Universes as Bigdata:

from Physics, to Geometry, to Machine-Learning

YANG-HUI HE

Dept of Mathematics, City, University of London
Merton College, University of Oxford School of Physics, NanKai University

Algebraic Geometry in the Summer, (Virtual) Nottingham

Enriching the Maths/Physics Dialogue

- Alg./diff. Geometry/topology - Rep. Theo : the right language for physics
- Gravity ~ Ricci 2-form of Tangent bundles;
- Elementary Particles \sim irreducible representations of the Lorentz group and sections of bundles with Lie structure group;
- Interactions \sim Tensor products of sections...
- String theory: brain-child of gauge-gravity geometrization tradition
- A new exciting era for synergy with (pure \& computational) geometry, group theory, combinatorics, number theory: Sage, M2, GAP, LMFDB, GrDB are becoming indispensible tools for physicists
- Interdisciplinary enterprise: cross-fertilisation of particle/string theory, phenomenology, pure mathematics, computer algorithms, data-bases, ...

standard string paradigm: $10=4+3 \times 2$

Superstring Theory $9+1 \mathrm{~d}$

1984:

- First String Revolution [Green-Schwarz] anomaly cancellation; Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_{8} \times E_{8}$ or $S O(32), 1984-5$
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985
- $S U(3) \times S U(2) \times U(1) \subset S U(5) \subset S O(10) \subset E_{6} \subset E_{8}$
- Standard Solution (MANY more since): $\mathbb{R}^{3,1} \times X, X$ is not just 6 -manifold, but a complex 3 -fold, and Ricci-flat (vacuum Einstein), Kähler (SUSY)
- mathematicians were independently thinking of the same problem: Riemann Uniformization Theorem in $\operatorname{dim}_{\mathbb{C}}=1$: Trichotomy $R<0,=0,>0$

1984:

- First String Revolution [Green-Schwarz] anomaly cancellation; Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_{8} \times E_{8}$ or $S O(32), 1984-5$
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985
- $S U(3) \times S U(2) \times U(1) \subset S U(5) \subset S O(10) \subset E_{6} \subset E_{8}$
- Standard Solution (MANY more since): $\mathbb{R}^{3,1} \times X, X$ is not just 6-manifold, but a complex 3-fold, and Ricci-flat (vacuum Einstein), Kähler (SUSY)
- mathematicians were independently thinking of the same problem:

Riemann Uniformization Theorem in $\operatorname{dim}_{\mathbb{C}}=1$: Trichotomy $R<0,=0,>0$

$g(\Sigma)=0$	$g(\Sigma)=1$

Calabi-Yau Manifolds as Algebraic Varieties

- THM: Homog $\operatorname{deg} n+1$ in \mathbb{P}^{n}, is Calabi-Yau $\operatorname{dim}_{\mathbb{C}}=n-1$ (adjunction)
- $\operatorname{dim}_{\mathbb{C}}=1: T^{2}$ as cubic (elliptic curve) in \mathbb{P}^{2}; $\operatorname{dim}_{\mathbb{C}}=2: \mathrm{K} 3$ surface as quartic in \mathbb{P}^{3}
- CY3, immediately get 5 (cyclics): Degree 5 in \mathbb{P}^{4} (The Quintic Q), $[3,3]$ in $\mathbb{P}^{5},[2,4]$ in $\mathbb{P}^{5},[2,2,3]$ in $\mathbb{P}^{6},[2,2,2,2]$ in \mathbb{P}^{7}
- First physics challenge to algebraic geometry:
- Particle Spectrum: Generation : $n_{27}=h^{1}(X, T X)=h_{\bar{\partial}}^{2,1}(X)$;

Anti-Generation : $n_{\overline{27}}=h^{1}\left(X, T X^{*}\right)=h_{\bar{\partial}}^{1,1}(X)$

- \# generations of particles $=\chi=2\left(h^{1,1}-h^{2,1}\right) ; 1986$ Question: Are there

Calabi-Yau threefolds with Euler number ± 6 ? (None of our 5 obvious ones)

