Newton–Okounkov bodies arising from cluster structures

Naoki Fujita

The University of Tokyo

Joint works with Hironori Oya (arXiv:2002.09912) and Akihiro Higashitani (Int. Math. Res. Not., published online)

Online Algebraic Geometry Seminar Nottingham University November 19, 2020

2 Newton–Okounkov bodies arising from cluster structures

3 Case of flag varieties

Toric degenerations

- Z: an irreducible normal projective variety over \mathbb{C} ($m \coloneqq \dim_{\mathbb{C}}(Z)$),
- \mathcal{L} : an ample line bundle on Z.

Definition

A toric degeneration of (Z, \mathcal{L}) is a flat morphism $\pi : \mathfrak{X} = \operatorname{Proj}(\mathcal{R}) \to \mathbb{C}$ such that $(\pi^{-1}(t), \mathcal{O}_{\mathfrak{X}}(1)|_{\pi^{-1}(t)}) \simeq (Z, \mathcal{L})$ for all $t \in \mathbb{C}^{\times}$, and $Z_0 \coloneqq \pi^{-1}(0)$ is an irreducible normal projective toric variety.

Theorem (Harada–Kaveh 2015)

If Z is smooth, \mathcal{L} is very ample, and there exists a toric degeneration of (Z, \mathcal{L}) satisfying some "good conditions", then

- there exists a surjective continuous map Z → Z₀ which induces a symplectomorphism from an open dense subset U ⊆ Z;
- there exists a completely integrable system on Z whose image coincides with a moment polytope of Z₀.

Toric degenerations

There exists a systematic way to construct toric degenerations of (Z, \mathcal{L}) , called a **Rees-type construction**, which is roughly as follows:

• construct a "good" $\mathbb{Z} imes \mathbb{Z}^m$ -filtration on the section ring

$$R \coloneqq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} H^0(Z, \mathcal{L}^{\otimes k}),$$

where the first \mathbb{Z} -filtration is given by the natural $\mathbb{Z}_{\geq 0}$ -grading on R;

- there exists a linear projection $\mathbb{Z} \times \mathbb{Z}^m \to \mathbb{Z}$ which induces a $\mathbb{Z}_{\geq 0}$ -filtration $R_{\leq k} \subseteq R$ whose associated graded is $\operatorname{gr}(R)$;
- the Rees algebra $\mathcal{R} \coloneqq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} R_{\leq k} t^k$ gives a toric degeneration $\mathfrak{X} \coloneqq \operatorname{Proj}(\mathcal{R}) \to \mathbb{C}.$

There exist several ways to construct such $\mathbb{Z} \times \mathbb{Z}^m$ -filtration, including

- representation theory (Caldero 2002, Alexeev-Brion 2004),
- Newton-Okounkov bodies (Anderson 2013),
- cluster algebras (Gross-Hacking-Keel-Kontsevich 2018).

Assume that Z is rational, and fix an identification

$$\mathbb{C}(Z) \simeq \mathbb{C}(t_1,\ldots,t_m).$$

Let

- \leq : a total order on \mathbb{Z}^m , respecting the addition,
- $\tau \in H^0(Z, \mathcal{L})$: a nonzero section.

The lowest term valuation $v^{\text{low}}_{\leq} : \mathbb{C}(Z) \setminus \{0\} \to \mathbb{Z}^m$ is defined as follows:

$$\begin{split} v^{\text{low}}_{\leq}(f/g) &\coloneqq v^{\text{low}}_{\leq}(f) - v^{\text{low}}_{\leq}(g), \text{ and} \\ v^{\text{low}}_{\leq}(f) &\coloneqq (a_1, \dots, a_m) \Leftrightarrow f = ct_1^{a_1} \cdots t_m^{a_m} + (\text{higher terms w.r.t. } \leq) \end{split}$$

for $f,g \in \mathbb{C}[t_1,\ldots,t_m] \setminus \{0\}$, where $c \in \mathbb{C}^{\times}$.

Define a semigroup $S(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau) \subseteq \mathbb{Z}_{>0} \times \mathbb{Z}^m$, a real closed convex cone $C(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau) \subseteq \mathbb{R}_{\geq 0} \times \mathbb{R}^m$, and a convex set $\Delta(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau) \subseteq \mathbb{R}^m$ by $S(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau) \coloneqq \{(k, v_{\leq}^{\text{low}}(\sigma/\tau^k)) \mid k \in \mathbb{Z}_{>0}, \ \sigma \in H^0(Z, \mathcal{L}^{\otimes k}) \setminus \{0\}\}, C(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau) \colon \text{the smallest real closed cone containing } S(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau), \Delta(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau) \coloneqq \{\mathbf{a} \in \mathbb{R}^m \mid (1, \mathbf{a}) \in C(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau)\}.$

Definition (Lazarsfeld–Mustata 2009, Kaveh–Khovanskii 2012)

The convex set $\Delta(Z, \mathcal{L}, v_{<}^{\text{low}}, \tau)$ is called a **Newton–Okounkov body**.

