Type D Associahedra are Unobstructed

Nathan IIten

Simon Fraser University
August 13, 2020

Stanley-Reisner Rings

Definition
A simplicial complex \mathcal{K} with vertex set V is a collection of subsets of V, closed under taking subsets.

The Stanley-Reisner ideal of \mathcal{K} is

$$
\mathfrak{I}_{\mathcal{K}}=\left\langle\prod_{v \in W} x_{v} \mid W \notin \mathcal{K}\right\rangle \subseteq \mathbb{K}\left[x_{v} \mid v \in V\right]
$$

The Stanley-Reisner ring of \mathcal{K} is $S_{\mathcal{K}}=\mathbb{K}\left[x_{v} \mid v \in V\right] / I_{\mathcal{K}}$
Ex:

$$
I_{K}=\left\langle x_{1} x_{4}, x_{1} x_{2} x_{3}\right\rangle
$$

Stanley-Reisner Schemes

Geometry of $\mathbb{P}(\mathcal{K})=\operatorname{Proj} S_{\mathcal{K}}$ is reflected in the geometry of \mathcal{K} :

- Irreducible components \leftrightarrow maximal faces;
- \mathcal{K} a sphere $\Longrightarrow \mathbb{P}(\mathcal{K})$ Calabi-Yau;
- P lattice polytope with \mathcal{K} as regular unimodular triangulation \Longrightarrow toric variety assoc. to P degenerates to $\mathbb{P}(\mathcal{K})$.

The Classical Associahedron

Boundary complex \mathcal{A}_{n} of dual associahedron:

- Vertices are diagonals $\delta_{i j}$ of n-gon;
- Faces are sets of non-crossing diagonals.

The complex \mathcal{A}_{n} is a sphere of dimension $n-4$.
The Grassmannian $G(2, n)$ degenerates to a cone over $\mathbb{P}\left(\mathcal{A}_{n}\right)$ (Sturmfels 1993).

Unobstructedness

- S a \mathbb{K}-algebra $\rightsquigarrow T_{S}^{2}$ measures obstructions to deforming S.
- S graded and (\ldots): $\left(T_{S}^{2}\right)_{0}=0 \Longrightarrow \operatorname{Proj} S$ is a smooth point of relevant Hilbert scheme.

Theorem (Christophersen, I- 2011)
The simplicial complex \mathcal{A}_{n} is unobstructed, that is, $T_{\mathcal{S}_{\mathcal{A}_{n}}}^{2}=0$.
Corollary (Christophersen, I- 2011)
For P a lattice polytope with regular unimodular triangulation $\mathcal{A}_{n} * \Delta_{n-1}, G(2, n)$ and the toric variety corresponding to P lie on the same Hilbert scheme component.

Type D Associahedra

\mathcal{D}_{n} is the cluster complex for type D_{n} cluster algebras, and the boundary complex of dual type D_{n} associahedra (Fomin and Zelevinsky 2001).

Vertices:

- Symmetric pairs $\left(\delta_{i j}, \delta_{(i+n)(j+n)}\right)$ of non-diameter diagonals of 2n-gon;
- Red or blue diameters $\delta_{i(i+n)}$ and $\delta_{i(i+n)}$.

Faces: sets of non-crossing diagonals.

Main Result

Theorem (I- 2020)
The simplicial complex \mathcal{D}_{n} is unobstructed, that is, $T_{\mathcal{S}_{n}}^{2}=0$.

Unobstructedness for Flag Complexes

In general, for $S=S_{\mathcal{K}}$:

- T_{S}^{i} is $\mathbb{Z}^{\# V}$-graded.
- $T_{S_{\mathcal{K}}}^{i}(i=1,2)$ can be described via relative simplicial cohomology (Altmann and Christophersen, 2000)
\mathcal{K} is a flag complex if minimal non-faces have at most two vertices.
- \mathcal{A}_{n} and \mathcal{D}_{n} are flag complexes.

Lemma (Christophersen, I- 2011)
A flag complex \mathcal{K} is unobstructed if

1. \mathcal{K} is a sphere;
2. $T_{S_{\mathcal{K}^{\prime}}}^{2}=0$ for all links \mathcal{K}^{\prime}; and
3. L_{b} is contractible for all non-edge pairs of vertices $b \subset V$.

Linl- ...d ו:-n-

Joins: $\mathcal{K} * \mathcal{K}^{\prime}=\left\{f \sqcup f^{\prime} \mid f \in \mathcal{K}, f^{\prime} \in \mathcal{K}^{\prime}\right\}$ Note $S_{\mathcal{K} * \mathcal{K}^{\prime}}=S_{\mathcal{K}} \otimes S_{\mathcal{K}^{\prime}}!$

Links are Unobstructed

$f \in \mathcal{D}_{n}$ induces subdivision of $2 n$-gon:

In general, $\operatorname{link}\left(f, \mathcal{D}_{n}\right)=\mathcal{D}_{n_{0}} * \mathcal{A}_{n_{1}} * \cdots * \mathcal{A}_{n_{k}}$.
Induction + Zariski-Jacobi sequence \Longrightarrow links are unobstructed!

For $b=\{v, w\}, L_{b}=\operatorname{link}\left(v, \mathcal{D}_{n}\right) \cap \operatorname{link}\left(w, \mathcal{D}_{n}\right)$.
Need L_{b} contractible for $b \notin \mathcal{D}_{n}$!
Case: $b=\left\{\delta_{i(n+i)}, \delta_{j(n+j)}\right\}, i \neq j$.

Anything crossing $\delta_{i j}$ crosses $\delta_{i(n+i)}$ or $\delta_{j(n+j)} \Longrightarrow$ $\left(\delta_{i j}, \delta_{(i+n)(j+n)}\right)$ is in every face of L_{b}.

Applications

Smooth points of Hilbert schemes:

- $\mathbb{P}\left(\mathcal{D}_{n}\right)$ is a smooth point of its Hilbert scheme!

Toric Degenerations:

- $G(3,6)$ degenerates to a cone over $\mathbb{P}\left(\mathcal{D}_{4}\right)$ (Bossinger, Mohammadi, and Nájera Chávez, 2020).
- Other (skew) Schubert varieties degenerate to cones over $\mathbb{P}\left(\mathcal{D}_{n}\right)$ (Serhiyenko, Sherman-Bennett, and Williams, 2019, and ???)

Thanks for listening!

