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One of the most famous polytopes is the Birkhoff polytope,
i.e.,
B(n) = {M ∈ Rn×n : mij ≥ 0, row sums = column sums = 1}.

B(n) is an example of a transportation polytope, which play
an important role in statistics.

By the Birkhoff–von Neumann theorem, the vertices of B(n)
are exactly the n × n permutation matrices.

Its dimension is (n − 1)2 = n2 − 2n + 1.

It is very nice, e.g., it is Gorenstein and compressed....

... but it is very complicated, and we do not even know its
volume (for n ≥ 11).
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Permutation matrices are related to the Coxeter group of type
A.

McCabe’s idea: Let’s look at a type B-analogue, i.e., let’s
look at BB(n) = conv{signed n × n permutation matrices}.
This polytope is symmetric under reflections across coordinate
hyperplanes, i.e., it is unconditional.

Moreover, it is also reflexive and has many more desirable
properties.

This led us to study unconditional reflexive polytopes in
general.
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Let P ⊂ Rd be a d-dimensional lattice polytope, i.e.,

P = conv
{
v 1, v 2, . . . , v n : v i ∈ Zd

}
:=

{
d∑

i=1

λiv i : λi ≥ 0,
∑
i

λi = 1

}
.

Equivalently, lattice polytopes can be defined by linear
inequalities, i.e., P = {x : Ax ≤ b}, where A ∈ Zm×d ,
b ∈ Zm.

For the rest of this talk, we assume that all polytopes are
lattice.
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Example

Let � = [−1, 1]2. Then

� = conv{(−1,−1), (−1, 1), (1,−1), (1, 1)} = {x : 〈±e i , x〉 ≤ 1}.

Similarly, the 2-dimensional cross polytope ♦ can be written as

♦ = conv{±e i} = {x : 〈v , x〉 ≤ 1, v ∈ {(±1,±1)}}.

Figure: � and ♦ with their vertices marked red.
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For a lattice polytope P, we are interested in the Ehrhart
function of P, which is defined as

ehrP(k) := #(kP ∩ Zd),

or equivalently the Ehrhart series of P

EhrP(z) := 1 +
∑
k≥1

ehrP(k)zk .
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Example

Let P = [0, 1]2. Then

ehrP(k) = (k + 1)2.

P

2P

3P

4P
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Example

Let P = [0, 1]2. Then

EhrP(k) =
1 + z

(1− z)3
.

x
y

z

P
2P

3P
4P

Figure: The unit square P and its dilates 2P and 3P (green), the cone
over P (gray) and the (conical hull of the) canonical module (blue).
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Theorem [BR15, Thm. 3.12]

Let P ⊂ Rd be a d-dimensional lattice polytope. Then

EhrP(z) =
h∗0 + h∗1z + · · ·+ h∗dz

d

(1− z)d+1
,

and the coefficients h∗i are non-negative integers.

This is equivalent to saying that ehrP is a polynomial of
degree d . Its leading coefficient is the Euclidean volume.

The Ehrhart series of P is actually the Hilbert series of a
graded algebra k[P].

The holy grail of Ehrhart theory is to characterize the
coefficients h∗i .

In particular, determining when h∗ is unimodal, i.e.,
h∗0 ≤ h∗1 ≤ · · · ≤ h∗r ≥ h∗r+1 ≥ · · · ≥ h∗s , is of interest.
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Definition

Let P be a d-lattice polytope with 0 ∈ P◦. Then P is reflexive if
P = {x : 〈ai , x〉 ≤ 1}, where ai ∈ Zd .

Its dual P∗ is defined as
P∗ = conv{a1, . . . , am}.

More generally, P reflexive if there is a translate with
0 ∈ (P + t)◦ that is reflexive.

This is equivalent to saying that h∗P is palindromic and of
degree d , i.e., h∗i = h∗d−i .

Another equivalent definition is that P is reflexive if and only if
its polar dual P∗ = {y ∈ (Rd)∗ : 〈y , x〉 ≤ 1∀x ∈ P} is lattice.