Theorem (Anderson 2013)

If the semigroup $S(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau)$ is finitely generated and saturated, then there exists a toric degeneration of (Z, \mathcal{L}) to the normal projective toric variety corresponding to $\Delta(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau)$.

Example (Toric variety case)

If Z is toric with the open dense torus $(\mathbb{C}^{\times})^m = \operatorname{Spec}(\mathbb{C}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}])$ and \leq is the lexicographic order on \mathbb{Z}^m , then the Newton–Okounkov body $\Delta(Z, \mathcal{L}, v_{<}^{\operatorname{low}}, \tau)$ coincides with the moment polytope of (Z, \mathcal{L}) .

Example (Flag variety case)

If Z is a flag variety, then the Newton–Okounkov bodies $\Delta(Z, \mathcal{L}, v_{\leq}^{\text{low}}, \tau)$ realize the following representation-theoretic polytopes:

- string polytopes (Kaveh 2015, F.-Oya 2017),
- Nakashima-Zelevinsky polytopes (F.-Naito 2017, F.-Oya 2017),
- Feigin–Fourier–Littelmann–Vinberg polytopes (Feigin–Fourier–Littelmann 2017, Kiritchenko 2017).

2 Newton-Okounkov bodies arising from cluster structures

3 Case of flag varieties

Cluster varieties

Following Fock-Goncharov (2009), let us consider an A-cluster variety

$$\mathcal{A} = \bigcup_{\mathbf{s}} \mathcal{A}_{\mathbf{s}} = \bigcup_{\mathbf{s}} \operatorname{Spec}(\mathbb{C}[A_{j;\mathbf{s}}^{\pm 1} \mid j \in \{1, \dots, m\} = J_{\mathrm{uf}} \sqcup J_{\mathrm{fr}}]),$$

where s runs over the set of seeds which are mutually mutation equivalent, and the tori are glued via the following birational cluster mutations:

$$\mu_k^*(A_{i;\mathbf{s}'}) = \begin{cases} A_{i;\mathbf{s}} & (i \neq k), \\ A_{k;\mathbf{s}}^{-1}(\prod_{\varepsilon_{k,j}>0} A_{j;\mathbf{s}}^{\varepsilon_{k,j}} + \prod_{\varepsilon_{k,j}<0} A_{j;\mathbf{s}}^{-\varepsilon_{k,j}}) & (i = k) \end{cases}$$

if $\mathbf{s}'=\mu_k(\mathbf{s}),$ where $\varepsilon=(\varepsilon_{i,j})_{i,j}$ is the exchange matrix of $\mathbf{s}.$

Definition (Berenstein–Fomin–Zelevinsky 2005)

The ring $\mathbb{C}[\mathcal{A}]$ of regular functions is called an **upper cluster algebra**.

Assumption

The exchange matrix ε is of full rank for all seeds ${\bf s}.$

Cluster varieties

Example

$$\begin{split} \mathfrak{M} &= 2, \quad J_{uf} = \{1, 2\}, \quad J_{fr} = \phi, \quad S = ((\mathfrak{X}_{1}, \mathfrak{X}_{2}), \varepsilon) \\ \mathfrak{A}_{S} &= (\mathbb{C}^{\times})^{2} \ni (\mathfrak{X}_{1}, \mathfrak{X}_{2}) \qquad \qquad \mathcal{X}_{1} = \mathcal{A}_{1,S} \\ \mathcal{X}_{3} &= \frac{\mathfrak{X}_{2} + 1}{\mathfrak{X}_{1}} \qquad \mathcal{M}_{1} / \qquad \mathcal{M}_{2} \qquad \mathcal{X}_{4} = \frac{\mathfrak{X}_{1} + 1}{\mathfrak{X}_{2}} \qquad \qquad \mathcal{X}_{2} = \mathcal{A}_{2,S} \\ (\mathfrak{X}_{3}, \mathfrak{X}_{2}) \in (\mathbb{C}^{\times})^{2} \qquad (\mathbb{C}^{\times})^{2} \ni (\mathfrak{X}_{1}, \mathfrak{X}_{4}) \qquad \qquad \mathcal{E} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \mathfrak{X}_{5} &= \frac{\mathfrak{X}_{1} + \mathfrak{X}_{2} + 1}{\mathfrak{X}_{1} \mathfrak{X}_{2}} \qquad \qquad \mathcal{M}_{1} \qquad \qquad \qquad \mathcal{E} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ (\mathfrak{X}_{2}, \mathfrak{X}_{5}) \in (\mathbb{C}^{\times})^{2} \qquad (\mathbb{C}^{\times})^{2} \ni (\mathfrak{X}_{5}, \mathcal{X}_{4}) \\ \mathfrak{X}_{5} &= \mathcal{L}_{1} = \mathcal{L} \left[(\mathbb{C}^{\times})^{2}, \\ \mathbb{C} \left[\mathcal{A} \right] = \mathbb{C} \left[\mathfrak{X}_{1}, \dots, \mathfrak{X}_{5} \right] \subseteq \mathbb{C} \left[\mathfrak{X}_{1}^{\pm 1}, \mathfrak{X}_{2}^{\pm 1} \right] \end{split}$$

