Convexity in tropical spaces and compactifications of cluster varieties

Timothy Magee

King's College London

Joint work with Man-Wai Cheung and Alfredo Nájera Chávez arXiv:1912.13052 [math.AG]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalize the polytope construction of projective toric varieties to the non-toric world

Generalize the polytope construction of projective toric varieties to the **cluster** world

Generalize the polytope construction of projective toric varieties to the **cluster** world

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Toric Picture:

A *d*-dimensional convex rational polytope defines a *d*-dimensional (polarized) projective toric variety.

Generalize the polytope construction of projective toric varieties to the **cluster** world

Toric Picture:

A *d*-dimensional convex rational polytope defines a *d*-dimensional (polarized) projective toric variety.

• Integral points of polytope $P \rightsquigarrow$ Sections of line bundle $\mathcal L$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generalize the polytope construction of projective toric varieties to the **cluster** world

Toric Picture:

A *d*-dimensional convex rational polytope defines a *d*-dimensional (polarized) projective toric variety.

- Integral points of polytope $P \rightsquigarrow$ Sections of line bundle $\mathcal L$
- Integral points of dilations of $P \rightsquigarrow$ Sections of powers of $\mathcal L$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example $(\mathbb{P}^2, \mathcal{O}(1))$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Non-example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Non-example

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let $T \cong (\mathbb{C}^*)^n$ and $M = \operatorname{char}(T)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Want cluster analogue of this:

• M is a basis for $\mathcal{O}(T)$

Let $T \cong (\mathbb{C}^*)^n$ and $M = \operatorname{char}(T)$.

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $T \cong (\mathbb{C}^*)^n$ and $M = \operatorname{char}(T)$.

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The $M\mbox{-}{\rm points}$ of S and its dilations give a basis for the section ring of ${\cal L}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Algebraic torus
$$T = (\mathbb{C}^*)^n$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus
$$T = (\mathbb{C}^*)^n$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Example

Carefully glued tori

$$U = \bigcup_i T_i / \sim$$

$$\mu_{ij}: T_i \dashrightarrow T_j, \qquad \mu_{ij}^*\left(\Omega_j\right) = \Omega_i$$

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus
$$T = (\mathbb{C}^*)^n$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Example

Carefully glued tori

$$U = \bigcup_i T_i / \sim$$

$$\mu_{ij}: T_i \dashrightarrow T_j, \qquad \mu_{ij}^*\left(\Omega_j\right) = \Omega_i$$

Cluster variety

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Almost toric

- Almost toric
- Simpler than general Log CYs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Almost toric
- Simpler than general Log CYs. ("Correct" setting should be *affine log* CYs with maximal boundary)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Almost toric
- Simpler than general Log CYs. ("Correct" setting should be *affine log* CYs with maximal boundary)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Machinery isn't fully developed for general Log CYs yet.

- Almost toric
- Simpler than general Log CYs. ("Correct" setting should be *affine log* CYs with maximal boundary)
- Machinery isn't fully developed for general Log CYs yet.
- Interesting in many areas of math: Representation theory, Integrable systems, Hyperbolic geometry, Quantum groups, Scattering amplitudes...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scattering Diagrams and Broken Lines

• Tools from Gross-Seibert Mirror Symmetry program

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rough idea

A scattering diagram is a collection of *walls* in a piecewise linear manifold $U^{\text{trop}}(\mathbb{R})$.

Rough idea

A scattering diagram is a collection of *walls* in a piecewise linear manifold $U^{\text{trop}}(\mathbb{R})$. Think \mathbb{R}^n , or $N_{\mathbb{R}}$ in the toric case. Encodes log geometry of U.

Rough idea

A scattering diagram is a collection of *walls* in a piecewise linear manifold $U^{\text{trop}}(\mathbb{R})$. Think \mathbb{R}^n , or $N_{\mathbb{R}}$ in the toric case. Encodes log geometry of U. *Wall:* Codim 1 rational convex cone, decorated with a function (*scattering function*)

Rough idea

A scattering diagram is a collection of *walls* in a piecewise linear manifold $U^{\text{trop}}(\mathbb{R})$.