The First Data-sets in Mathematical Physics/Geometry

- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
- CICYs (complete intersection CYs) multi-deg polys in products of $\mathbb{C P}^{n_{i}}$ cicye
- Problem: classify all configuration matrices; employed the best computers at the time (CERN supercomputer); q.v. magnetic tape and dot-matrix printout in Philip's office
- 7890 matrices, 266 Hodge pairs $\left(h^{1,1}, h^{2,1}\right)$, 70 Euler $\chi \in[-200,0]$
- [Candelas-Lynker-Schimmrigk, 1990]
- Hypersurfaces in Weighted P4
- 7555 inequivalent 5 -vectors $w_{i}, 2780$ Hodge pairs, $\chi \in[-960,960]$
- [Kreuzer-Skarke, mid-1990s - 2000] Reflexive Polytores
- Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds
- 6-month running time on dual Pentium SGI machine
- at least 473,800,776, with 30,108 distinct Hodge pairs, $\chi \in[-960,960]$

Technically, Moses

The age of data science in mathematical physics/string theory not as recent as you might think
of course, experimental physics had been decades ahead in data-science/machine-learning
was the first person with a tablet downloading data from the cloud

The Compact CY3 Landscape

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning, 1812.02893, [Springer, to appear] $\sim 10^{10}$ data-points (and growing, still mined by many international collabs: Some Rccent Advances Georgia O'Keefe on Kreuzer-Skarke
Vienna (KS, Knapp,...), Penn (Ovrut, Cvetic, Donagi, Pantev ...), Oxford/London (Candelas, Constantin, Lukas, Mishra, YHH, ...), MIT (Taylor, Johnson, Wang, ...), Northeastern/Wits (Halverson, Long, Nelson, Jejjala, YHH), Virginia Tech (Anderson, Gray, SJ Lee, ...), Utrecht (Grimm ...), CERN (Weigand, ...), Cornell (MacAllister, Stillman), Munich (Luest, Vaudravange), Uppsala (Larfors, Seong)

Triadophilia

Exact (MS)SM Particle Content from String Compactification

- [Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM
- [Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo \& sift
- Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10^{10} MSSM Stable Sum of Line Bundles over CICYs (Oxford-Penn-Virginia 2012-)

Constantin-YHH-Lukas '19: 10^{23} exact MSSMs (by extrapolation on above set)?
 A Special Corner
[New Scientist, Jan, 5, 2008 feature]
P. Candelas, X. de la Ossa, YHH, and B. Szendroi
"Triadophilia: A Special Corner of the
Landscape" ATMP, 2008

The Landscape Explosion \& Vacuum Degeneracy Problem

meanwhile ... LANDSCAPE grew rapidly with

- D-branes Polchinski 1995
- M-Theory $/ G_{2}$ Witten, 1995
- F-Theory/4-folds Katz-Morrison-Vafa, 1996
- AdS/CFT Maldacena 1998 Als geo of Ads/CFT
- Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, Denef-Douglas 2005-6: $10 \gg 500$ possibilities ...

String theory trades one hard-problem [quantization of gravity] by another [looking for the right compactification] (in many ways a richer and more interesting problem, especially for the string/maths community)

Where we stand

The Good Last 10-15 years: large collaborations of physicists, computational mathematicians (cf. SageMATH, GAP, Bertini, MAGMA, Macaulay2, Singular) have bitten the bullet computed many geometrical/physical quantities and compiled them into various databases Landscape Data ($10^{9 \sim 10}$ entries typically)

```
Finks
```

The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential)
...e.g., how to construct stable bundles over the $\gg 473$ million KS
CY3? Sifting through for SM computationally impossible ...
The ??? Borrow new techniques from "Big Data" revolution

A Wild Question

- Typical Problem in String Theory/Algebraic Geometry:

- Q: Can (classes of problems in computational) Algebraic Geometry be "learned" by AI ? , i.e., can we "machine-learn the landscape?"
- [YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017
(Science, feature, Aug, vol 365 issue 6452): Experimentally, it seems so for many situations in geometry and beyond.
- 2017

YHH (1706.02714), Seong-Krefl (1706.03346), Ruehle (1706.07024),
Carifio-Halverson-Krioukov-Nelson (1707.00655)