Tropicalized cluster mutations

Denoting the dual torus of $\mathcal{A}_{\mathbf{s}}$ by $\mathcal{A}_{\mathbf{s}}^{\vee}$, we have

$$\mathcal{A} = \bigcup_{\mathbf{s}} \mathcal{A}_{\mathbf{s}} \quad \xleftarrow{\text{``mirror''}} \mathcal{A}^{\vee} = \bigcup_{\mathbf{s}} \mathcal{A}_{\mathbf{s}}^{\vee}.$$

The space \mathcal{A}^{\vee} is called the **Fock–Goncharov dual**, and defined to be the Langlands dual of the \mathcal{X} -cluster variety. Since the gluing maps of \mathcal{A}^{\vee} are given by subtraction-free rational functions, we obtain the set $\mathcal{A}^{\vee}(\mathbb{R}^T)$ of \mathbb{R}^T -valued points, where \mathbb{R}^T is a semifield $(\mathbb{R}, \max, +)$. More precisely, $\mathcal{A}^{\vee}(\mathbb{R}^T)$ is defined by gluing $\mathcal{A}^{\vee}_{\mathbf{s}}(\mathbb{R}^T) = \mathbb{R}^m$ via the following tropicalized cluster mutations:

$$\mu_k^T \colon \mathcal{A}_{\mathbf{s}}^{\vee}(\mathbb{R}^T) \to \mathcal{A}_{\mathbf{s}'}^{\vee}(\mathbb{R}^T), \ (g_1, \dots, g_m) \mapsto (g_1', \dots, g_m'),$$

where

$$g_i' = \begin{cases} g_i + \max\{\varepsilon_{k,i}, 0\}g_k - \varepsilon_{k,i}\min\{g_k, 0\} & (i \neq k), \\ -g_k & (i = k). \end{cases}$$

Extended g-vectors

Theorem (Fomin–Zelevinsky 2007, Derksen–Weyman–Zelevinsky 2010, Gross–Hacking–Keel–Kontsevich 2018)

For all \mathbf{s}, \mathbf{s}' and $1 \le i \le m$, the variable $A_{i;\mathbf{s}'}$ is pointed for \mathbf{s} , that is,

$$A_{i;\mathbf{s}'} \in A_{1;\mathbf{s}}^{g_1} \cdots A_{m;\mathbf{s}}^{g_m} \left(1 + \sum_{\substack{0 \neq (a_j)_{j \in J_{\mathrm{uf}}} \in \mathbb{Z}_{\geq 0}^{J_{\mathrm{uf}}}} \mathbb{Z} \prod_{j \in J_{\mathrm{uf}}} (A_{1;\mathbf{s}}^{\varepsilon_{j,1}} \cdots A_{m;\mathbf{s}}^{\varepsilon_{j,m}})^{a_j} \right)$$

for some $g_{\mathbf{s}}(A_{i;\mathbf{s}'}) = (g_1, \dots, g_m) \in \mathbb{Z}^m$ (the extended g-vector of $A_{i;\mathbf{s}'}$).

Definition (Qin 2017)

For each seed $\mathbf{s} = ((A_{j;\mathbf{s}})_j, \varepsilon)$, define a partial order $\preceq_{\mathbf{s}}$ on \mathbb{Z}^m by $g' \preceq_{\mathbf{s}} g \Leftrightarrow g' - g \in \sum_{j \in J_{uf}} \mathbb{Z}_{\geq 0}(\varepsilon_{j,1}, \dots, \varepsilon_{j,m}).$ This $\preceq_{\mathbf{s}}$ is called the **dominance order** associated with \mathbf{s} .

Extended g-vectors as higher rank valuations

Fix a total order $\leq_{\mathbf{s}}$ on \mathbb{Z}^m refining the opposite dominance order $\leq_{\mathbf{s}}^{\text{op}}$.

Definition (F.–Oya)

For each seed s, define a valuation v_s on $\mathbb{C}(\mathcal{A}) = \mathbb{C}(A_{1;s}, \ldots, A_{m;s})$ to be the lowest term valuation $v_{\leq s}^{\text{low}}$.

Proposition

For all \mathbf{s}, \mathbf{s}' and $1 \leq i \leq m$, the equality $v_{\mathbf{s}}(A_{i;\mathbf{s}'}) = g_{\mathbf{s}}(A_{i;\mathbf{s}'})$ holds.