Think \mathbb{R}^n , or $N_{\mathbb{R}}$ in the toric case. Encodes log geometry of U.

Wall: Codim 1 rational convex cone, decorated with a function (*scattering function*)

Used to construct a canonical algebra- determined by logarithmic

geometry of U- which is conjectured to be $\mathcal{O}(U^{\vee})$ when U is an "affine log CY with maximal boundary".

Scattering Diagrams and Broken Lines

Example

 $\begin{array}{l} Y = \mbox{ del Pezzo surface of degree 5} \\ D = \mbox{ anticanonical pentagon in } Y \\ U = Y \setminus D \end{array}$

Scattering Diagrams and Broken Lines

Broken Lines

The canonical algebra is defined in terms of broken lines.

Broken Lines

The canonical algebra is defined in terms of *broken lines*. Broken line: a ray in $U^{\text{trop}}(\mathbb{R})$ allowed to bend in prescribed fashion at walls. Each linear segment decorated with a monomial, monomial and scattering function determine allowed bendings.

Broken Lines

The canonical algebra is defined in terms of *broken lines*. Broken line: a ray in $U^{\text{trop}}(\mathbb{R})$ allowed to bend in prescribed fashion at walls. Each linear segment decorated with a monomial, monomial and scattering function determine allowed bendings.

Scattering Diagrams and Broken Lines

Broken Lines

Get " ϑ -function" for each $p \in U^{\operatorname{trop}}(\mathbb{Z})$ - think N is basis for $\mathcal{O}(T^{\vee})$.

Scattering Diagrams and Broken Lines

Broken Lines

Get " ϑ -function" for each $p \in U^{\operatorname{trop}}(\mathbb{Z})$ - think N is basis for $\mathcal{O}(T^{\vee})$. Local coordinates for ϑ_p : pick $Q \in U^{\operatorname{trop}}(\mathbb{R})$. Write ϑ_p as sum of decorating monomials of broken lines starting from direction p and ending at Q.
Scattering Diagrams and Broken Lines

Broken Lines

Get " ϑ -function" for each $p \in U^{\operatorname{trop}}(\mathbb{Z})$ - think N is basis for $\mathcal{O}(T^{\vee})$. Local coordinates for ϑ_p : pick $Q \in U^{\operatorname{trop}}(\mathbb{R})$. Write ϑ_p as sum of decorating monomials of broken lines starting from direction p and ending at Q. $\vartheta_{(-1,0)} = z^{(-1,1)} + z^{(-1,0)}$

ϑ -function multiplication

Structure constants α_{pq}^{r}

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in U^{\mathrm{trop}}(\mathbb{Z})} \alpha_{pq}^r \vartheta_r$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Structure constants α_{pq}^{r}

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in U^{\mathrm{trop}}(\mathbb{Z})} \alpha_{pq}^r \vartheta_r$$

Theorem (Gross-Hacking-Keel-Kontsevich)

$$\alpha_{pq}^{r} = \sum_{\substack{(\gamma_{1}, \gamma_{2}) \\ I(\gamma_{1}) = p, \ I(\gamma_{2}) = q \\ \gamma_{1}(0) = \gamma_{2}(0) = r \\ F(\gamma_{1}) + F(\gamma_{2}) = r}} c(\gamma_{1}) \ c(\gamma_{2})$$

ϑ -function multiplication

Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Want cluster analogue of this:

- ${\ \bullet \ } M$ is a basis for ${\mathcal O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- \bullet The $M\mbox{-points}$ of S and its dilations give a basis for the section ring of ${\cal L}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The $M\mbox{-}{\rm points}$ of S and its dilations give a basis for the section ring of ${\cal L}$

So far have:

```
• U^{\operatorname{trop}}(\mathbb{Z}) "is" \vartheta-basis for \mathcal{O}(U^{\vee})
```

Convexity in $U^{\operatorname{trop}}(\mathbb{R})$

Question

Is there a convexity notion that says when $S\subset U^{\rm trop}(\mathbb{R})$ defines a compactification of $U^\vee ?$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Question

Is there a convexity notion that says when $S \subset U^{trop}(\mathbb{R})$ defines a compactification of U^{\vee} ? When do S and its dilations define a graded ring?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Question

Is there a convexity notion that says when $S \subset U^{trop}(\mathbb{R})$ defines a compactification of U^{\vee} ? When do S and its dilations define a graded ring?

