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Fano varieties

Definition

X (smooth, projective) is a Fano variety if −KX is ample.

Feature: boundedness. In every dimension there exists a finite number of
deformation families of Fano varieties: they can be classified. An explicit bound
for the number exists, but it is (hugely) not sharp. (In dimension 1, 318 vs 1!)

dim 1: P1.

dim 2: 10 families: P1 × P1, Blp P2, |p| ≤ 8 (del Pezzo).

dim 3: 105 (17+88 according to ρ) (Iskovskikh, Mori–Mukai).

dim ≥ 4 ? (although many examples known, cf. Batyrev, Coates, Galkin,
Kalashnikov, Kasprzyk, Küchle, Prince, Strangeway, etc)

There are many ongoing projects attempting to classify Fano 4-folds in
dimension 4 (e.g. using Mirror Symmetry), but no final picture yet.
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Classification according to ιX

To refine the classification, we use the index ιX of a Fano X (greatest integer
for which −KX is divisible in Pic(X )). If X has dimension n, ιX is bounded by
n + 1 and

ιX = n + 1 ⇐⇒ X ∼= Pn.

ιX = n ⇐⇒ X ∼= Q2 ⊂ Pn+1.

ιX = n − 1: X is called del Pezzo manifold (classified).

ιX = n − 2 & ρX = 1: X is called Mukai manifold (classified).

ιX ≥ n+1
2

& ρX > 1 & n ≥ 5: Wisniewski (classified).

As we can see, the first outstanding case is for Fano 4-folds of index ιX = 1.
This project has three main aims.

Aim

Produce many new examples in dimension 4, index 1.

Establish a dictionary between the (biregular) list of examples and the
(birational) Mori–Mukai-style language.

(in higher dimension) Construct Fano with special Hodge-theoretical
properties, and link with hyperkähler geometry.
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Fano varieties and homogeneous vector bundles

Our tool of choice to explore the landscape is to construct Fano varieties as
zero loci of general sections of homogeneous vector bundles over
homogeneous varieties.
The proper definition would require us to start with a (connected, simply
connected, semisimple, complex) Lie group G , a parabolic subgroup P, and a
vector bundle E on G/P isomorphic to G ×P E , where E is a rational
representation of P.

When G/P = Gr(k, n) a typical example is E completely reducible, that is
E =

⊕
ΣαU ⊗ ΣβQ on Gr(k, n), with U the rank k tautological, Q the rank

n − k quotient.
Advantages:

Abundance of examples;

Classification (of Fano of this type) can be reduced to a combinatorial
problem;

Easy to compute invariants (e.g. Hodge numbers) using Borel–Bott–Weil
and Koszul complex.

Remark: All complete intersections are examples, but there are much more!
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Mukai’s model for prime Fano threefolds

Inspiration: Mukai’s classification of prime Fano threefolds.
There are 17 families of Fano threefolds with ρX = 1. Of 7 with ιX > 1 all
except V5 are complete intersections in wP. Of 10 with ιX = 1
(g = 2, . . . , 10, 12), g = 2, 3, 4, 5 are complete intersections in wP.
The remaining Fano have a nice description as X = (G ,F) – that is (the
general) X is the zero locus of a (general) section of F in G .

V5. (−KX
2

)3 = 5. (Gr(2, 5),O(1)⊕3);

X6, −K 3
X = 10. (Gr(2, 5),O(1)⊕2 ⊕O(2)).

X7, −K 3
X = 12. (Gr(5, 10), Sym2 U∨ ⊕O( 1

2
)⊕7) or

(Gr(2, 5),U∨(1)⊕O(1)).

X8, −K 3
X = 14. (Gr(2, 6),O(1)⊕5).

X9, −K 3
X = 16. (Gr(3, 6),

∧2 U∨ ⊕O(1)⊕3).

X10, −K 3
X = 18. (Gr(2, 7),Q∨(1)⊕O(1)⊕2).

X12, −K 3
X = 22. (Gr(3, 7), (

∧2 U∨)⊕3).

Question: Do we obtain all (classified) Fano varieties in this way?
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Non-prime Fano 3-folds and vector bundles/1

Answer: Yes. Classical in dimension 1 and 2. In dimension 3, the case of
non-prime Fano 3-folds (ρX > 1), there are 88 cases left. The original
classification by Mori–Mukai was completed using Mori Theory. These Fano are
in most cases described in terms of blow up of curves or point in other Fano
with lower Picard rank. This description however is difficult to generalise in
dimension > 3.

Coates, Corti, Galkin and Kasprzyk (2013) rewrote Mori–Mukai classification.
They were able to describe all Fano 3-folds as zero locus (V � G ,F), with the
aim of computing the quantum periods. In many cases, their model of choice
was a complete intersection in a toric variety.
As a first step, we decide to rewrite once again the Mori–Mukai classification.
We wanted to check if we could describe the general element of each of 105
families taking as ambient variety only Grassmannians. This can be considered
a test on the applicability of our tool in higher dimension.
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Non-prime Fano 3-folds and vector bundles/2

Theorem (De Biase, –, Tanturri)

All 105 Fano threefolds can be described as (F ,G), where F is homogeneous
and G =

∏
Gr(ki , ni ) is a product of Grassmannians.