Let Z be a compactification of \mathcal{A} . Then $\Delta(Z, \mathcal{L}, v_{s}, \tau)$ does not depend on the choice of a refinement \leq_{s} of \preceq_{s}^{op} if for each $k \in \mathbb{Z}_{>0}$,

$$\{\sigma/\tau^k \mid \sigma \in H^0(Z, \mathcal{L}^{\otimes k})\} \subseteq \mathbb{C}(Z) \simeq \mathbb{C}(\mathcal{A})$$

is compatible with a specific cluster-theoretic $\mathbb C\text{-}\mathsf{basis}$ such as

- a theta function basis (Gross-Hacking-Keel-Kontsevich 2018),
- a common triangular basis (Qin 2017).

Let

$$\mathcal{A}_{\mathrm{prin}} = \bigcup_{\mathbf{s}} \mathcal{A}_{\mathrm{prin},\mathbf{s}}$$

be the \mathcal{A} -cluster variety with principal coefficients.

• There naturally exists a morphism

$$\pi \colon \mathcal{A}_{\mathrm{prin}} \to T_M = \mathrm{Spec}(\mathbb{C}[N]) = (\mathbb{C}^{\times})^m$$

such that $\pi^{-1}(e) \simeq \mathcal{A}$.

- The morphism π induces a $\mathbb{C}[N]$ -algebra structure on $\mathbb{C}[\mathcal{A}_{prin}]$.
- There exists a canonical surjective map

$$\rho^T \colon \mathcal{A}^{\vee}_{\mathrm{prin}}(\mathbb{R}^T) \to \mathcal{A}^{\vee}(\mathbb{R}^T).$$

• $\mathcal{A}^{\vee}(\mathbb{R}^T) \simeq \mathcal{A}_{\mathbf{s}}^{\vee}(\mathbb{R}^T) = \mathbb{R}^m$ for each seed s. For $q \in \mathcal{A}^{\vee}(\mathbb{R}^T)$ and $\Xi \subseteq \mathcal{A}^{\vee}(\mathbb{R}^T)$, let $q_{\mathbf{s}}$ and $\Xi_{\mathbf{s}}$ denote their images in $\mathcal{A}_{\mathbf{s}}^{\vee}(\mathbb{R}^T) = \mathbb{R}^m$, respectively.

Assume that $\ensuremath{\mathcal{A}}$ satisfies some "good conditions". For instance, we assume that

$$\mathbb{C}[\mathcal{A}_{\mathrm{prin}}] = \sum_{q \in \mathcal{A}_{\mathrm{prin}}^{\vee}(\mathbb{Z}^T)} \mathbb{C} \vartheta_q \quad \text{and} \quad \mathbb{C}[\mathcal{A}] = \sum_{q \in \mathcal{A}^{\vee}(\mathbb{Z}^T)} \mathbb{C} \vartheta_q,$$

where $\{\vartheta_q \mid q \in \mathcal{A}_{\text{prin}}^{\vee}(\mathbb{Z}^T)\}$ and $\{\vartheta_q \mid q \in \mathcal{A}^{\vee}(\mathbb{Z}^T)\}$ are the theta function bases. Then we have

$$\mathbb{C}[\mathcal{A}] = \mathbb{C}[\mathcal{A}_{\mathrm{prin}}] \otimes_{\mathbb{C}[N]} \mathbb{C} \quad \text{and} \quad \vartheta_{\rho^T(q)} = \vartheta_q \otimes 1$$

for $q \in \mathcal{A}_{\text{prin}}^{\vee}(\mathbb{Z}^T)$, where $\mathbb{C}[N] \to \mathbb{C}$ is given by $e \in T_M$.

Proposition

For all seeds s and $q \in \mathcal{A}^{\vee}(\mathbb{Z}^T)$, the equality $v_s(\vartheta_q) = q_s$ holds.

Let $\Xi \subseteq \mathcal{A}_{\mathrm{prin}}^{\vee}(\mathbb{R}^T)$ be a full-dimensional bounded rationally-defined positive convex polytope. We set $\widetilde{\Xi} \coloneqq \Xi + (N \otimes_{\mathbb{Z}} \mathbb{R})$, and define $\widetilde{S}_{\widetilde{\Xi}} \subseteq \mathbb{C}[\mathcal{A}_{\mathrm{prin}}][x]$ by

$$\widetilde{S}_{\widetilde{\Xi}} \coloneqq \bigoplus_{d \in \mathbb{Z}_{\geq 0}} \bigoplus_{q \in d\widetilde{\Xi}(\mathbb{Z})} \mathbb{C}\vartheta_q x^d,$$

where x is an indeterminate and $d\widetilde{\Xi}(\mathbb{Z})$ is the set of $q \in \mathcal{A}_{\text{prin}}^{\vee}(\mathbb{Z}^T)$ such that

$$(d,q) \in \{(r,p) \mid r \in \mathbb{R}_{\geq 0}, \ p \in r\widetilde{\Xi}\}.$$

The inclusion of $\mathbb{C}[N] = \mathbb{C}[N]\vartheta_0$ in the degree 0 part of $\widetilde{S}_{\widetilde{\Xi}}$ induces a flat morphism

$$\mathfrak{X}' \coloneqq \operatorname{Proj}(\widetilde{S}_{\widetilde{\Xi}}) \to \operatorname{Spec}(\mathbb{C}[N]) = T_M.$$

Theorem (Gross-Hacking-Keel-Kontsevich 2018)

Under some "good conditions" on A, the following hold.