Let's make this more precise.

Definition (Positive subset)

A closed subset $S \subset U^{\operatorname{trop}}(\mathbb{R})$ is **positive** if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in aS(\mathbb{Z})$, $q \in bS(\mathbb{Z})$, and $r \in U^{\operatorname{trop}}(\mathbb{Z})$ with $\alpha_{p,q}^r \neq 0$ we have: $r \in (a+b) S$.

Question

Is there a convexity notion that says when $S \subset U^{trop}(\mathbb{R})$ defines a compactification of U^{\vee} ? When do S and its dilations define a graded ring?

Let's make this more precise.

Definition (Positive subset)

A closed subset $S \subset U^{\operatorname{trop}}(\mathbb{R})$ is **positive** if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in aS(\mathbb{Z})$, $q \in bS(\mathbb{Z})$, and $r \in U^{\operatorname{trop}}(\mathbb{Z})$ with $\alpha_{p,q}^r \neq 0$ we have: $r \in (a+b) S$.

Question

When is S positive?

Definition (Broken line convex [Cheung, M., Nájera Chávez])

A closed subset $S \subset U^{\text{trop}}(\mathbb{R})$ is **broken line convex** if for every $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition (Broken line convex [Cheung, M., Nájera Chávez])

A closed subset $S \subset U^{\text{trop}}(\mathbb{R})$ is **broken line convex** if for every $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Theorem (Cheung, M., Nájera Chávez)

S is positive if and only if S is broken line convex.

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- $\bullet\,$ The $M\mbox{-points}$ of S and its dilations give a basis for the section ring of ${\cal L}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Want cluster analogue of this:

- M is a basis for $\mathcal{O}(T)$
- Convexity in $M_{\mathbb{R}}$ determines which $S \subset M_{\mathbb{R}}$ define polarized projective compactifications (X, \mathcal{L}) of T
- The $M\mbox{-}{\rm points}$ of S and its dilations give a basis for the section ring of ${\cal L}$

The generalization:

- $U^{\operatorname{trop}}(\mathbb{Z})$ "is" ϑ -basis for $\mathcal{O}(U^{\vee})$
- Broken line convexity in $U^{\mathrm{trop}}(\mathbb{R})$ determines which $S \subset U^{\mathrm{trop}}(\mathbb{R})$ define polarized projective compactifications (X, \mathcal{L}) of U^{\vee}
- The $U^{\rm trop}(\mathbb{Z})\text{-points}$ of S and its dilations give a basis for the section ring of $\mathcal L$

Example (Anticanonical "polytope" of degree 5 del Pezzo surface)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-example

(ロ)、(型)、(E)、(E)、 E) の(()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• X a d-dimensional variety

• X a d-dimensional variety

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\bullet \ D$ a divisor on X

- X a d-dimensional variety
- D a divisor on X
- R_D the section ring of D

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- X a d-dimensional variety
- D a divisor on X
- R_D the section ring of D

•
$$R_D := \bigoplus_{j \ge 0} R_j, \quad R_j := \Gamma(X, \mathcal{O}_X(jD))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- X a d-dimensional variety
- D a divisor on X
- R_D the section ring of D

•
$$R_D := \bigoplus_{j \ge 0} R_j, \quad R_j := \Gamma(X, \mathcal{O}_X(jD))$$

• $\nu: R_D \setminus \{0\} \to \mathbb{Z}^d$ a valuation

- X a d-dimensional variety
- D a divisor on X
- R_D the section ring of D

•
$$R_D := \bigoplus_{j \ge 0} R_j, \quad R_j := \Gamma(X, \mathcal{O}_X(jD))$$

• $\nu: R_D \setminus \{0\} \to \mathbb{Z}^d$ a valuation

Newton-Okounkov Body: $\Delta_{\nu}(D) := \operatorname{conv}\left(\bigcup_{j\geq 1} \frac{1}{j}\nu(R_j)\right)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