P is Gorenstein of degree c if cP is reflexive, which is
equivalent to h∗P being palindromic, i.e., h∗i = h∗s−i where
s = deg h∗P .
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Definition

Let P = {x : 〈ai , x〉 ≤ bi} with gcd(ai ) = 1. Then P is
compressed if for all i

max
p∈P
〈ai ,p〉 −min

p∈P
〈ai ,p〉 = 1.

Example

The standard triangle ∆ = {x : 〈v , x〉where v ∈ {(1, 1),−e i}} is
compressed.

maxp∈P〈(1, 1), p〉 − minp∈P〈(1, 1), p〉 = 1
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Definition

Let P = {x : 〈ai , x〉 ≤ bi} with gcd(ai ) = 1. Then P is
compressed if for all i

max
p∈P
〈ai ,p〉 −min

p∈P
〈ai ,p〉 = 1.

Example

The standard triangle ∆ = {x : 〈v , x〉where v ∈ {(1, 1),−e i}} is
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Definition

Let P = {x : 〈ai , x〉 ≤ bi} with gcd(ai ) = 1. Then P is
compressed if for all i

max
p∈P
〈ai ,p〉 −min

p∈P
〈ai ,p〉 = 1.

Compressed polytopes have (regular) unimodular
triangulations, i.e., triangulations into simplices
conv{v0, v1, . . . , vd} so that v1 − v0, . . . , vd − v0 is a lattice
basis of Zd .

In fact, being compressed is equivalent to all pulling
triangulations being unimodular.
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Definition

A polytope P is unconditional if p ∈ P implies
(±p1, . . . ,±pd) ∈ P.

We set P≥0 := P ∩ Rd
≥0.

Unconditional polytopes are exactly the polytopes that are
invariant under reflection across coordinate hyperplanes.

Due to their symmetry, we can recover unconditional
polytopes from their restriction to any orthant.

P is convex, so we have

P≥0 = {x ∈ Rd
≥0 : 〈ai , x〉 ≤ 1 for i = 1, . . . ,m} (1)

for some a1, . . . , am ∈ Rd
≥0.

A polytope satisfying (1) is called an anti-blocking polytope.
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Given an anti-blocking polytope Q ⊂ Rd
≥0, the polytope

UQ := {p ∈ Rd : p ∈ Q} is an unconditional convex body,
where p := (|p1|, |p2|, . . . , |pd |).

This establishes a bijection

anti-blocking polytopes←→ unconditional polytopes
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Question

When are unconditional polytopes reflexive?

Theorem

Let P be unconditional. Then P is reflexive if and only if P≥0 is
compressed.

Proof-idea

P is reflexive =⇒ 〈ai , x〉 ≤ 1.

P≥0 has inequalities of the form xi ≥ 0 and 〈ai , x〉 ≤ 1 where
ai ∈ Zd

≥0.

This implies 〈ai , x〉 = 0, or 1 and xi = 0, or 1. Hence P≥0 is
compressed.

The other direction follows similarly.
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Compressed polytopes have regular unimodular triangulations
(RUT) =⇒ P≥0 has RUT.

Reflecting this triangulation across all hyperplanes yields:

Theorem

Let P be unconditional and reflexive. Then P has a RUT. In
particular, h∗P is symmetric and unimodal.

Unconditional polytopes are reflexive if and only if they arise
from compressed anti-blocking polytopes. This leads to the
following question:

Question

When are anti-blocking polytopes compressed?
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Question

When are anti-blocking polytopes compressed?

Theorem ([CFS17, Prop. 3.10])

Let P≥0 be anti-blocking. Then P≥0 is compressed if and only if it
is the stable set polytope of a perfect graph.

Enter perfect graphs!
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Let G = ([d ],E ) be a graph on d vertices.

31

2

A set S of vertices is stable if uv /∈ E for all u, v ∈ S .

A set C of vertices is a clique uv ∈ E for all u, v ∈ C .

The size of the biggest clique of G is denoted ω(G ).

A proper k-coloring of a graph G = ([d ],E ) is a function
c : [d ]→ [k] such that c(u) 6= c(v) whenever uv ∈ E .