- (1) For $z \in T_M$, the fiber \mathfrak{X}_z of the family $\mathfrak{X}' \to T_M$ is a normal projective variety containing \mathcal{A} as an open subscheme.
- (2) For each seed s, the flat family $\mathfrak{X}' \to T_M = (\mathbb{C}^{\times})^m$ extends to a flat family

$$\mathfrak{X} = \operatorname{Proj}(\widetilde{S}_{\Xi^+}) \to \mathbb{C}^m$$

such that the central fiber \mathfrak{X}_0 is the normal projective toric variety corresponding to the rational convex polytope $\rho^T(\Xi)_s$.

Theorem (F.–Oya)

For each seed s, the Newton–Okounkov body $\Delta(\mathfrak{X}_e, \mathcal{L}, v_s, x)$ coincides with the rational convex polytope $\rho^T(\Xi)_s$, where \mathcal{L} is the restriction of $\mathcal{O}_{\mathfrak{X}}(1)$.

2 Newton–Okounkov bodies arising from cluster structures

3 Case of flag varieties

Relation with combinatorial mutations

Flag varieties

- G: a connected, simply-connected semisimple algebraic group over \mathbb{C} ,
- $B \subseteq G$: a Borel subgroup,
- P₊: the set of dominant integral weights.

Definition

The quotient variety G/B is called the **full flag variety**.

Example

If $G=SL_n(\mathbb{C}),$ then we can take B to be the subgroup of upper triangular matrices. In this case, we have

$$G/B \xrightarrow{\sim} \{(\{0\} \subsetneq V_1 \subsetneq \cdots \subsetneq V_n = \mathbb{C}^n) \mid \dim_{\mathbb{C}}(V_i) = i, \ 1 \le i \le n\},\ gB \mapsto (\{0\} \subsetneq \langle g\mathbf{e}_1 \rangle_{\mathbb{C}} \subsetneq \cdots \subsetneq \langle g\mathbf{e}_1, \dots, g\mathbf{e}_n \rangle_{\mathbb{C}} = \mathbb{C}^n),$$

where $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ denotes the standard basis of \mathbb{C}^n .

Flag varieties

Theorem (Borel–Weil theory)

There exists a natural bijective map

 $P_+ \xrightarrow{\sim} \{ \text{globally generated line bundles on } G/B \}, \quad \lambda \mapsto \mathcal{L}_{\lambda},$

such that $H^0(G/B, \mathcal{L}_{\lambda})^*$ is the irreducible highest weight *G*-module with highest weight λ .

The anti-canonical bundle of G/B is isomorphic to $\mathcal{L}_{2\rho}$, where $\rho \in P_+$ is the half sum of positive roots.

$$\underbrace{e_{\cdot}g_{\cdot}}_{\lambda \in P_{+}} G = SL_{n}(\mathcal{C}), \quad B = \left\{ \begin{pmatrix} *, * \\ 0 & * \end{pmatrix} \right\}$$

$$\lambda \in P_{+} \longrightarrow B \longrightarrow \mathcal{C}^{\times}, \quad \begin{pmatrix} d_{1}, * \\ 0 & d_{n} \end{pmatrix} \longmapsto d_{1}^{\lambda_{1}} d_{2}^{\lambda_{2}} \dots d_{n}^{\lambda_{n}}$$

$$(\lambda_{1} \ge \lambda_{2} \ge \dots \ge \lambda_{n} = 0)$$

$$\lambda = 2P \longrightarrow (\lambda_{1}, \dots, \lambda_{n}) = (2N-2, 2N-4, \dots, 4, 2, 0)$$
Nooki Fujita (The University of Tokyo) NO bodies arising from cluster structures Nov. 19, 202 20/35

Let U^- be the unipotent radical of the opposite Borel subgroup $B^-,\,{\rm and}$

$$G/B = \bigsqcup_{w \in W} BwB/B$$

the Bruhat decomposition of G/B, where W is the Weyl group.

Definition For $w \in W$, the **unipotent cell** U_w^- is defined by

$$U_w^- \coloneqq BwB \cap U^- \subseteq G.$$

Theorem (Berenstein–Fomin–Zelevinsky 2005)

The coordinate ring $\mathbb{C}[U_w^-]$ admits an upper cluster algebra structure.