• $U^{\vee} \subset X$ partial minimal model

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_D the section ring of D

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_D the section ring of D
- ϑ -function analogue of Newton polytope:

$$\operatorname{Newt}_{\vartheta} \Big(\sum_{p \in U^{\operatorname{trop}}(\mathbb{Z})} a_p \vartheta_p \Big) := \operatorname{conv}_{\operatorname{BL}} \{ p : a_p \neq 0 \}$$

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_D the section ring of D
- ϑ -function analogue of Newton polytope:

Newt
$$_{\vartheta}\left(\sum_{p\in U^{\mathrm{trop}}(\mathbb{Z})}a_{p}\vartheta_{p}\right) := \mathrm{conv}_{\mathrm{BL}}\left\{p: a_{p}\neq 0\right\}.$$

Intrinsic Newton-Okounkov Body:

$$\Delta_{\mathrm{BL}}(D) := \operatorname{conv}_{\mathrm{BL}}\left(\bigcup_{j\geq 1} \left(\bigcup_{f\in R_j(D)} \frac{1}{j} \operatorname{Newt}_{\vartheta}(f)\right)\right)$$

・ロト・日本・日本・日本・日本・日本

Intrinsic Newton-Okounkov Bodies for Cluster Varieties

- $U^{\vee} \subset X$ partial minimal model
- D a divisor on X
- R_D the section ring of D
- ϑ -function analogue of Newton polytope:

Newt_{$$\vartheta$$} $\left(\sum_{p \in U^{\operatorname{trop}}(\mathbb{Z})} a_p \vartheta_p\right) := \operatorname{conv}_{\operatorname{BL}} \left\{p : a_p \neq 0\right\}$

Intrinsic Newton-Okounkov Body:

$$\Delta_{\mathrm{BL}}(D) := \operatorname{conv}_{\mathrm{BL}}\left(\bigcup_{j\geq 1} \left(\bigcup_{f\in R_j(D)} \frac{1}{j} \operatorname{Newt}_{\vartheta}(f)\right)\right).$$

• Choice of torus chart gives identification of $\Delta_{\rm BL}(D)$ with a usual Newton-Okounkov body.

• Rietsch-Williams study NO bodies for $X = \operatorname{Gr}_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*

- Rietsch-Williams study NO bodies for $X = \operatorname{Gr}_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*
 - D pullback of hyperplane class under Plücker embedding

- Rietsch-Williams study NO bodies for $X = Gr_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*
 - D pullback of hyperplane class under Plücker embedding
 - For certain plabic graphs (~> torus charts):

$$\Delta_{\mathrm{val}}(D) = \mathrm{conv} \left(\mathrm{val}(p_J) \right)_{J \in \binom{[n]}{k}}$$

- Rietsch-Williams study NO bodies for $X = Gr_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*
 - D pullback of hyperplane class under Plücker embedding
 - For certain plabic graphs (~> torus charts):

$$\Delta_{\mathrm{val}}(D) = \mathrm{conv} \left(\mathrm{val}(p_J) \right)_{J \in \binom{[n]}{k}}$$

• This description fails for other plabic graphs/ torus charts

- Rietsch-Williams study NO bodies for $X = Gr_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*
 - D pullback of hyperplane class under Plücker embedding
 - For certain plabic graphs (~> torus charts):

$$\Delta_{\mathrm{val}}(D) = \mathrm{conv} \left(\mathrm{val}(p_J) \right)_{J \in \binom{[n]}{k}}$$

A D N A 目 N A E N A E N A B N A C N

- This description fails for other plabic graphs/ torus charts
- Every p_J is a ϑ -function, say $\vartheta_{\nu_J} = p_J$

