Tropical correspondence
 for smooth del Pezzo log Calabi-Yau pairs
 Online Algebraic Geometry Seminar, Nottingham University

Tim Gräfnitz

08.04.2021

Overview

(1) Tropical geometry
(2) Log(arithmic) geometry
(3) Main theorems
(4) Tropical correspondence
(5) Scattering

Tropical geometry

Tropical geometry $=$ piecewise linear geometry \leadsto combinatorics

- tropical semiring $\left(\mathbb{R}^{n}, \min ,+\right)$, tropical variety $V^{\text {trop }}(f)=$ corner locus
- limit of amoebas $\mathbb{A}_{\mathbb{C}\{\{t\}\}}^{n} \rightarrow \mathbb{R}^{n},\left(x_{i}\right)_{i} \mapsto\left(-\log _{t \rightarrow 0}\left|x_{i}\right|\right)_{i}$
- parametrized tropical curves $h: \Gamma \rightarrow \mathbb{R}^{n} \sim$ enumerative geometry

Example (Tropical line in \mathbb{R}^{2})
$V^{\text {trop }}(\min \{a+x, b+y, c\})$

Toric varieties

Definition

A toric variety is an algebraic variety X containing $\left(\mathbb{C}^{\star}\right)^{n}$ as a dense open subset such that the action of $\left(\mathbb{C}^{\star}\right)^{n}$ on itself extends to X.
given by polytope Δ or fan Σ, components \leftrightarrow orbits of $\left(\mathbb{C}^{\star}\right)^{n}$-action $X_{\Delta}=\operatorname{Spec} \mathbb{C}\left[C(\Delta) \cap \mathbb{Z}^{n+1}\right]$

Example $\left(\mathbb{P}^{2}\right)$
$\mathbb{P}^{2}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \mid\left(x_{0}, x_{1}, x_{2}\right)=\left(\lambda x_{0}, \lambda x_{1}, \lambda x_{2}\right), \lambda \in \mathbb{C}^{\star}=\mathbb{C} \backslash\{0\}\right\}$

$$
\left\{x_{1}=x_{2}=0, x_{3}=1\right\}
$$

$$
\left\{x_{1}=0, x_{2}, x_{3} \neq 0\right\}
$$

Tropical curves

Definition (Tropical curve)

$h: \Gamma \rightarrow \mathbb{R}^{2}$, Γ weighted graph with legs, h continuous, piecewise linear, balancing $\forall V$:

$$
\sum_{E \ni V} u_{(V, E)}=0 \quad \text { for weight vectors } u_{(V, E)}
$$

- in X if the legs point in the directions of the fan of X
- degree/class given by number and direction of legs
- genus = \# cycles

Example (Tropical conics in \mathbb{P}^{2})

Tropical curves

Definition (Multiplicity)

$$
\begin{aligned}
\operatorname{Mult}(h) & =\prod_{V} \prod_{l=2}^{k-1}\left|u_{l} \wedge \sum_{j=1}^{l} u_{j}\right|, \quad u_{1}, \ldots, u_{k} \text { weight vectors at } V \\
& =\prod_{V}\left|u_{1} \wedge u_{2}\right|=\prod_{V}\left|u_{2} \wedge u_{3}\right|=\prod_{V}\left|u_{3} \wedge u_{1}\right| \quad \text { if trivalent }
\end{aligned}
$$

Example (Tropical conics in \mathbb{P}^{2})

Tropical correspondence

Observation
$N_{d}^{\text {trop }}=\#$ trop. curves in \mathbb{P}^{2} of genus 0 (no cycles) and degree d through $3 d-1$ general points, counted with multiplicity

$$
N_{1}^{\text {trop }}=1
$$

Theorem (Mikhalin, Nishinou-Siebert)

$$
N_{d}=N_{d}^{\text {trop }}
$$

Tropical correspondence

Theorem (General form of a tropical correspondence theorem)

$$
N_{d}=N_{d}^{\text {trop }}
$$

History

- Mikhalkin '03: genus 0 curves on toric surfaces through general points
- Nishinou-Siebert '04: higher dimension (toric degenerations)
- Mandel-Ruddat '16: descendant invariants (ψ-classes)
- Bousseau '17: higher genus: generating functions of q-refined inv. (degeneration formula, vanishing of λ-classes)
- Gräfnitz '20: non-toric cases (resolution of log singularities)