There exists $w_0 \in W$, called the **longest element**, such that the natural projection $G \twoheadrightarrow G/B$ induces an open embedding $U_{w_0}^- \hookrightarrow G/B$.

$$\underline{e.2.} \quad G = SL_n(\mathbb{C}) \longrightarrow \mathcal{V}^- = \left\{ \begin{pmatrix} I & 0 \\ * & i \end{pmatrix} \right\}$$

$$\begin{split} \mathcal{V}_{W_{0}}^{-} &= \left\{ \mathcal{U} \in \mathcal{V}^{-} | \Delta_{n,1}(\mathcal{U}), \Delta_{n-1n,12}(\mathcal{U}), \cdots, \Delta_{23\cdots n,12\cdots n-1}(\mathcal{U}) \neq 0 \right\} \\ \underline{e.2}, \quad G_{1} &= SL_{3}(\mathbb{C}) \rightarrow \mathcal{V}^{-} = \left\{ \mathcal{U} = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ A & c & 1 \end{pmatrix} \right\} \\ \Delta_{3,1}(\mathcal{U}) &= \mathcal{U}, \quad \Delta_{23,12}(\mathcal{U}) = \mathcal{U} \subset -\mathcal{U} \\ \rightarrow \mathcal{V}_{W_{0}}^{-} &= \left\{ \mathcal{U} \in \mathcal{V}^{-} | \mathcal{U} \neq 0, \quad \mathcal{U} \subset -\mathcal{U} \neq 0 \right\} \\ \rightarrow \mathcal{V}_{W_{0}}^{-} &= \left\{ \mathcal{U} \in \mathcal{V}^{-} | \mathcal{U} \neq 0, \quad \mathcal{U} \subset -\mathcal{U} \neq 0 \right\} \\ \rightarrow \mathcal{U}[\mathcal{V}_{W_{0}}^{-}] &= \mathbb{C}[\mathcal{U}, \mathcal{C}, \mathcal{U}^{\pm 1}, | \mathcal{U} \subset -\mathcal{U}]^{\pm 1} \\ \text{There are only two seeds } S_{1} \text{ and } S_{2} : \\ S_{1} &= (\mathcal{U}, \mathcal{U}, \mathcal{U} \subset -\mathcal{U}), \quad (0, -1, 1) \end{pmatrix}, \quad S_{2} = ((\mathcal{C}, \mathcal{U}, \mathcal{U} \subset -\mathcal{U}), \quad (0, -1, 1)) \end{split}$$

Let R(w) denote the set of reduced words for $w \in W$. For each reduced word $\mathbf{i} = (i_1, \ldots, i_m) \in R(w)$, we obtain a seed $\mathbf{s}_{\mathbf{i}} = ((A_{j;\mathbf{s}_{\mathbf{i}}})_j, \varepsilon^{\mathbf{i}})$ for U_w^- given by

• $A_{j;\mathbf{s}_i} \in \mathbb{C}[U_w^-]$ is the restriction of the generalized minor $\Delta_{s_{i_1}\cdots s_{i_j}\varpi_{i_j}, \varpi_{i_j}} \in \mathbb{C}[G]$ for $1 \le j \le m$; • if we write $\varepsilon^i = (\varepsilon_{s,t})_{s,t}$, then

$$\varepsilon_{s,t} = \begin{cases} 1 & \text{if } s^+ = t, \\ -1 & \text{if } s = t^+, \\ \langle \alpha_{i_s}, h_{i_t} \rangle & \text{if } s < t < s^+ < t^+, \\ -\langle \alpha_{i_s}, h_{i_t} \rangle & \text{if } t < s < t^+ < s^+, \\ 0 & \text{otherwise}, \end{cases}$$

where

$$k^+ \coloneqq \min(\{k+1 \le j \le m \mid i_j = i_k\} \cup \{m+1\}).$$

Example

Let $G = SL_4(\mathbb{C})$, and $\mathbf{i} = (1, 2, 1, 3, 2, 1) \in R(w_0)$. Then the seed $\mathbf{s}_{\mathbf{i}} = ((A_{j;\mathbf{s}_{\mathbf{i}}})_j, \varepsilon^{\mathbf{i}})$ for $U_{w_0}^-$ is given as follows (there exists $s \to t$ if and only if $\varepsilon_{t,s} = 1$ or $\varepsilon_{s,t} = -1$):

Theorem (Kashiwara-Kim 2019, Qin preprint 2020)

