\operatorname{conv}_{B L}\left(\nu_{i}\right) \subset U^{\text {trop }}(\mathbb{R})$.
- For $S \subset U^{\text {trop }}(\mathbb{R})$, define

$$
S^{\circ}:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}):\langle\nu, p\rangle \geq-1 \text { for all } \nu \in S(\mathbb{Q})\right\} .
$$

Batyrev Duality for Cluster Varieties?

The Cluster Case

Dual "Polytope" and the Potential

- Define $\operatorname{Newt}_{\vartheta}(W):=\operatorname{conv}_{\mathrm{BL}}\left(\nu_{i}\right) \subset U^{\text {trop }}(\mathbb{R})$.
- For $S \subset U^{\text {trop }}(\mathbb{R})$, define

$$
S^{\circ}:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}):\langle\nu, p\rangle \geq-1 \text { for all } \nu \in S(\mathbb{Q})\right\} .
$$

Theorem: $\operatorname{Newt}_{\vartheta}(W)^{\circ}(\mathbb{Q})=P(\mathbb{Q})$.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Dual "Polytope" and the Potential

- Define $\operatorname{Newt}_{v}(W):=\operatorname{conv}_{\mathrm{BL}}\left(\nu_{i}\right) \subset U^{\text {trop }}(\mathbb{R})$.
- For $S \subset U^{\text {trop }}(\mathbb{R})$, define

$$
S^{\circ}:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}):\langle\nu, p\rangle \geq-1 \text { for all } \nu \in S(\mathbb{Q})\right\} .
$$

Theorem: $\operatorname{Newt}_{\vartheta}(W)^{\circ}(\mathbb{Q})=P(\mathbb{Q})$.

Proposed Dual

$\operatorname{Newt}_{\vartheta}(W)$ defines a minimal model $\left(Y, D^{\prime}\right)$ of U^{\vee}.

Batyrev Duality for Cluster Varieties?

The Cluster Case

Dual "Polytope" and the Potential

- Define $\operatorname{Newt}_{v}(W):=\operatorname{conv}_{\mathrm{BL}}\left(\nu_{i}\right) \subset U^{\text {trop }}(\mathbb{R})$.
- For $S \subset U^{\text {trop }}(\mathbb{R})$, define

$$
S^{\circ}:=\left\{p \in\left(U^{\vee}\right)^{\operatorname{trop}}(\mathbb{R}):\langle\nu, p\rangle \geq-1 \text { for all } \nu \in S(\mathbb{Q})\right\} .
$$

Theorem: $\operatorname{Newt}_{\vartheta}(W)^{\circ}(\mathbb{Q})=P(\mathbb{Q})$.

Proposed Dual

$\operatorname{Newt}_{\vartheta}(W)$ defines a minimal model $\left(Y, D^{\prime}\right)$ of U^{\vee}.
Guess: Generic sections of $\mathcal{O}_{X}(D)$ and $\mathcal{O}_{Y}\left(D^{\prime}\right)$ are mirror (mildly singular) Calabi-Yau varieties.

References

[Bat94] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom, 493-535 (1994).
[BCMN] L. Bossinger, M.-W. Cheung, T. Magee and A. Nájera Chávez, On cluster duality, mirror symmetry and toric degenerations of Grassmannians, In progress.
[GHKK18] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2), 497-608 (2018).
[RW19] K. Rietsch and L. Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Mathematical journal 168(18), 3437-3527 (2019).