The smallest k such that there is a proper coloring of G is
denoted χ(G ) and it is called the chromatic number.
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Definition

A graph is perfect if for all induced H ⊂ G , χ(H) = ω(H).

Example and Non-example

Let K3 be the triangle and C5 be the 5-cycle. Then K3 is perfect,
but C5 is not, as χ(C5) = 3, but ω(C5) = 2.

Figure: K3 and C5.
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Recall:

Theorem ([CFS17, Prop. 3.10])

Let P be anti-blocking. Then P is compressed if and only if it is
the stable set polytope of a perfect graph.

Definition

The stable set polytope of a graph G = ([d ],E ) is
PG := conv{1S : S ⊂ [d ] stable}.

Stable set polytopes are always anti-blocking.

The dimension of a stable set polytope PG equals the number
of vertices of G .
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Definition

The stable set polytope of a graph G = ([d ],E ) is
PG := conv{1S : S ⊂ [d ] stable}.

Example

Let C2 be the cycle on 2 vertices. Then there are three stable sets,
namely ∅, {1}, and {2}. Therefore, PC2 has vertices (0, 0), (1, 0),
and (0, 1).

C2 PC2

Stable set polytopes are always anti-blocking.
The dimension of a stable set polytope PG equals the number
of vertices of G .
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Definition

The stable set polytope of a graph G = ([d ],E ) is
PG := conv{1S : S ⊂ [d ] stable}.

Example

Let G be the graph on 2 vertices without edges. Then there are
four stable sets, namely ∅, {1}, {2}, and {1, 2}. Therefore, PG has
vertices (0, 0), (1, 0), (0, 1), and (1, 1).

G PG

Stable set polytopes are always anti-blocking.
The dimension of a stable set polytope PG equals the number
of vertices of G .
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Perfect graphs can be characterized purely geometrically:

Theorem [Lov72]

A graph G = ([d ],E ) is perfect if and only if

PG = {x ∈ Rd
≥0 :

∑
i∈C

xi ≤ 1 for all max. cliques C ⊆ [d ]}.
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Stable set polytopes are compressed if and only if they come
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A graph G = ([d ],E ) is perfect if and only if

PG = {x ∈ Rd
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∑
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Example

C2 PC2

x + y ≤ 1
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Perfect graphs can be characterized purely geometrically:

Theorem [Lov72]

A graph G = ([d ],E ) is perfect if and only if

PG = {x ∈ Rd
≥0 :

∑
i∈C

xi ≤ 1 for all max. cliques C ⊆ [d ]}.

Example

G PG

x ≤ 1, y ≤ 1
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Let’s sum up what he have thus far:

UPG reflexive if and only if G is perfect.

P unconditional and reflexive if and only if P = UPG for some
perfect graph G .

Equivalently, P is unconditional and reflexive if and only if
P≥0 = PG for some perfect G .

Example

∩Rd
≥0

reflections
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UPG reflexive if and only if G is perfect.

P unconditional and reflexive if and only if P = UPG for some
perfect graph G .

Equivalently, P is unconditional and reflexive if and only if
P≥0 = PG for some perfect G .

Dualizing the polytope corresponds to taking the complement!

Example

Let’s dualize ♦ = conv{±e i}!

∩Rd
≥0 G 7→ G
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Corollary (Weak Perfect Graph Theorem)

G is perfect if and only if G is perfect.

Theorem

Two unconditional reflexive polytopes are unimodularly equivalent
if and only if they arise from isomorphic graphs.

Therefore, we have a bijection between perfect graphs on d
vertices and unconditional reflexive d-polytopes.

We can now count unconditional reflexive polytopes!

n 3 4 5 6 7 8 9 10 11 12
p(n) 4 11 33 148 906 8887 136756 3269264 115811998 5855499195

Table: Number p(n) of unlabeled perfect graphs; OEIS sequence
A052431.
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if and only if they arise from isomorphic graphs.

Therefore, we have a bijection between perfect graphs on d
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THANK YOU!
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