Main tool: $\log ($ arithmic $)$ geometry

Definition (Log structure)
Morphism of sheaves of monoids $\alpha: \mathcal{M}_{X} \rightarrow \mathcal{O}_{X}$ with $\alpha^{-1}\left(\mathcal{O}_{X}^{\times}\right) \xrightarrow{\sim} \mathcal{O}_{X}^{\times}$
Example (Divisorial log structure by $j: D \hookrightarrow X$)

$$
\mathcal{M}_{(X, D)}:=\left(j^{\star} \mathcal{O}_{X \backslash D}^{\times}\right) \cap \mathcal{O}_{X} \xrightarrow{\alpha_{(X, D)}} \mathcal{O}_{X}
$$

$\overline{\mathcal{M}}_{(X, D)}:=\mathcal{M}_{(X, D)} / \mathcal{O}_{(X, D)}^{\times}$captures vanishing order along D

Magic Powder (K. Kato)
Allow functions to vanish along D
\leadsto can treat some varieties that are singular along D as being smooth! (e.g. toric varieties are log smooth wrt. toric log structure $\left.\mathcal{M}_{(X, \partial X)}\right)$ \leadsto applications in degeneration situations

Log geometry

Example (Standard log point $\mathrm{pt}_{\mathbb{N}}$)
Pull $\mathcal{M}_{\left(\mathbb{A}^{1},\{0\}\right)}$ back along $\{0\} \hookrightarrow \mathbb{A}^{1} \leadsto$ point with $\overline{\mathcal{M}}_{\text {pt }}=\mathbb{N}$.

Definition

A log structure is fine (saturated) if it is étale locally given by a chart $\underline{P} \rightarrow \mathcal{O}_{X}$ for a finitely generated (and saturated) monoid P.
Having a chart means the log structure is locally the toric one.

Example

$\mathcal{M}_{(X, D)}$ for $D=\{t=0\} \subset X=\{x y=t w\} \subset \mathbb{A}^{4}$ has no chart at 0 :

Log geometry

Definition

$f: X \rightarrow Y$ is log smooth if X, Y are fine and f is locally of finite presentation and formally smooth in the category of fine log schemes.

Example

$X=$ Spec $\mathbb{C}[P] \rightarrow \mathbb{A}^{1}=$ Spec $\mathbb{C}[\mathbb{N}]$, with toric log structures, map induced by $\mathbb{N} \rightarrow P, 1 \mapsto \rho \neq 0$, is log smooth, and so is $X_{0} \rightarrow \mathrm{pt}_{\mathbb{N}}$.

Example

$\pi: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ semistable degeneration, i.e., proper map from smooth variety \mathfrak{X} with $X_{0}=\pi^{-1}(0)$ a normal crossings divisor and $\left.\pi\right|_{\mathfrak{X} \backslash X_{0}}$ smooth. Then $\mathfrak{X} \rightarrow \mathbb{A}^{1}$ is log smooth for divisorial log structures by X_{0} and $\{0\}$. Indeed, locally π is projection to t-coordinate, with toric log structures,

$$
\text { Spec } \mathbb{C}\left[t, x_{1}, \ldots, x_{n}\right] /\left(x_{1} \cdot \ldots \cdot x_{n}-t^{\prime}\right) \rightarrow \mathbb{A}^{1}
$$

Smooth del Pezzo log Calabi-Yau pairs

Definition

Smooth del Pezzo log Calabi-Yau pair: (X, D)

- X smooth projective surface with very ample anticanonical class (smooth del Pezzo surface of degree ≥ 3)
- D smooth anticanonical divisor.

Example

There are exactly 8 such pairs:

- $\left(\mathbb{P}^{2}, E\right), E$ elliptic curve;
- $X=\mathbb{P}^{1} \times \mathbb{P}^{1}, D$ smooth bidegree (2,2)-curve;
- $X=B I_{P}^{k} \mathbb{P}^{2}, k=1, \ldots, 6$.

Remark
This talk: only $\left(\mathbb{P}^{2}, E\right)$. Note: E is non-toric!