For $w \in W$, the upper global basis $\mathbf{B}_w^{up} \subseteq \mathbb{C}[U_w^-]$ is (the specialization at q = 1 of) a common triangular basis. In particular, the following hold. (1) Each element $b \in \mathbf{B}_w^{up}$ is pointed for all s, that is,

$$b \in A_{1;\mathbf{s}}^{g_1} \cdots A_{m;\mathbf{s}}^{g_m} \left(1 + \sum_{0 \neq (a_j)_{j \in J_{\mathrm{uf}}} \in \mathbb{Z}_{\ge 0}^{J_{\mathrm{uf}}}} \mathbb{Z} \prod_{j \in J_{\mathrm{uf}}} (A_{1;\mathbf{s}}^{\varepsilon_{j,1}} \cdots A_{m;\mathbf{s}}^{\varepsilon_{j,m}})^{a_j} \right)$$

for some $g_{\mathbf{s}}(b) = (g_1, \dots, g_m) \in \mathbb{Z}^m$ (the extended g-vector of b). (2) If $\mathbf{s}' = \mu_k(\mathbf{s})$, then $g_{\mathbf{s}'}(b) = \mu_k^T(g_{\mathbf{s}}(b))$ for all $b \in \mathbf{B}_w^{\mathrm{up}}$.

Corollary

For all $b \in \mathbf{B}^{\mathrm{up}}_w$ and \mathbf{s} , the equality $v_{\mathbf{s}}(b) = g_{\mathbf{s}}(b)$ holds.

Associated Newton-Okounkov bodies

Let $\tau_{\lambda} \in H^0(G/B, \mathcal{L}_{\lambda})$ be a lowest weight vector.

Theorem (F.–Oya)

Let s be a seed for $U_{w_0}^-$, $\lambda \in P_+$, and $i \in R(w_0)$.

(1) $\Delta(G/B, \mathcal{L}_{\lambda}, v_{\mathbf{s}}, \tau_{\lambda})$ does not depend on the choice of a refinement $\leq_{\mathbf{s}}$ of the opposite dominance order $\preceq_{\mathbf{s}}^{\mathrm{op}}$.

(2) $\Delta(G/B, \mathcal{L}_{\lambda}, v_{s}, \tau_{\lambda})$ is a rational convex polytope.

(3) $S(G/B, \mathcal{L}_{\lambda}, v_{s}, \tau_{\lambda})$ is finitely generated and saturated.

(4) If $\mathbf{s}' = \mu_k(\mathbf{s})$, then $\Delta(G/B, \mathcal{L}_\lambda, v_{\mathbf{s}'}, \tau_\lambda) = \mu_k^T(\Delta(G/B, \mathcal{L}_\lambda, v_{\mathbf{s}}, \tau_\lambda))$.

- (5) $\Delta(G/B, \mathcal{L}_{\lambda}, v_{\mathbf{s}_{i}}, \tau_{\lambda})$ is unimodularly equivalent to the string polytope $\Delta_{i}(\lambda)$ by an explicit unimodular transformation.
- (6) There is a seed $\mathbf{s}_{i}^{\text{mut}}$ such that $\Delta(G/B, \mathcal{L}_{\lambda}, v_{\mathbf{s}_{i}^{\text{mut}}}, \tau_{\lambda})$ is unimodularly equivalent to the Nakashima–Zelevinsky polytope $\widetilde{\Delta}_{i}(\lambda)$.

2 Newton–Okounkov bodies arising from cluster structures

3 Case of flag varieties

Relation with combinatorial mutations

Combinatorial mutations

- $N \simeq \mathbb{Z}^m$: a \mathbb{Z} -lattice of rank m,
- $M \coloneqq \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$,
- $N_{\mathbb{R}}\coloneqq N\otimes_{\mathbb{Z}}\mathbb{R}$ and $M_{\mathbb{R}}\coloneqq M\otimes_{\mathbb{Z}}\mathbb{R}$,
- $H_{w,h} \coloneqq \{v \in N_{\mathbb{R}} \mid \langle w, v \rangle = h\}$ for $w \in M$ and $h \in \mathbb{Z}$,
- $P \subseteq N_{\mathbb{R}}$: an integral convex polytope with the vertex set $V(P) \subseteq N$,
- $w \in M$: a primitive vector,
- $F \subseteq H_{w,0}$: an integral convex polytope.

Assumption

For every $h\in\mathbb{Z}_{\leq-1},$ there exists a possibly-empty integral convex polytope $G_h\subseteq N_{\mathbb{R}}$ such that

$$V(P) \cap H_{w,h} \subseteq G_h + |h|F \subseteq P \cap H_{w,h}.$$

If this assumption holds, then we say that the combinatorial mutation ${\rm mut}_w(P,F)$ of P is well-defined.

Naoki Fujita (The University of Tokyo) NO bodies arising from cluster structures

Combinatorial mutations

Definition (Akhtar–Coates–Galkin–Kasprzyk 2012)

The combinatorial mutation $mut_w(P, F)$ of P is defined as follows:

$$\operatorname{mut}_w(P,F) \coloneqq \operatorname{conv}\left(\bigcup_{h \le -1} G_h \cup \bigcup_{h \ge 0} ((P \cap H_{w,h}) + hF)\right) \subseteq N_{\mathbb{R}}.$$

Properties

- $mut_w(P, F)$ is an integral convex polytope.
- $\operatorname{mut}_w(P, F)$ is independent of the choice of $\{G_h\}_{h \leq -1}$.