A Prototypical Question

- Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

$$
1234567890
$$

- How to set up a bijection that takes these to $\{1,2, \ldots, 9,0\}$? Find a clever Morse function? Compute persistent homology? Find topological invariants? ALL are inefficient and too sensitive to variation.
- What does your iPhone/tablet do? What does Google do? Machine-Learn
- Take large sample, take a few hundred thousand (e.g. NIST database)

$$
\begin{aligned}
& 6 \rightarrow 6,8 \rightarrow 8,2 \rightarrow 2,4 \rightarrow 4,8 \rightarrow 8, \boldsymbol{y}+7,8 \rightarrow 8, \\
& 0 \rightarrow 0,4 \rightarrow 4,2 \rightarrow 2,5+5,6 \rightarrow 6,3+3,2+2, \\
& \mathbf{9} 0,0 \rightarrow 0,3+3,8+8,8 \rightarrow 8,1+1,0 \rightarrow 0, \ldots
\end{aligned}
$$

$$
28 \times 28 \times(R G B)
$$

NN Doesn't Care/Know about Alg. Geometry (1706.02714)

- Hodge Number of a Complete Intersection CY is the association rule, e.g.

CICY is 12×15 integer matrix with entries $\in[0,5]$ is simply represented as a 12×15 pixel image of 6 colours Proper Wav ; ML in matter of seconds/minutes

- Cross-Validation:
- Take samples of $X \rightarrow h^{1,1}$
- train a NN, or SVM
- Validation on unseen $X \rightarrow h^{1,1}$

Deep-Learning Algebraic Geometry

- YHH (1706.02714) Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113), Erbin-Finotello (2007.13379; Google Inception NN)

Learning Hodge Number $h^{1,1} \in[0,19]$ so can set up 20channel NN classifer, regressor, as well as SVM, bypass exact sequences

- YHH-SJ Lee (1904.08530): Distinguishing Elliptic Fibrations in CY3

Accuracy

bypass Oguiso-Kollar-Wilson
 Theorem/Conjecture

learning curves for precision and Matthews ϕ

More Success Stories in Algebraic Geometry

- Ruehle '17: genetic algorithm for bundle cohomology
- Halverson, Nelson, Long et al '17- programme of ML of KS data
- Brodie-Constantin-Lukas '19: EXACT formulae for line-bundle coho / complex surfaces Interpolation vs Extrapolation \leadsto Conjecture Formulation
- Ashmore-YHH-Ovrut '19: ML Calabi-Yau metric: improves Donaldson alg. for numerical CY metric by 10-100 times
- Deen-YHH-Lee-Lukas '20: Distinguishing Heterotic SMs from the sum-line-bundle database and extrapolating beyond
- q.v. K. Hashimoto '18: AdS/CFT = Boltzmann Machine!
- ... ML now a standard programme in string community since 2017

from String Landscape to the Mathematical Landscape

Machine Learning Mathematical Structures

Why stop at string/geometry?

Representation/Group Theory

[YHH-MH. Kim 1905.02263] Machine-Learning Algebraic Structures
(GAP finite groups/ring DB)

- When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? (rmk: there is a known quadrangle-thm to test this) NN/SVM find to 94.9\% ($\phi=0.90$) at 25-75 cross-validation.
- Can one look at the Cayley table and recognize a finite simple group?

- bypass Sylow and Noether Thm
- SVM: space of finite-groups (point-cloud of Cayley tables), ? \exists hypersurface separating simple/non-simple?

Combinatorics, Graph/Quivers, Symmetries

- [YHH-ST. Yau 2006.16619] (Wolfram Finite simple graphs DB)
- ML standard graph properties: acyclic? (0.95); planar? (0.8); genus $>,=,<0$? (0.8); ? \exists Hamilton/Euler cycles (~ 0.8)
- spectral bounds ($R^{2} \sim 0.9$) ...
- Recognition of Ricci-Flatness (0.9) (todo: find new Ricci-flat graphs);
- [Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different quiver mutation (Seiberg-dual) classes (0.9-1.0)
- [Chen-YHH-Lal-Zas 2006.16114]: even/odd/reflection sym (>0.99); distinguishing CFT 3pt functions (>0.99); Fourier coefficients / conformal block presence (>0.97) ... (q.v. [Krippendorf-Syvaeri 2003.13679])
- NB. Only "solving" the likes of traveling salesman (similarly Groebner bases in geom) stochastically