Logarithmic Gromov-Witten invariants

Stable log map: log version of a stable map \sim can specify tangency Definition
β class of stable log maps $f: C \rightarrow\left(\mathbb{P}^{2}, \mathcal{M}_{\left(\mathbb{P}^{2}, E\right)}\right)$:

- genus 0 ;
- degree d;
- 1 marked point p with full tangency $3 d$ at E.

Proposition (GS '11)
The moduli space of basic stable log maps $\mathscr{M}(X, \beta)$ is a proper algebraic stack admitting a virtual fundamental class $\llbracket \mathscr{M}(X, \beta) \rrbracket$.

Definition (vdim $=0$)

$$
N_{d}:=\int_{\llbracket \mathscr{M}(X, \beta) \rrbracket} 1 \in \mathbb{Q}
$$

Tropical correspondence for $\left(\mathbb{P}^{2}, E\right)$

$N_{d}=\#$ rational degree d curves in \mathbb{P}^{2} meeting E in a single point

$$
\begin{array}{l|l|l|l|l}
\hline N_{1}=9 & N_{2}=\frac{135}{4}=27+9 \cdot \frac{3}{4} & N_{3}=244 & N_{4}=\frac{36999}{16} & N_{5}=\frac{635634}{25} \\
\hline
\end{array}
$$

Theorem

$$
N_{d}=N_{d}^{\text {trop }}
$$

Scattering

Theorem

$$
\log f_{\text {out }}=\sum_{d=1}^{\infty} 3 d \cdot N_{d} \cdot x^{3 d} \quad \text { for } \quad f_{\text {out }}:=\prod_{\mathfrak{p} \text { outgoing wall }} f_{\mathfrak{p}}
$$

Toric degeneration

Idea: deform the complicated object $\left(\mathbb{P}^{2}, E\right)$ into something simpler such that N_{d} can still be calculated

$$
t \neq 0 \quad t=0
$$

$$
\mathfrak{X}=\left\{X Y Z=t^{3}\left(W+f_{3}(X, Y, Z)\right)\right\} \subset \mathbb{P}(1,1,1,3) \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}
$$

$\mathfrak{D}=\{W=0\} \quad X_{0}=\bigcup_{3} \mathbb{P}(1,1,3)$ intersecting along \mathbb{P}^{1} 's

Toric degeneration

$$
\begin{aligned}
& \mathfrak{X}=\left\{X Y Z=t^{3}\left(W+f_{3}(X, Y, Z)\right)\right\} \subset \mathbb{P}(1,1,1,3) \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1} \\
& \mathfrak{D}=\{W=0\} \quad X_{0}=\bigcup_{3} \mathbb{P}(1,1,3) \text { intersecting along } \mathbb{P}^{1} \text { s }
\end{aligned}
$$

intersection complex: glue polytopes, φ describes family locally (\mathfrak{X} defined by upper convex hull of φ) dual intersection complex: glue fans, φ gives divisor class (polarization)
locally $x y=t^{3} w$ (fiber of the tropicalization)
$\Rightarrow \mathcal{M}_{\left(\mathfrak{X}, \mathfrak{D} \cup X_{0}\right)}$ not fine

$$
\varphi=1
$$

Dual intersection complex $(B, \mathscr{P}, \varphi)$

chart at unbounded cell: all unbounded rays are parallel monodromy transformation: $\Lambda_{B} \rightarrow \Lambda_{B}, m \mapsto\left(\begin{array}{ll}1 & 9 \\ 0 & 1\end{array}\right) \cdot m$

Tropical curves

Definition (Tropical curve)
$h: \Gamma \rightarrow B$, Γ weighted graph, h continuous, integral affine linear

- balancing condition $\forall V: \sum_{E \ni V} u_{(V, E)}=0$
- legs can end at affine singularities with prescribed direction

Example $\left(\mathbb{P}^{2}, E\right)$

$\mathfrak{H}_{d}:=\left\{h: \Gamma \rightarrow B \mid\right.$ one unbounded leg with weight $\left.w_{\text {out }}=3 d\right\}$

Tropical correspondence

Theorem (Tropical correspondence)

$$
N_{d}=N_{d}^{\text {trop }}:=\sum_{h \in \mathfrak{H}_{d}} \operatorname{Mult}(h)
$$