Remark: In few cases we needed to use weighted projective spaces (as in the
case of 3-folds). Also, in some cases we needed to use homogeneous bundles
which are not completely reducible.
Example: Fano 3-fold 2–16.

Birational: Blow up of the complete intersection of two quadrics in P5 in a
conic C .

Biregular: (P2 × Gr(2, 4),U∨Gr(2,4)(1, 0)⊕O(0, 2))).

Example: Fano 3-fold 4–4.

Birational: Blow up of a three dimensional quadric in two points and in
the proper transform of a conic through the points.

Biregular: (P1 × P2 × P4,O(1, 1, 0)⊕O(0, 0, 2)⊕QP2(0, 0, 1)).
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Non-prime Fano 3-folds and vector bundles/3

Methodology

1 Run a search to enumerate all the possible 3-folds that can be found as
(G ,F) with c1(−KG ⊗ det(F)) < 0.

2 Compute the invariants (h0(−KX ),−K 3
X , h

p,q(X )) to match each couple
(G ,F) with a candidate in the MM list.

3 Prove a series of technical lemma that allow to translate
biregular!birational (and viceversa).

E.g. in 2–16 above one first check compute that c1(KG ⊗ det(F)) = −h1 − h2.
Then we compute by Riemann-Roch and Koszul complex that the invariants of
X satisfy h0(−KX ) = 14,−K 3

X = 22, h1,1(X ) = h2,2(X ) = 2. To match this
candidate with the actual Fano we can use the following lemma:

Lemma

BlGr(k−1,n−1) Gr(k, n) ∼= (Gr(k, n − 1)× Gr(k, n),Q� U∨) where the centre of
the blow up Gr(k − 1, n − 1) is identified with (Gr(k, n),Q).

In particular (P2 × Gr(2, 4),U∨Gr(2,4)(1, 0)) gives the blow up of Gr(2, 4) in P2.

The extra O(0, 2) section cut the Gr(2, 4) in an extra quadric, and P2 in a
conic!
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Progress in higher dimension

We now move our attention to the higher dimensional case. Some ongoing
projects:

1. Describe Kalashnikov’s Fano 4-fold. In 2018 Kalashnikov found a list of 141
new families of Fano 4-folds of index 1, that can be described as zero loci of
vector bundles in quiver flag varieties of dimension ≤ 8. With
Kalashnikov–Tanturri we are describing them, both from an Hodge-theoretical
and birational point of view. What we want to achieve is a MM-style
classification.
Example: Fano with Period ID 689. Can be described as
(P2 × P5,O(1, 1)⊕QP2(0, 2)).
Invariants: h0(−K) = 17, (−K)4 = 51, h2,2 = 2, h3,1 = 2, h2,2 = 41.
Description: The blow up BlS8 X3, where X3 is a cubic fourfold and S8 is a
(general) K3 surface of degree 8. X3 is Hodge-special, but general in C8 (cubic
4-folds containing a plane), and therefore Fano 689 is not expected to be
rational.
2. Similarly, we are currently producing large list of examples of Fano 4-folds in
product of Grassmannians, with similar associated description. Of course we
will have to cross-check these data with the existing DB of Fano (e.g. Batyrev,
Coates, Kalashnikov, Kasprzyk, Prince, etc.) to see how many new examples
are there.

Enrico Fatighenti Fano from homogeneous vector bundles 9 / 18



Progress in higher dimension

We now move our attention to the higher dimensional case. Some ongoing
projects:
1. Describe Kalashnikov’s Fano 4-fold. In 2018 Kalashnikov found a list of 141
new families of Fano 4-folds of index 1, that can be described as zero loci of
vector bundles in quiver flag varieties of dimension ≤ 8. With
Kalashnikov–Tanturri we are describing them, both from an Hodge-theoretical
and birational point of view. What we want to achieve is a MM-style
classification.
Example: Fano with Period ID 689. Can be described as
(P2 × P5,O(1, 1)⊕QP2(0, 2)).
Invariants: h0(−K) = 17, (−K)4 = 51, h2,2 = 2, h3,1 = 2, h2,2 = 41.
Description: The blow up BlS8 X3, where X3 is a cubic fourfold and S8 is a
(general) K3 surface of degree 8. X3 is Hodge-special, but general in C8 (cubic
4-folds containing a plane), and therefore Fano 689 is not expected to be
rational.

2. Similarly, we are currently producing large list of examples of Fano 4-folds in
product of Grassmannians, with similar associated description. Of course we
will have to cross-check these data with the existing DB of Fano (e.g. Batyrev,
Coates, Kalashnikov, Kasprzyk, Prince, etc.) to see how many new examples
are there.