- Rietsch-Williams study NO bodies for $X = Gr_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*
 - D pullback of hyperplane class under Plücker embedding
 - For certain plabic graphs (~> torus charts):

$$\Delta_{\mathrm{val}}(D) = \mathrm{conv} \left(\mathrm{val}(p_J) \right)_{J \in \binom{[n]}{k}}$$

A D N A 目 N A E N A E N A B N A C N

- This description fails for other plabic graphs/ torus charts
- Every p_J is a ϑ -function, say $\vartheta_{\nu_J} = p_J$
- $\Delta_{\mathrm{BL}}(D) = \operatorname{conv}_{\mathrm{BL}}(\nu_J)_{J \in \binom{[n]}{k}}$, independent of torus chart

- Rietsch-Williams study NO bodies for $X = Gr_k(\mathbb{C}^n)$ using a valuation val associated to *plabic graphs*
 - D pullback of hyperplane class under Plücker embedding
 - For certain plabic graphs (~> torus charts):

$$\Delta_{\mathrm{val}}(D) = \mathrm{conv} \left(\mathrm{val}(p_J) \right)_{J \in \binom{[n]}{k}}$$

- This description fails for other plabic graphs/ torus charts
- Every p_J is a ϑ -function, say $\vartheta_{\nu_J} = p_J$
- $\Delta_{\mathrm{BL}}(D) = \operatorname{conv}_{\mathrm{BL}}(\nu_J)_{J \in \binom{[n]}{k}}$, independent of torus chart
- Analogous result holds for complete flag variety

Batyrev Duality for Cluster Varieties?

Based on various joint works with subsets of the following people: Lara Bossinger, Man-Wai Cheung, Bosco Frías Medina y Alfredo Nájera Chávez

Basic Definitions

Definition (Gorenstein Fano variety)

A normal variety X is **Gorenstein Fano** if $-K_X$ is Cartier (\rightsquigarrow Gorenstein) and ample (\rightsquigarrow Fano).
Based on various joint works with subsets of the following people: Lara Bossinger, Man-Wai Cheung, Bosco Frías Medina y Alfredo Nájera Chávez

Basic Definitions

Definition (Gorenstein Fano variety)

A normal variety X is **Gorenstein Fano** if $-K_X$ is Cartier (\rightsquigarrow Gorenstein) and ample (\rightsquigarrow Fano).

Definition (Reflexive polytope)

A lattice polytope $P \subset M_{\mathbb{R}}$ is **reflexive** if its dual

$$P^{\circ} := \{ n \in N_{\mathbb{R}} : \langle m, n \rangle \ge -1 \text{ for all } m \in P \}$$

is also a lattice polytope.

Polytopes and toric Fanos

• If X is a d-dimensional Gorenstein Fano toric variety, then P_{-K_X} is a d-dimensional reflexive polytope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polytopes and toric Fanos

• If X is a d-dimensional Gorenstein Fano toric variety, then P_{-K_X} is a d-dimensional reflexive polytope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• If *P* is a *d*-dimensional reflexive polytope, then the projective toric variety associated to *P* is Gorenstein Fano.

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then P_{-K_X} is a d-dimensional reflexive polytope.
- If *P* is a *d*-dimensional reflexive polytope, then the projective toric variety associated to *P* is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and $D \in |-K_X|$. By the adjunction formula $K_D = (K_X + D)|_D = 0$.

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then P_{-K_X} is a d-dimensional reflexive polytope.
- If *P* is a *d*-dimensional reflexive polytope, then the projective toric variety associated to *P* is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and $D \in |-K_X|$. By the adjunction formula $K_D = (K_X + D)|_D = 0$. The Gorenstein property implies generic D have at worst canonical singularities.

Polytopes and toric Fanos

- If X is a d-dimensional Gorenstein Fano toric variety, then P_{-K_X} is a d-dimensional reflexive polytope.
- If *P* is a *d*-dimensional reflexive polytope, then the projective toric variety associated to *P* is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and $D \in |-K_X|$. By the adjunction formula $K_D = (K_X + D)|_D = 0$. The Gorenstein property implies generic D have at worst canonical singularities. So $|-K_X|$ consists of mildly singular Calabi-Yau hypersurfaces of X.