Example $N_{1}^{\text {trop }}=9$

Tropical correspondence

Idea of Proof

Tropical curves describe combinatorics of curves on X_{0}

Problem

Logarithmic Gromov-Witten invariants are constant in log smooth families. The toric degeneration $\mathfrak{X} \rightarrow \mathbb{A}^{1}$ is not \log smooth (wrt. $\left.\mathcal{M}_{\left(\mathfrak{X}, \mathcal{D} \cup X_{0}\right)}\right)$ \Rightarrow cannot calculate N_{d} on X_{0}

Step 1: Resolution of log singularities

Locally $\left\{x y=t^{3} w\right\} \subset \mathbb{A}^{4}$
Blow up two irreducible components of X_{0} or blow up the interior edges and contract one component of $D_{\text {exc }}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ in a symmetric way.
$\leadsto \log$ smooth degeneration $\tilde{\mathfrak{X}} \rightarrow \mathbb{A}^{1}$ (not a toric degeneration!) \Rightarrow

$$
N_{d}:=\int_{\llbracket \mathscr{M}(\tilde{\mathfrak{x}}, \beta) \rrbracket} 1=\int_{\llbracket \mathscr{M}\left(\tilde{X}_{t}, \beta\right) \rrbracket} 1 \quad \text { for all } t \in \mathbb{A}^{1}
$$

Tropicalization and stable log maps

Definition (Tropicalization)

$$
\operatorname{Trop}(X):=\left(\coprod_{x \in X} \operatorname{Hom}\left(\overline{\mathcal{M}}_{X, x}, \mathbb{R}_{\geq 0}\right)\right) / \sim
$$

union over scheme-theoretic points, equiv. relation by generization maps.
Consider a basic stable log map in $\mathscr{M}\left(\tilde{X}_{0} / \mathrm{pt}_{\mathbb{N}}, \beta\right)$

We have $\operatorname{Trop}(\gamma)^{-1}(1) \simeq \Gamma_{C}$ and $\operatorname{Trop}\left(\tilde{\pi}_{0}\right)^{-1}(1) \simeq \tilde{B}$.
This gives a tropical curve $\tilde{h}: \Gamma_{C} \rightarrow \tilde{B}$ with modified balancing condition.

Tropical curves

Proposition

$$
\tilde{\mathfrak{H}}_{d}:=\left\{\tilde{h}: \tilde{\Gamma} \rightarrow \tilde{B} \text { tropicalization of } f \in \mathscr{M}\left(\tilde{\mathfrak{X}} / \mathbb{A}^{1}, \beta\right)\right\}
$$

modified balancing condition: 3 types of vertices
(I) $\sum_{E \ni V} u_{(V, E)}=0$
(II) $u_{(V, E)}=k m_{V,+}$
(III) $\sum_{E \ni V} u_{(V, E)}+k m_{v,+}=0$

Step 2: Refinement and logarithmic modification

Refine \mathscr{P} by tropical curves in $\tilde{\mathfrak{H}}_{d}$ (base change $t \mapsto t^{e} \leadsto$ integral vert.) \sim logarithmic modification via subdivision of Artin fans
$\sim \log$ smooth degeneration $\tilde{\mathfrak{X}}_{d} \rightarrow \mathbb{A}^{1}$ such that stable log maps to the central fiber $Y:=\tilde{X}_{d, 0}$ are torically transverse

Log GW invariant under log modifications (Abramovich, Wise '18)

Step 3: Degeneration formula

Calculate N_{d} on $Y:=\tilde{X}_{d, 0}$
Theorem (Decomposition formula, ACGS '17)

$$
\begin{aligned}
\mathscr{M}_{d} & :=\mathscr{M}(Y, \beta)=\coprod_{\tilde{h} \in \tilde{\mathfrak{H}}_{d}} \mathscr{M}_{\tilde{h}} \\
\llbracket \mathscr{M}_{d} \rrbracket & =\sum_{\tilde{h} \in \tilde{\mathfrak{H}}_{d}} \frac{\ell_{\tilde{\Gamma}}}{|\operatorname{Aut}(\tilde{h})|} F_{\star} \llbracket \mathscr{M}_{\tilde{h}} \rrbracket
\end{aligned}
$$

for $\ell_{\tilde{\Gamma}}=\operatorname{lcm}\left\{w_{E} \mid E \in E(\tilde{\Gamma})\right\}$.

