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Goal and Background

The Goal

Generalize the polytope construction of projective toric varieties to the
non-toric world

Toric Picture:

A d-dimensional convex rational polytope defines a d-dimensional
(polarized) projective toric variety.

Integral points of polytope P  Sections of line bundle L
Integral points of dilations of P  Sections of powers of L
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Picture to Generalize

Let T ∼= (C∗)n and M = char(T ).

Want cluster analogue of this:

M is a basis for O(T )

Convexity in MR determines which S ⊂MR define polarized
projective compactifications (X,L) of T

The M -points of S and its dilations give a basis for the section ring
of L
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Cluster Varieties: Context and Definition

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst
a simple pole along any divisor in any compactification of U

Example

Algebraic torus T = (C∗)n, Ω = dz1
z1
∧ · · · ∧ dzn

zn

Example

Carefully glued tori

U =
⋃
i

Ti/ ∼

µij : Ti 99K Tj , µ∗ij (Ωj) = Ωi

Cluster variety
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Why Cluster Varieties?

Almost toric

Simpler than general Log CYs. (“Correct” setting should be affine log
CYs with maximal boundary)

Machinery isn’t fully developed for general Log CYs yet.

Interesting in many areas of math: Representation theory, Integrable
systems, Hyperbolic geometry, Quantum groups, Scattering
amplitudes. . .
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Scattering Diagrams and Broken Lines

Tools from Gross-Seibert Mirror Symmetry program

Rough idea

A scattering diagram is a collection of walls in a piecewise linear manifold
U trop (R).

Think Rn, or NR in the toric case. Encodes log geometry of U .
Wall: Codim 1 rational convex cone, decorated with a function (scattering
function)
Used to construct a canonical algebra– determined by logarithmic
geometry of U– which is conjectured to be O (U∨) when U is an “affine
log CY with maximal boundary”.
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Scattering Diagrams and Broken Lines

Example

Y = del Pezzo surface of degree 5
D = anticanonical pentagon in Y
U = Y \D
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Scattering Diagrams and Broken Lines

Broken Lines

The canonical algebra is defined in terms of broken lines.

Broken line: a ray in U trop(R) allowed to bend in prescribed fashion at
walls. Each linear segment decorated with a monomial, monomial and
scattering function determine allowed bendings.
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Scattering Diagrams and Broken Lines

Broken Lines

Get “ϑ-function” for each p ∈ U trop(Z)– think N is basis for O(T∨).

Local coordinates for ϑp: pick Q ∈ U trop(R). Write ϑp as sum of
decorating monomials of broken lines starting from direction p and ending
at Q. ϑ(−1,0) = z(−1,1) + z(−1,0)
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ϑ-function multiplication

Structure constants αrpq

ϑp · ϑq =
∑

r∈Utrop(Z)

αrpqϑr

Theorem (Gross-Hacking-Keel-Kontsevich)

αrpq =
∑

(γ1,γ2)
I(γ1)=p, I(γ2)=q
γ1(0)=γ2(0)=r
F (γ1)+F (γ2)=r

c(γ1) c(γ2)
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ϑ-function multiplication

Example

z(−1,0)

z(−1,0) z (−
1,1)

z
(2,

1)
z
(2,

1)

(1, 1)

(1, 2)

ϑ(−1,0) · ϑ(2,1) = ϑ(1,1) + ϑ(1,2)



Status Report

Want cluster analogue of this:

M is a basis for O(T )

Convexity in MR determines which S ⊂MR define polarized
projective compactifications (X,L) of T

The M -points of S and its dilations give a basis for the section ring
of L

So far have:

U trop(Z) “is” ϑ-basis for O(U∨)
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Convexity in U trop(R)

Question

Is there a convexity notion that says when S ⊂ U trop(R) defines a
compactification of U∨?

When do S and its dilations define a graded ring?

Let’s make this more precise.

Definition (Positive subset)

A closed subset S ⊂ U trop(R) is positive if for every a, b ∈ Z≥0,
p ∈ aS(Z), q ∈ bS(Z), and r ∈ U trop(Z) with αrp,q 6= 0 we have:
r ∈ (a+ b)S.

Question

When is S positive?
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Convexity in U trop(R)

Definition (Broken line convex [Cheung, M., Nájera Chávez])

A closed subset S ⊂ U trop(R) is broken line convex if for every
x, y ∈ S(Q), every broken line segment connecting x and y is entirely
contained in S.

Theorem (Cheung, M., Nájera Chávez)

S is positive if and only if S is broken line convex.
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Examples

Example (Anticanonical “polytope” of degree 5 del Pezzo surface)
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Newton-Okounkov Bodies

Usual Newton-Okounkov Bodies

X a d-dimensional variety

D a divisor on X

RD the section ring of D

RD :=
⊕

j≥0Rj , Rj := Γ (X,OX(jD))

ν : RD \ {0} → Zd a valuation

Newton-Okounkov Body: ∆ν(D) := conv
(⋃

j≥1
1
j ν(Rj)

)
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Newton-Okounkov Bodies

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

U∨ ⊂ X partial minimal model

D a divisor on X

RD the section ring of D

ϑ-function analogue of Newton polytope:

Newtϑ

( ∑
p∈Utrop(Z)

apϑp

)
:= convBL {p : ap 6= 0} .