Number Theory: A Reprobate

- [YHH 1706.02714, 1812.02893:] Predicting primes tried supervised ML on $2 \rightarrow 3,2,3 \rightarrow 5,2,3,5 \rightarrow 7$; fixed window of (yes/no $)_{1,2, \ldots, k}$ to (yes/no) ${ }_{k+1}$, no breaking banks yet (expect same for Riemann zeroes)
- [Hirst-YHH-Peterken 2004.05218]: adjacency of dessin d'enfants (Grothendieck's Esquisse for Abs. Galois) \rightarrow transcendental degree (<0.3)
- [Alessandretti-Baronchelli-YHH 1911.02008] (LMFdb/Cremona Database) ML/TDA@Birch-Swinnerton-Dyer New Scientist feature Dec 9 (BSD: L-function $L(s, \mathcal{E})$ of elliptic curve \mathcal{E} has $L(s \rightarrow 1, \mathcal{E})$ given in terms of precise quantities: rank r, torsion T, period Ω, Tate-Shaferevich group \amalg, conductor N, regulator R, Tamagawa number c);
$Ш$ and Ω ok with regression and boosted decision trees: $\mathrm{RMS}<0.1$;
Weierstrass \rightarrow rank: random

Meta-mathematics/physics?

[YHH-Jejjala-Nelson] "hep-th" 1807.00735

- Word2Vec: [Mikolov et al., '13] NN which maps words in sentences to a vector space by context (much better than word-frequency, quickly adopted by Google); maximize (partition function) over all words with sliding window ($W_{1,2}$ weights of 2 layers, C_{α} window size, D \# windows)

$$
Z\left(W_{1}, W_{2}\right):=\frac{1}{|D|} \sum_{\alpha=1}^{|D|} \log \prod_{c=1}^{C_{\alpha}} \frac{\exp \left(\left[\vec{x}_{c}\right]^{T} \cdot W_{1} \cdot W_{2}\right)}{\sum_{j=1}^{V} \exp \left(\left[\vec{x}_{c}\right]^{T} \cdot W_{1} \cdot W_{2}\right)}
$$

- We downloaded all $\sim 10^{6}$ titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat from ArXiv since the beginning (1989) till end of 2017 (rmk: Ginzparg has been doing a version of linguistic ML on ArXiv) (rmk: abs and full texts in future)

Subfields on ArXiv has own linguistic particulars

- Linear Syntactical Identities
bosonic + string-theory $=$ open-string
holography + quantum + string + ads $=$ extremal-black-hole
string-theory + calabi-yau $=m$-theory + g2
space + black-hole $=$ geometry + gravity \ldots
- binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc) vs phenomenological (hep-ph, hep-lat) : 87.1\% accuracy (5-fold classification 65.1\% accuracy).

```
ArXiv classifications
```

- Cf. Tshitoyan et al., "Unsupervised word embeddings capture latent knowledge from materials science literature", Nature July, 2019: 3.3. million materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new thermoelectric materials years in advance, and suggests as-yet unknown materials

Summary and Outlook

PHYSICS • Use AI (Neural Networks, SVMs, Regressor ...) as

1. Classifier deep-learn and categorize landscape data
2. Predictor estimate results beyond computational power

MATHS how is Al doing maths w/o knowing any maths? (Alg Geo/ \mathbb{C}, combinatorics, $\mathrm{RT}=$ integer matrices, NT ??)

1. Predictor form new conjectures/formulae
2. Classifier stochastically do NP-hard problems

- Hierarchy of Difficulty ML struggles with:
numerical $<$ algebraic geometry over $\mathbb{C}<$ combinatorics/algebra < number theory

Semantics vs Syntax

- Boris Zilber [Merton Professor of Logic, Oxford]: "you've managed syntax without semantics. .."