Proof.
The affine length of the image of an edge $E \in E(\tilde{\Gamma})$ is $\ell_{E} w_{E} \in \mathbb{Z}$, so the scaling necessary to obtain integral edge lengths ℓ_{E} is $\ell_{\tilde{\Gamma}}$.

Gluing

$\underset{V}{X} \mathscr{M}_{V}^{\circ}$ contains stable log maps in $\prod_{V} \mathscr{M}_{V}^{\circ}$

Proposition (KLR '18)
There is a morphism cut : $\mathscr{M}_{\tilde{h}} \rightarrow X_{V} \mathscr{M}_{V}^{\circ}$, étale of degree

$$
\operatorname{deg}(\mathrm{cut})=\frac{\prod_{E \in E(\tilde{\Gamma})} w_{E}}{\ell_{\tilde{\Gamma}}}
$$

Proof.

For each node there is a choice of w_{E}-th root of unity in the log structure of C. Isomorphic log structures correspond to $\ell_{\tilde{\Gamma}}$-th roots of unity.

Gluing

Proposition (Gluing formula, KLR '18)

$$
\llbracket \mathscr{M}_{\tilde{h}} \rrbracket=\operatorname{cut}^{\star} \delta^{!} \prod_{V \in V(\tilde{\Gamma})} \llbracket \mathscr{M}_{V}^{\circ} \rrbracket
$$

Corollary

$$
\int_{\llbracket M_{\tilde{h}} \rrbracket} 1=\frac{1}{\ell_{\tilde{\Gamma}}} \prod_{E \in E(\tilde{\Gamma})} w_{E} \cdot \int_{\prod_{V} \llbracket M_{v} \rrbracket} \mathrm{ev}^{\star}[\delta]
$$

for the class of the diagonal in $\prod_{V} \prod_{E \in E(\tilde{\Gamma})} D_{E}\left(\right.$ note $\left.D_{E}=\mathbb{P}^{1}\right)$ $v \in E$

$$
[\delta]=\prod_{E \in E(\tilde{\Gamma})}\left(\mathrm{pt}_{E} \times 1+1 \times \mathrm{pt}_{E}\right)
$$

Gluing

$\tilde{\Gamma}$ is a rooted tree, thus has a natural orientation:

Notation: E points from $V_{E,-}$ to $V_{E,+}$
Proposition (Identifying the pieces)
The only term of $\mathrm{ev}^{\star}[\delta]=\prod_{E \in E(\tilde{\Gamma})}\left(\left(\mathrm{ev}_{V_{E,-}}\right){ }^{\star}\left[\mathrm{pt}_{E}\right]+\left(\mathrm{ev}_{V_{E,+}}\right)^{\star}\left[\mathrm{pt}_{E}\right]\right)$ giving a nonzero contribution after integration is $\prod\left(\mathrm{ev}_{V_{E,+}}\right)^{\star}\left[\mathrm{pt}_{E}\right]$.

Proof.
All other gluings give negative virtual dimension.

Contributions of the vertices

Definition (Toric invariants)
$\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in\left(\mathbb{Z}^{2}\right)^{n}, \mathbf{w}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right), \mathbf{w}_{i}=\left(w_{i 1}, \ldots, w_{i i_{i}}\right) \in \mathbb{Z}_{>0}^{l_{i}}$
$N_{\mathrm{m}}(\mathbf{w}):=$

Contributions of the vertices

Definition
$\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in\left(\mathbb{Z}^{2}\right)^{n}, \mathbf{w}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right), \mathbf{w}_{i}=\left(w_{i 1}, \ldots, w_{i i_{i}}\right) \in \mathbb{Z}_{>0}^{l_{i}}$
$N_{\mathrm{m}}^{\text {trop }}(\mathbf{w}):=$

Proposition (GPS '09)

$$
N_{\mathbf{m}}^{\mathrm{trop}}(\mathbf{w})=N_{\mathbf{m}}(\mathbf{w}) \cdot \prod_{i, j} w_{i j}
$$