Intrinsic Newton-Okounkov Body:

∆BL(D) := convBL

(⋃
j≥1

( ⋃
f∈Rj(D)

1

j
Newtϑ(f)

))
.

Choice of torus chart gives identification of ∆BL(D) with a usual
Newton-Okounkov body.
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Newton-Okounkov Bodies

Example (X = Grk (Cn) (+ Lara Bossinger) )

Rietsch-Williams study NO bodies for X = Grk (Cn) using a
valuation val associated to plabic graphs

D pullback of hyperplane class under Plücker embedding
For certain plabic graphs ( torus charts):

∆val(D) = conv (val(pJ))
J∈([n]

k )

This description fails for other plabic graphs/ torus charts

Every pJ is a ϑ-function, say ϑνJ = pJ

∆BL(D) = convBL (νJ)
J∈([n]

k ), independent of torus chart

Analogous result holds for complete flag variety



Newton-Okounkov Bodies

Example (X = Grk (Cn) (+ Lara Bossinger) )

Rietsch-Williams study NO bodies for X = Grk (Cn) using a
valuation val associated to plabic graphs

D pullback of hyperplane class under Plücker embedding
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For certain plabic graphs ( torus charts):

∆val(D) = conv (val(pJ))
J∈([n]

k )

This description fails for other plabic graphs/ torus charts

Every pJ is a ϑ-function, say ϑνJ = pJ

∆BL(D) = convBL (νJ)
J∈([n]

k ), independent of torus chart

Analogous result holds for complete flag variety



Newton-Okounkov Bodies

Example (X = Grk (Cn) (+ Lara Bossinger) )

Rietsch-Williams study NO bodies for X = Grk (Cn) using a
valuation val associated to plabic graphs

D pullback of hyperplane class under Plücker embedding
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Batyrev Duality for Cluster Varieties?
Based on various joint works with subsets of the following people:
Lara Bossinger, Man-Wai Cheung, Bosco Fŕıas Medina y Alfredo Nájera Chávez

Basic Definitions

Definition (Gorenstein Fano variety)

A normal variety X is Gorenstein Fano if −KX is Cartier ( Gorenstein)
and ample ( Fano).

Definition (Reflexive polytope)

A lattice polytope P ⊂MR is reflexive if its dual

P ◦ := {n ∈ NR : 〈m,n〉 ≥ −1 for all m ∈ P}

is also a lattice polytope.
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Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

If X is a d-dimensional Gorenstein Fano toric variety, then P−KX
is a

d-dimensional reflexive polytope.

If P is a d-dimensional reflexive polytope, then the projective toric
variety associated to P is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and D ∈ |−KX |. By the
adjunction formula KD = (KX +D)|D = 0.

The Gorenstein property
implies generic D have at worst canonical singularities. So |−KX | consists
of mildly singular Calabi-Yau hypersurfaces of X.
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Batyrev Duality for Cluster Varieties?

Review of Toric Case

Landau-Ginzburg Mirror

Let D =
∑

iDni be the toric anticanonical divisor of X ⊃ T .

The Landau-Ginzburg potential is W =
∑

i z
ni : T∨ → C.

Batyrev dual

The level sets of W are almost CY, but are not compact.

Fix: View W as section of some OY (D′), Y ⊃ T∨.

Minimalistic approach: Y := TV (Newt(W )).

Result: Newt(W ) = P ◦, so Y is also Gorenstein Fano. W and the
other sections of OY (D′) are (mildly singular) CYs.

Sections of OX(D) and OY (D′) are mirror CYs.
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The Cluster Case

Landau-Ginzburg Mirror and Anticanonical “Polytope”

Let (X,D) be a Fano minimal model of U , with D =
∑

iDνi .

The Landau-Ginzburg potential is W =
∑

i ϑνi : U∨ → C.

The Z-points of rP :=
{
p ∈ (U∨)trop(R) : W trop(p) ≥ −r

}
parametrize ϑ-basis for Γ(X,OX(rD)).

The Tropical Pairing

U trop(Z) consists of divisorial discrete valuations ν : C(U) \ {0} → Z.

(U∨)trop(Z) parametrizes ϑ-functions on U .

We have the evaluation pairing:

〈 · , · 〉 : U trop(Z)× (U∨)trop(Z)→ Z
( ν , p ) 7→ ν(ϑp)
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The Cluster Case

Dual “Polytope” and the Potential

Define Newtϑ(W ) := convBL(νi) ⊂ U trop(R).

For S ⊂ U trop(R), define
S◦ :=

{
p ∈ (U∨)trop(R) : 〈ν, p〉 ≥ −1 for all ν ∈ S(Q)

}
.

Theorem: Newtϑ(W )◦(Q) = P (Q).

Proposed Dual

Newtϑ(W ) defines a minimal model (Y,D′) of U∨.

Guess: Generic sections of OX(D) and OY (D′) are mirror (mildly
singular) Calabi-Yau varieties.
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