Type D Associahedra are Unobstructed

Nathan Ilten

Simon Fraser University

August 13, 2020

Stanley-Reisner Rings

Definition

A simplicial complex \mathcal{K} with vertex set V is a collection of subsets of V, closed under taking subsets.

The Stanley-Reisner ideal of \mathcal{K} is

$$I_{\mathcal{K}} = \left\langle \prod_{v \in W} x_v \mid W \notin \mathcal{K} \right\rangle \subseteq \mathbb{K}[x_v \mid v \in V].$$

The Stanley-Reisner ring of \mathcal{K} is $S_{\mathcal{K}} = \mathbb{K}[x_v \mid v \in V]/I_{\mathcal{K}}$

$$\frac{E_{X}}{\Sigma_{K}} = \left\langle x_{1} x_{4}, x_{1} x_{2} x_{3} \right\rangle$$

Stanley-Reisner Schemes

Geometry of $\mathbb{P}(\mathcal{K}) = \operatorname{Proj} S_{\mathcal{K}}$ is reflected in the geometry of \mathcal{K} :

- ► Irreducible components ↔ maximal faces;
- \mathcal{K} a sphere $\implies \mathbb{P}(\mathcal{K})$ Calabi-Yau;
- P lattice polytope with K as regular unimodular triangulation ⇒ toric variety assoc. to P degenerates to P(K).

The Classical Associahedron

Boundary complex A_n of dual associahedron:

- Vertices are diagonals δ_{ij} of *n*-gon;
- Faces are sets of non-crossing diagonals.

11-1

3

n

2

The complex A_n is a sphere of dimension n - 4. The Grassmannian G(2, n) degenerates to a cone over $\mathbb{P}(A_n)$ (Sturmfels 1993).

Unobstructedness

- S a \mathbb{K} -algebra $\rightsquigarrow T_S^2$ measures obstructions to deforming S.
- ▶ S graded and (...): $(T_S^2)_0 = 0 \implies$ Proj S is a smooth point of relevant Hilbert scheme.

Theorem (Christophersen, I- 2011)

The simplicial complex A_n is unobstructed, that is, $T_{S_{A_n}}^2 = 0$.

Corollary (Christophersen, I- 2011)

For P a lattice polytope with regular unimodular triangulation $A_n * \Delta_{n-1}$, G(2, n) and the toric variety corresponding to P lie on the same Hilbert scheme component.

Type D Associahedra

 D_n is the *cluster complex* for type D_n cluster algebras, and the boundary complex of dual type D_n associahedra (Fomin and Zelevinsky 2001).

Vertices:

- Symmetric pairs (δ_{ij}, δ_{(i+n)(j+n)}) of non-diameter diagonals of 2*n*-gon;
- Red or blue diameters $\delta_{i(i+n)}$ and $\delta_{i(i+n)}$.

Faces: sets of non-crossing diagonals.

Main Result

Theorem (I- 2020)

The simplicial complex \mathcal{D}_n is unobstructed, that is, $T^2_{S_{\mathcal{D}_n}} = 0$.

Unobstructedness for Flag Complexes

In general, for $S = S_{\mathcal{K}}$:

- ► T_S^i is $\mathbb{Z}^{\#V}$ -graded.
- ► Tⁱ_{S_K} (i = 1, 2) can be described via relative simplicial cohomology (Altmann and Christophersen, 2000)

 ${\cal K}$ is a $\mathit{flag}\ \mathit{complex}$ if minimal non-faces have at most two vertices.

• \mathcal{A}_n and \mathcal{D}_n are flag complexes.

Lemma (Christophersen, I- 2011) A flag complex \mathcal{K} is unobstructed if

1. \mathcal{K} is a sphere;

2.
$$T^2_{\mathcal{S}_{\mathcal{K}'}}=0$$
 for all links \mathcal{K}' ; and

3. L_b is contractible for all non-edge pairs of vertices $b \subset V$.

Links and Joins

Joins:
$$\mathcal{K} * \mathcal{K}' = \{ f \sqcup f' \mid f \in \mathcal{K}, f' \in \mathcal{K}' \}$$

Note $S_{\mathcal{K} * \mathcal{K}'} = S_{\mathcal{K}} \otimes S_{\mathcal{K}'}!$

1

Links are Unobstructed

 $f \in \mathcal{D}_n$ induces subdivision of 2*n*-gon:

In general, $link(f, \mathcal{D}_n) = \mathcal{D}_{n_0} * \mathcal{A}_{n_1} * \cdots * \mathcal{A}_{n_k}$.

Induction + Zariski-Jacobi sequence \implies links are unobstructed!

 L_b

For $b = \{v, w\}$, $L_b = \text{link}(v, \mathcal{D}_n) \cap \text{link}(w, \mathcal{D}_n)$. Need L_b contractible for $b \notin \mathcal{D}_n$!

Case: $b = \{\delta_{i(n+i)}, \delta_{j(n+j)}\}, i \neq j.$

Anything crossing δ_{ij} crosses $\delta_{i(n+i)}$ or $\delta_{j(n+j)} \implies (\delta_{ij}, \delta_{(i+n)(j+n)})$ is in every face of L_b .

Applications

Smooth points of Hilbert schemes:

• $\mathbb{P}(\mathcal{D}_n)$ is a smooth point of its Hilbert scheme!

Toric Degenerations:

- G(3,6) degenerates to a cone over P(D₄) (Bossinger, Mohammadi, and Nájera Chávez, 2020).
- Other (skew) Schubert varieties degenerate to cones over P(D_n) (Serhiyenko, Sherman-Bennett, and Williams, 2019, and ???)

Thanks for listening!