Contributions of the vertices

With \mathbf{m}, \mathbf{w} defined by edges of \tilde{h} pointing towards V :

$$
\begin{aligned}
& \text { (I): } N_{V}=N_{\mathbf{m}}(\mathbf{w}) \\
& \text { (II): } N_{V}=\frac{(-1)^{w_{E}-1}}{w_{E}^{2}}\left(w_{E}-\text { fold multiple covers of } D_{\mathrm{exc}}=\mathbb{P}^{1}\right) \\
& \text { (III): } N_{V}=\sum_{\mathbf{w}_{V,+}} \frac{N_{\mathbf{m}}(\mathbf{w})}{\left|\operatorname{Aut}\left(\mathbf{w}_{V,+}\right)\right|} \prod_{i=1}^{1} \frac{(-1)^{w_{V, i}-1}}{w_{V, i}}
\end{aligned}
$$

sum over $\mathbf{w}_{V,+}=\left(w_{V, 1}, \ldots, w_{V, l_{V}}\right)$ such that $\left|\mathbf{w}_{V,+}\right|:=\sum_{i=1}^{V} w_{V, i}=k$ for $\sum_{E \ni V} u_{(V, E)}+k m_{v,+}=0$

Proposition (Degeneration formula)

$$
N_{d}=\sum_{\tilde{h} \in \tilde{\mathfrak{H}}_{d}} \frac{1}{|\operatorname{Aut}(\tilde{h})|} \cdot \prod_{E \in E(\tilde{\Gamma})} w_{E} \cdot \prod_{V \in V(\tilde{\Gamma})} N_{V}
$$

Balanced tropical curves

Lemma

$$
\mathfrak{H}_{d}=\{\text { balanced } h: \Gamma \rightarrow B\} \rightarrow \tilde{\mathfrak{H}}_{d}=\{\tilde{h}: \tilde{\Gamma} \rightarrow \tilde{B}\}
$$

Theorem
(gluing) (multicover) (components)

$$
N_{d}=\sum_{h \in \mathfrak{H}_{d}}\left(\frac{1}{|\operatorname{Aut}(h)|} \cdot \prod_{E \text { compact }} w_{E} \cdot \prod_{E \text { bd leg }} \frac{(-1)^{w_{E}-1}}{w_{E}} \cdot \prod_{V} N_{\mathbf{m}}(\mathbf{w})\right)
$$

Tropical correspondence

Theorem (Tropical correspondence)

$$
\begin{aligned}
N_{d} & =\sum_{h \in \mathfrak{H}_{d}}\left(\frac{1}{|\operatorname{Aut}(h)|} \cdot \prod_{E \text { compact }} w_{E} \cdot \prod_{E \text { bd leg }} \frac{(-1)^{w_{E}-1}}{w_{E}} \cdot \prod_{V} N_{\mathbf{m}}(\mathbf{w})\right) \\
& =\sum_{h \in \mathfrak{H}_{d}}\left(\frac{1}{|\operatorname{Aut}(h)|} \cdot \prod_{E \text { bd leg }} \frac{(-1)^{w_{E}-1}}{w_{E}^{2}} \cdot \prod_{V} N_{\mathbf{m}}^{\text {trop }}(\mathbf{w})\right)=N_{d}^{\text {trop }}
\end{aligned}
$$

Remark

- Should also apply to other problems, inserting points conditions, etc.
- New: bounded legs have multiplicity $\frac{(-1)^{w_{E}-1}}{w_{E}^{2}}$ (multiple cover contribution of $D_{\text {exc }}=\mathbb{P}^{1}$)

Gross-Siebert program

(1) Find a toric degeneration $\mathfrak{X} \rightarrow T=\operatorname{Spec} \mathbb{C} \llbracket t \rrbracket$ of X or (X, D).
(2) Form the dual intersection complex $(B, \mathscr{P}, \varphi)$ of \mathfrak{X}.
(3) Construct another toric degeneration $\check{\mathfrak{X}} \rightarrow T=\operatorname{Spec} \mathbb{C} \llbracket t \rrbracket$.
(1) $\check{X}_{t \neq 0}$ is the mirror CY/LG to X (superpotential via broken lines).

Initial wall structure

Wall structure: collection of codim. 1 polyhedral subsets (walls) \mathfrak{p} with attached functions $f_{\mathfrak{p}} \in R_{\varphi}$ satisfying some conditions.

$$
\begin{aligned}
& P_{\varphi}=\{p=(\bar{p}, h) \in M \oplus \mathbb{Z} \mid h \geq \varphi(\bar{p})\} \\
& R_{\varphi}=\varliminf_{\substack{ }}^{\lim \mathbb{C}\left[P_{\varphi}\right] /\left(t^{k}\right)} \\
& x:=z^{((-1,0), 0)}, y:=z^{((0,-1), 0)}, t:=z^{((0,0), 1)}
\end{aligned}
$$

Note $z^{(\bar{p}, 0)}=\left(z^{(-\bar{p}, \varphi(-\bar{p}))}\right)^{-1} t^{\varphi(-\bar{p})}$.