Review of Toric Case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Landau-Ginzburg Mirror

• Let $D = \sum_i D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_{i} D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_{i} D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_{i} D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

Batyrev dual

• The level sets of W are *almost* CY, but are not compact.

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_i D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

- The level sets of W are *almost* CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_Y(D')$, $Y \supset T^{\vee}$.

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_i D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

- The level sets of W are *almost* CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_Y(D')$, $Y \supset T^{\vee}$.
- Minimalistic approach: Y := TV(Newt(W)).

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_{i} D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

- The level sets of W are *almost* CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_Y(D')$, $Y \supset T^{\vee}$.
- Minimalistic approach: Y := TV(Newt(W)).
- Result: Newt(W) = P°, so Y is also Gorenstein Fano. W and the other sections of O_Y(D') are (mildly singular) CYs.

Review of Toric Case

Landau-Ginzburg Mirror

- Let $D = \sum_{i} D_{n_i}$ be the toric anticanonical divisor of $X \supset T$.
- The Landau-Ginzburg potential is $W = \sum_i z^{n_i} : T^{\vee} \to \mathbb{C}$.

- The level sets of W are *almost* CY, but are not compact.
- Fix: View W as section of some $\mathcal{O}_Y(D')$, $Y \supset T^{\vee}$.
- Minimalistic approach: Y := TV(Newt(W)).
- Result: Newt(W) = P°, so Y is also Gorenstein Fano. W and the other sections of O_Y(D') are (mildly singular) CYs.
- Sections of $\mathcal{O}_X(D)$ and $\mathcal{O}_Y(D')$ are mirror CYs.

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D = \sum_i D_{\nu_i}$.

• The Landau-Ginzburg potential is $W = \sum_i \vartheta_{\nu_i} : U^{\vee} \to \mathbb{C}.$

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D = \sum_i D_{\nu_i}$.

- The Landau-Ginzburg potential is $W = \sum_i \vartheta_{\nu_i} : U^{\vee} \to \mathbb{C}.$
- The \mathbb{Z} -points of $rP := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : W^{\operatorname{trop}}(p) \ge -r \}$ parametrize ϑ -basis for $\Gamma(X, \mathcal{O}_X(rD))$.

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D = \sum_i D_{\nu_i}$.

- The Landau-Ginzburg potential is $W = \sum_i \vartheta_{\nu_i} : U^{\vee} \to \mathbb{C}.$
- The \mathbb{Z} -points of $rP := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : W^{\operatorname{trop}}(p) \ge -r \}$ parametrize ϑ -basis for $\Gamma(X, \mathcal{O}_X(rD))$.

The Tropical Pairing

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D = \sum_i D_{\nu_i}$.

- The Landau-Ginzburg potential is $W = \sum_i \vartheta_{\nu_i} : U^{\vee} \to \mathbb{C}.$
- The \mathbb{Z} -points of $rP := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : W^{\operatorname{trop}}(p) \ge -r \}$ parametrize ϑ -basis for $\Gamma(X, \mathcal{O}_X(rD))$.

The Tropical Pairing

• $U^{\operatorname{trop}}(\mathbb{Z})$ consists of divisorial discrete valuations $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$.

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D = \sum_i D_{\nu_i}$.

- The Landau-Ginzburg potential is $W = \sum_i \vartheta_{\nu_i} : U^{\vee} \to \mathbb{C}.$
- The \mathbb{Z} -points of $rP := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : W^{\operatorname{trop}}(p) \ge -r \}$ parametrize ϑ -basis for $\Gamma(X, \mathcal{O}_X(rD))$.

The Tropical Pairing

U^{trop}(Z) consists of *divisorial discrete valuations* ν : C(U) \ {0} → Z.
 (U[∨])^{trop}(Z) parametrizes ϑ-functions on U.

The Cluster Case

Landau-Ginzburg Mirror and Anticanonical "Polytope"

Let (X, D) be a Fano minimal model of U, with $D = \sum_i D_{\nu_i}$.