Alpha Go	\rightarrow	Alpha Zero
ML	\rightarrow	Voevodsky's Dream;
		Automated Thm Pf

- cf. Renner et al., PRL/Nature News, 2019: ML (SciNet, autoencoder) finds heliocentrism from Mars positions alone.
- cf. Lample-Charton, 2019: ML Symolic manipulations in mathematics

Sophia (Hanson Robotics, HK) 1st non-human citizen (2017, Saudi Arabia) 1st non-human with UN title (2017) 1st String Data Conference (2017)

THANK YOU

- Paolo Di Vecchia: String theory is a piece of 21st century physics that happened to fall into the 20th century . . .
- Edward Witten: piece of 21st century mathematics that happened to begin in the 20th century
- Alexander Kaspryzyk: Letting AI/ML do mathematics could well be the standard for the 22nd century

THANK YOU

- Paolo Di Vecchia: String theory is a piece of 21st century physics that happened to fall into the 20th century ...
- Edward Witten: piece of 21st century mathematics that happened to begin in the 20th century ...
- Alexander Kaspryzyk: Letting AI/ML do mathematics could well be the standard for the 22nd century

THANK YOU

- Paolo Di Vecchia: String theory is a piece of 21st century physics that happened to fall into the 20th century . . .
- Edward Witten: piece of 21st century mathematics that happened to begin in the 20th century ...
- Alexander Kaspryzyk: Letting AI/ML do mathematics could well be the standard for the 22nd century ...

Digressions

$\chi(\Sigma)=2$	$\chi(\Sigma)=0$	$\chi(\Sigma)<0$
Spherical	Ricci-Flat	Hyperbolic
+ curvature	0 curvature	- curvature
Fano	Calabi-Yau	General Type

- Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer ... \leadsto generalize

$$
\chi(\Sigma)=2-2 g(\Sigma)=\left[c_{1}(\Sigma)\right] \cdot[\Sigma]=\frac{1}{2 \pi} \int_{\Sigma} R=\sum_{i=0}^{2}(-1)^{i} h^{i}(\Sigma)
$$

- CONJECTURE [E. Calabi, 1954, 1957] / Thm [ST. Yau, 1977-8] M compact Kähler manifold (g, ω) and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$. Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
- Strominger \& Yau were neighbours at IAS in 1985: CHSW named Ricci-Flat Kähler as Calabi-Yau Back

16 Reflexive Polygons Back to ralloxien

classify convex lattice polytopes with single interior point and all faces are distance 1 therefrom (up to $S L(n ; \mathbb{Z})$)

Kreuzer-Skarke: 4319 reflexive polyhedra, 473,800,776 reflexive 4-polytopes,
Skarke: next number is at least $185,269,499,015$.

Heterotic Comp: Recent Development

- E_{6} GUTs a toy, $S U(5)$ and $S O(10)$ GUTs and SM: general embedding
- Instead of $T X$, use (poly-)stable holomorphic vector bundle V
- Gauge $\operatorname{group}(V)=G=S U(n), n=3,4,5$, gives $H=\operatorname{Commutant}\left(G, E_{8}\right)$:

$E_{8} \rightarrow G \times H$	Breaking Pattern		
$S U(3) \times E_{6}$	248	\rightarrow	$(1,78) \oplus(3,27) \oplus(\overline{3}, \overline{27}) \oplus(8,1)$
$S U(4) \times S O(10)$	248	\rightarrow	$(1,45) \oplus(4,16) \oplus(\overline{4}, \overline{16}) \oplus(6,10) \oplus(15,1)$
$S U(5) \times S U(5)$	248	\rightarrow	$(1,24) \oplus(5, \overline{10}) \oplus(\overline{5}, 10) \oplus(10,5) \oplus(\overline{10}, \overline{5}) \oplus(24,1)$

- MSSM: $H \xrightarrow{\text { Wilson Line }} S U(3) \times S U(2) \times U(1)$
- Issues in low-energy physics \sim Precise questions in Alg Geo of (X, V)
- Particle Content \sim (tensor powers) V Bundle Cohomology on X
- LE SUSY ~ Hermitian Yang-Mills connection ~ Bundle Stability
- Yukawa \sim Trilinear (Yoneda) composition
- Doublet-Triplet splitting \sim representation of fundamental group of X