Scattering

$$
\begin{aligned}
& \theta_{\mathfrak{D}}\left(z^{p}\right)=f_{i}^{-\left\langle n_{\mathfrak{O}}, \bar{p}\right\rangle} z^{p} \\
& \theta_{\gamma, \mathfrak{D}}=\theta_{\mathfrak{D}_{s}} \circ \ldots \circ \theta_{\mathfrak{D}_{1}}
\end{aligned}
$$

\mathfrak{D} consistent to order k if $\theta_{\gamma, \mathfrak{D}} \equiv 1 \bmod \left(t^{k}\right)$ for all γ.

Scattering

The tropical vertex

Proposition (GPS '09)
If \mathfrak{D} consists of lines in direction m_{i} with

$$
\log f_{i}=\sum_{w=1}^{\infty} a_{i w} z^{\left(-w m_{i}, 0\right)}, \quad a_{i w} \in \mathbb{C}
$$

then

$$
\log f_{\mathfrak{o}}=\sum_{w=1}^{\infty} \sum_{\mathbf{w}} w \frac{N_{\mathbf{m}}(\mathbf{w})}{|\operatorname{Aut}(\mathbf{w})|}\left(\prod_{\substack{1 \leq i \leq n \\ 1 \leq j \leq l_{i}}} a_{i w_{i j}}\right) z^{\left(-w m_{\mathfrak{o}}, 0\right)}
$$

where the sum is over all n-tuples of weight vectors $\mathbf{w}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)$ satisfying

$$
\sum_{i=1}^{n}\left|\mathbf{w}_{i}\right| m_{i}=w m_{\mathfrak{l}}
$$

Main theorem

Theorem

$$
\log f_{\mathrm{out}}=\sum_{\underline{\beta} \in H_{2}^{+}(X, \mathbb{Z})}(D \cdot \underline{\beta}) \cdot N_{d} \cdot x^{D \cdot \underline{\beta}} .
$$

Proof.

- Applying [GPS] inductively gives a formula similar to the degeneration formula.
- Note that

$$
\log (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{2}} x^{k}
$$

Torsion points

Group law on E with identity a flex point
A curve contributing to N_{d} intersects E in a point of order $3 k, k \leq d$ $N_{d, k}:=\#$ curves meeting E in a fixed point of order $3 k$. $n_{d, k}:=\log$ BPS numbers (subtract multiple cover contributions)

$$
\begin{array}{l|l|l|l|l|l}
\hline n_{4,1}=14 & n_{4,2}=14 & n_{4,4}=16 & n_{6,1}=927 & n_{6,2}=938 & n_{6,3}=936 \\
\hline
\end{array}
$$

Reconstruction

- Scattering gives a refinement of $(B, \mathscr{P}, \varphi)$.
- Mirror constructed by gluing pieces corresponding to maximal cells.
- This is well-defined by the scattering construction (Gross-Siebert '10).
- Superpotential via broken lines \leadsto theta functions, intrinsic MS.
- Main theorem: curve counts $\stackrel{\mathrm{MS}}{\longleftrightarrow}$ deformations of complex structure.

References

- D. Abramovich, J. Wise - Birational invariance in logarithmic Gromov-Witten theory, arXiv:1306.1222, 2013.
- T. Gräfnitz - Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs, arXiv:2005.14018, 2020.
- M. Gross, B. Siebert - From real affine geometry to complex geometry, arXiv:0703822, 2007.
- M. Gross, B. Siebert - Logarithmic Gromov-Witten invariants, arXiv:1102.4322, 2011.
- M. Gross, R. Pandharipande, B. Siebert - The tropical vertex, arXiv:0902.0779, 2009.
- B. Kim, H. Lho, H. Ruddat - The degeneration formula for stable log maps, arXiv:1803.04210, 2018.
- T. Nishinou, B. Siebert - Toric degenerations of toric varieties and tropical curves, arXiv:0409060, 2004.