- The Landau-Ginzburg potential is $W = \sum_i \vartheta_{\nu_i} : U^{\vee} \to \mathbb{C}.$
- The \mathbb{Z} -points of $rP := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : W^{\operatorname{trop}}(p) \ge -r \}$ parametrize ϑ -basis for $\Gamma(X, \mathcal{O}_X(rD))$.

The Tropical Pairing

- $U^{\mathrm{trop}}(\mathbb{Z})$ consists of divisorial discrete valuations $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$.
- $(U^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on U.

• We have the evaluation pairing:

$$\langle \cdot , \cdot \rangle : U^{\operatorname{trop}}(\mathbb{Z}) \times (U^{\vee})^{\operatorname{trop}}(\mathbb{Z}) \to \mathbb{Z}$$
$$(\nu , p) \qquad \mapsto \nu(\vartheta_p)$$

The Cluster Case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dual "Polytope" and the Potential

• Define Newt_{ϑ}(W) := conv_{BL}(ν_i) $\subset U^{trop}(\mathbb{R})$.

The Cluster Case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dual "Polytope" and the Potential

• Define Newt_{ϑ}(W) := conv_{BL}(ν_i) $\subset U^{trop}(\mathbb{R})$.

• For
$$S \subset U^{\operatorname{trop}}(\mathbb{R})$$
, define
 $S^{\circ} := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : \langle \nu, p \rangle \ge -1 \text{ for all } \nu \in S(\mathbb{Q}) \}.$

The Cluster Case

Dual "Polytope" and the Potential

• Define Newt_{ϑ}(W) := conv_{BL}(ν_i) $\subset U^{trop}(\mathbb{R})$.

• For
$$S \subset U^{\operatorname{trop}}(\mathbb{R})$$
, define
 $S^{\circ} := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : \langle \nu, p \rangle \ge -1 \text{ for all } \nu \in S(\mathbb{Q}) \}.$

Theorem: Newt_{ϑ}(W)[°](\mathbb{Q}) = $P(\mathbb{Q})$.

The Cluster Case

Dual "Polytope" and the Potential

• Define Newt_{ϑ}(W) := conv_{BL}(ν_i) $\subset U^{trop}(\mathbb{R})$.

• For
$$S \subset U^{\operatorname{trop}}(\mathbb{R})$$
, define
 $S^{\circ} := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : \langle \nu, p \rangle \ge -1 \text{ for all } \nu \in S(\mathbb{Q}) \}.$

Theorem: Newt_{ϑ}(W)[°](\mathbb{Q}) = P(\mathbb{Q}).

Proposed Dual

Newt_{ϑ}(W) defines a minimal model (Y, D') of U^{\vee}.

The Cluster Case

Dual "Polytope" and the Potential

• Define Newt_{ϑ}(W) := conv_{BL}(ν_i) $\subset U^{trop}(\mathbb{R})$.

• For
$$S \subset U^{\operatorname{trop}}(\mathbb{R})$$
, define
 $S^{\circ} := \{ p \in (U^{\vee})^{\operatorname{trop}}(\mathbb{R}) : \langle \nu, p \rangle \ge -1 \text{ for all } \nu \in S(\mathbb{Q}) \}.$

Theorem: Newt_{ϑ}(W)^{\circ}(Q) = P(Q).

Proposed Dual

Newt_{ϑ}(W) defines a minimal model (Y, D') of U^{\vee} . **Guess:** Generic sections of $\mathcal{O}_X(D)$ and $\mathcal{O}_Y(D')$ are mirror (mildly singular) Calabi-Yau varieties.

- [Bat94] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom, 493–535 (1994).
- [BCMN] L. Bossinger, M.-W. Cheung, T. Magee and A. Nájera Chávez, On cluster duality, mirror symmetry and toric degenerations of Grassmannians, In progress.
- [GHKK18] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2), 497–608 (2018).
 - [RW19] K. Rietsch and L. Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Mathematical journal 168(18), 3437–3527 (2019).