Various Databases

- Kreuzer-Skarke: http://hep.itp.tuwien.ac.at/~kreuzer/Cy/
- new PALP: Braun-Walliser: ArXiv 1106.4529
- Triang: Altmann-YHH-Jejjala-Nelson: http://www.rossealtman.com/
- CICYs: resurrected Anderson-Gray-YHH-Lukas, http://www-thphys. physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html
- q.v. other databases of interesting to the math/physics community: Graded Rings/Varieties: Brown, Kasprzyk, et al. http://www.grdb.co.uk/ Finite Groups/Rings: GAP https://www.gap-system.org/

Modular Forms: Sutherland, Cremona et al. https://www.lmfdb.org/
Knots \& Invariants: KnotAtlas http://katlas.org/
Return

Progress in String Theory Gack to mL/Mathe

Major International Annual Conference Series

> 1986- First "Strings" Conference
> 2002- First "StringPheno" Conference
> 2006-2010 String Vacuum Project (NSF)
> 2011- First "String-Math" Conference
> 2014- First String/Theoretical Physics Session in SIAM Conference 2017- First "String-Data" Conference

CICYs

$M=\left[\begin{array}{c|cccc}n_{1} & q_{1}^{1} & q_{1}^{2} & \ldots & q_{1}^{K} \\ n_{2} & q_{2}^{1} & q_{2}^{2} & \cdots & q_{2}^{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{m} & q_{m}^{1} & q_{m}^{2} & \cdots & q_{m}^{K}\end{array}\right]_{m \times K}$

- Complete Intersection Calabi-Yau (CICY) 3-folds
- K eqns of multi-degree $q_{j}^{i} \in \mathbb{Z}_{\geq 0}$ embedded in $\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{m}}$
$-\quad c_{1}(X)=0 \leadsto \sum_{j=1}^{K} q_{r}^{j}=n_{r}+1$
- $\quad M^{T}$ also CICY
- The Quintic $Q=[4 \mid 5]_{-200}^{1,101}$ (or simply [5]);
- CICYs Central to string pheno in the 1st decade [Distler, Greene, Ross, et al.]
E_{6} GUTS unfavoured; Many exotics: e.g. 6 entire anti-generations

AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20 -year prog. joint with A. Hanany, S. Franco, B. Feng, et al.

D-Brane Gauge Theory (SCFT encoded as quiver)
\longleftrightarrow
Vacuum Space as affine Variety

- $(\mathcal{N}=4$ SYM $)\left(\bigodot_{z}^{x}, W=\operatorname{Tr}([x, y], z)\right) \longleftrightarrow \mathbb{C}^{3}=$ Cone $\left(S^{5}\right)$ [Maldacena]
- THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeva, Seong, Sparks, Vafa, Vegh, Yamazaki:

Zaffaroni ... (M) R. Bocckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda ...] (coherent component of) representation variety of a quiver is toric CY3 iff quiver + superpotential graph dual to a bipartite graph on T^{2} Back to Landeape combinatorial data/lattice polytopes \longleftrightarrow gauge thy data as quivers/graphs

A Single Neuron: The Perceptron

- began in 1957 (!!) in early AI experiments (using CdS photo-cells)
- DEF: Imitates a neuron: activates upon certain inputs, so define
- Activation Function $f\left(z_{i}\right)$ for input tensor z_{i} for some multi-index i;
- consider: $f\left(w_{i} z_{i}+b\right)$ with w_{i} weights and b bias/off-set;
- typically, $f(z)$ is sigmoid, Tanh, etc.
- Given training data: $D=\left\{\left(x_{i}^{(j)}, d^{(j)}\right\}\right.$ with input x_{i} and known output $d^{(j)}$, minimize

$$
S D=\sum_{j}\left(f\left(\sum_{i} w_{i} x_{i}^{(j)}+b\right)-d^{(j)}\right)^{2}
$$

to find optimal w_{i} and $b \leadsto$ "learning", then check against Validation Data

- Essentially (non-linear) regression

The Neural Network: network of neurons \sim the "brain"

- DEF: a connected graph, each node is a perceptron (Implemented on Mathematica $11.1+$ / TensorFlow-Keras on Python)
(1) adjustable weights/bias;
(2) distinguished nodes: 1 set for input and 1 for output;
(3) iterated training rounds.