• If $Q = \operatorname{mut}_w(P, F)$, then we have $P = \operatorname{mut}_{-w}(Q, F)$.

Example

For $w = (-1, -1) \in M$ and $F = conv\{(0, 0), (1, -1)\}$, we have

Dual operations

- $P\subseteq N_{\mathbb{R}}\colon$ an integral convex polytope containing the origin in its interior,
- $w \in M$: a primitive vector,
- $F \subseteq H_{w,0}$: an integral convex polytope.

The **polar dual** P^* of P is a rational convex polytope defined by

$$P^* \coloneqq \{ \boldsymbol{u} \in M_{\mathbb{R}} \mid \langle \boldsymbol{u}, \boldsymbol{u}' \rangle \geq -1 \text{ for all } \boldsymbol{u}' \in P \}.$$

Define a map $\varphi_{w,F} \colon M_{\mathbb{R}} \to M_{\mathbb{R}}$ by

$$\varphi_{w,F}(u) \coloneqq u - u_{\min}w$$

for $u \in M_{\mathbb{R}}$, where $u_{\min} \coloneqq \min\{\langle u, v \rangle \mid v \in F\}$.

Proposition (Akhtar–Coates–Galkin–Kasprzyk 2012)

If $mut_w(P, F)$ is well-defined, then it holds that

$$\varphi_{w,F}(P^*) = \operatorname{mut}_w(P,F)^*.$$

Interior lattice points

Theorem (Steinert preprint 2019)

If the semigroup $S(G/B, \mathcal{L}_{2\rho}, v_{\leq}^{\text{low}}, \tau_{2\rho})$ is finitely generated and saturated, then $\Delta := \Delta(G/B, \mathcal{L}_{2\rho}, v_{\leq}^{\text{low}}, \tau_{2\rho})$ contains exactly one lattice point a in its interior, and the dual polytope

$$\Delta^{\vee} \coloneqq (\Delta - \boldsymbol{a})^*$$

is an integral convex polytope.

Corollary (F.–Higashitani)

The unique interior lattice point $\mathbf{a}_{\mathbf{s}} = (a_j)_{1 \leq j \leq m}$ of $\Delta(G/B, \mathcal{L}_{2\rho}, v_{\mathbf{s}}, \tau_{2\rho})$ is given by

$$a_j = \begin{cases} 0 & \text{(if } j \in J_{\text{uf}}), \\ 1 & \text{(if } j \in J_{\text{fr}}). \end{cases}$$

Relation with combinatorial mutations

It has been known that the tropicalized cluster mutation μ_k^T can be realized as $\varphi_{w,F}$ for some w and F. Using the computation of a_s , we obtain the following as the polar dual of this fact.

Theorem (F.–Higashitani)

- (1) The dual polytopes $\Delta(G/B, \mathcal{L}_{2\rho}, v_s, \tau_{2\rho})^{\vee}$ for seeds s are all related by sequences of combinatorial mutations up to unimodular equivalence.
- (2) In particular, the dual polytopes $\Delta_i(2\rho)^{\vee}$ and $\widetilde{\Delta}_i(2\rho)^{\vee}$ of string polytopes and Nakashima–Zelevinsky polytopes for reduced words i are all related by sequences of combinatorial mutations up to unimodular equivalence.

Future directions

- Describe $\Delta(G/B, \mathcal{L}_{\lambda}, v_{s}, \tau_{\lambda})$ for various seeds s explicitly.
- For various cluster varieties \mathcal{A} , compute Newton–Okounkov bodies $\Delta(\overline{\mathcal{A}}, \mathcal{L}, v_{s}, \tau)$ of their compactifications $\overline{\mathcal{A}}$.
- Relate mirror-symmetric properties of the dual polytopes $\Delta(G/B, \mathcal{L}_{2\rho}, v_{\mathbf{s}}, \tau_{2\rho})^{\vee}$. For $G = SL_{n+1}(\mathbb{C})$, Rusinko (2008) proved that certain mirror families $F_{\boldsymbol{i}}, \, \boldsymbol{i} \in R(w_0)$, which are subfamilies of $|\mathcal{O}_{\Delta_{\boldsymbol{i}}(2\rho)^{\vee}}(1)|$, are birational.
- Classify integral convex polytopes which are related with $\Delta(G/B, \mathcal{L}_{2\rho}, v_{\mathbf{s}}, \tau_{2\rho})^{\vee}$ by a sequence of combinatorial mutations. For $G = SL_{n+1}(\mathbb{C})$ or $G = Sp_{2n}(\mathbb{C})$, the dual polytope $FFLV(2\rho)^{\vee}$ of the Feigin–Fourier–Littelmann–Vinberg polytope $FFLV(2\rho)$ is contained in this class (F.–Higashitani).

Thank you for your attention!