Simple case: forward directed only, called multilayer perceptron

- others: e.g., decision trees, support-vector machines (SVM), etc
- Essentially how brain learns complex tasks; apply to our Landscape Data

Computing Hodge Numbers $\mathcal{O}\left(e^{e^{d}}\right)$

- Recall Hodge decomposition $H^{p, q}(X) \simeq H^{q}\left(X, \wedge^{p} T^{\star} X\right) \leadsto$

$$
H^{1,1}(X)=H^{1}\left(X, T_{X}^{\star}\right), \quad H^{2,1}(X) \simeq H^{1,2}=H^{2}\left(X, T_{X}^{\star}\right) \simeq H^{1}\left(X, T_{X}\right)
$$

- Euler Sequence for subvariety $X \subset A$ is short exact:

$$
\left.0 \rightarrow T_{X} \rightarrow T_{M}\right|_{X} \rightarrow N_{X} \rightarrow 0
$$

- Induces long exact sequence in cohomology:

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(X, T_{X}\right. \\
& \rightarrow \\
H^{0}\left(X,\left.T_{A}\right|_{X}\right) & \rightarrow \\
H^{0}\left(X, N_{X}\right) & \rightarrow \\
& \rightarrow H^{1}\left(X, T_{X}\right) \\
& \rightarrow \\
& \rightarrow H^{1}\left(X,\left.T_{A}\right|_{X}\right) \\
H^{2}\left(X, T_{X}\right) & \rightarrow \\
\ldots & H^{1}\left(X, N_{X}\right)
\end{aligned} \rightarrow
$$

- Need to compute $\operatorname{Rk}(d)$, cohomology and $H^{i}\left(X,\left.T_{A}\right|_{X}\right)$ (Cf. Hübsch)

ArXiv Word-Clouds

 newpownentialstring-theory brane somum yeang-mils-theory symmetry quantum-gravity effectapproach generalized String cosmology action generalizedSTIIG equation action gravitational aft the○ry mactix-modal chrial en field $0 \mid$ space soi operator Quantunnalgebrasin dynamics ${ }_{\text {min }}$ upersting " itropy sugran
quantization
general ${ }_{c}^{\text {gecrectalal }}$ SUSY yravity solution
mad inflatiory
classical duality spacetime represerntation
vacuum spacetime reperesentition then
renmamazaton universe nommutative interactio

hep-th

$$
\begin{aligned}
& \text { structure evolution constraint stablitity potintial } \\
& \text { manne gravitational consmologicsa-constant animactopio } \\
& \text { cosmin relativistic } \mathrm{MOO} \text { del inflation scala } \\
& \text { mathod solution miouelinfiation scala } \\
& \text { nolograshic genera-relativity generalized } \\
& \text { malysis gravitationa-wave chenger } \\
& \text { timespace SOACetime approach } \\
& \text { =black }=\text { hole }
\end{aligned}
$$

perturbation COSmologydynamics
dark-energy quantumngeometry
singularity cosmological effect
singularity UniVErSE Himadmamu field
vacuum rotating dark-matter scalar-inielder
gr-qc
 chiral pollision interaction structure parameser gravitusectrum
gatring symmetry sftect high-energy scale large ${ }^{\text {pion }}$ physics production particle equa new
nanstion
ther \rightarrow matter smhiggs vacuum processas guark theorydecavsusy ${ }_{\text {meson }}^{\text {light }}$ system spin approach $\cap \mathrm{scattering}$ gluon correction CO scattering givon study mass neutrino nucleon
probing inflationconstraint dynamics data trotan heavy-quars phenomenology latice-qcd tharmal latice neutinno-mass cosmologiasal scalar propent

hep-ph

 exact maSS domain-wall-termion
action operator gauge-theory
stucture
symiral
anallysia action operator gauge-thiont chir par analysis quark - mass =lattice =lattice =": qcd scaling
study quark \cap pion theory targe yang-mils-theory
new $\mathrm{mOdel}^{2 \mathrm{~d}} \mathrm{l}_{\text {banamics }}^{\text {bary }}$ order pectrum lattice-pai pe-theory quantum state migonionn coupling phase-transition meson magnetic chirat-symmerrety fermion confinement effect affectivenucleon similal-potential determination effectivenucieon simulations transition expassion
hadronic quenched
topological monsition
hep-lat

math-ph

Back to Word2Vec

Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main