Enrico Fatighenti Fano from homogeneous vector bundles 9 / 18



Progress in higher dimension

We now move our attention to the higher dimensional case. Some ongoing
projects:
1. Describe Kalashnikov’s Fano 4-fold. In 2018 Kalashnikov found a list of 141
new families of Fano 4-folds of index 1, that can be described as zero loci of
vector bundles in quiver flag varieties of dimension ≤ 8. With
Kalashnikov–Tanturri we are describing them, both from an Hodge-theoretical
and birational point of view. What we want to achieve is a MM-style
classification.
Example: Fano with Period ID 689. Can be described as
(P2 × P5,O(1, 1)⊕QP2(0, 2)).
Invariants: h0(−K) = 17, (−K)4 = 51, h2,2 = 2, h3,1 = 2, h2,2 = 41.
Description: The blow up BlS8 X3, where X3 is a cubic fourfold and S8 is a
(general) K3 surface of degree 8. X3 is Hodge-special, but general in C8 (cubic
4-folds containing a plane), and therefore Fano 689 is not expected to be
rational.
2. Similarly, we are currently producing large list of examples of Fano 4-folds in
product of Grassmannians, with similar associated description. Of course we
will have to cross-check these data with the existing DB of Fano (e.g. Batyrev,
Coates, Kalashnikov, Kasprzyk, Prince, etc.) to see how many new examples
are there.

Enrico Fatighenti Fano from homogeneous vector bundles 9 / 18



Fano 4-folds with high Picard rank

We are particularly interested in the case of Fano n-folds with high Picard rank.
Mukai’s conjecture predicts that for a smooth Fano of dimension n, one has
ρX (ιX − 1) ≤ n. It is of course interesting to look for examples (in any
dimension) of Fano which are at the boundary of this conjecture.
However Mukai’s conjecture gives no information on the index 1 case. In the
4-fold case the example with biggest Picard rank is ρ(dP1 × dP1) = 18.
However assuming that X is not a product, the champion has ρ(X ) = 9
(Casagrande–Codogni–Fanelli). There is 1 example (each) with ρX = 7, 8
(Casagrande, Araujo–Casagrande), 6 (toric) with ρX = 6 and 20 (toric) with
ρX = 5 (Batyrev).

In progress (-, Tanturri)

From a preliminary search we found 1 Fano (non-toric, likely non-t.c.i) with
ρX = 6 and 79 Fano with ρX = 5 which are not products (most of them likely
t.c.i).

Moving away from dimension 4 only, there is another class of Fano varieties we
are particularly interested in!
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Fano varieties of K3 type

Definition

For X smooth, projective, we say that H j(X ,C) ∼=
⊕

p+q=j H
p,q(X ) is of K3

type if

it is of Hodge level 2.

h
j+2
2
, j−2

2 (X ) = 1 .

X Fano is called FK3 if there is at least a j such that H j(X ,C) is of K3 type.

Example

A smooth cubic fourfold X3 ⊂ P5 with Hodge diamond

0 1 21 1 0
0 0 0 0

0 1 0
0 0

1

A 20-fold hypersurface Wσ ⊂ Gr(3, 10), where σ ∈
∧3 V∨10.

Enrico Fatighenti Fano from homogeneous vector bundles 11 / 18



Fano varieties of K3 type

Definition

For X smooth, projective, we say that H j(X ,C) ∼=
⊕

p+q=j H
p,q(X ) is of K3

type if

it is of Hodge level 2.

h
j+2
2
, j−2

2 (X ) = 1 .

X Fano is called FK3 if there is at least a j such that H j(X ,C) is of K3 type.

Example

A smooth cubic fourfold X3 ⊂ P5 with Hodge diamond

0 1 21 1 0
0 0 0 0

0 1 0
0 0

1

A 20-fold hypersurface Wσ ⊂ Gr(3, 10), where σ ∈
∧3 V∨10.

Enrico Fatighenti Fano from homogeneous vector bundles 11 / 18



Why FK3?

Why are these varieties interesting? Our main motivation lies in the study of
IHS (Irreducible Holomorphic Symplectic) varieties (a.k.a. hyperkähler). Recall
that these are varieties with π1(X ) ∼= {∗} and such that H0(Ω2

X ) ∼= C · σX , σX

non-degenerate. Unlike Fano varieties, it is not clear if they are bounded or not,
but examples are extremely rare (two classes by Beauville, two by O’Grady).

Idea

To a family of FK3 one expects to associate (many) examples of IHS, of
different degree, dimension and even deformation type. But FK3 varieties are
easier to hunt than IHS!

Example

BD X3 ⊂ P5  F1(X3) ⊂ Gr(2, 6). F1(X3) is an IHS 4-fold,
def∼ Hilb2(S8). One

can describe F1(X3) = (Gr(2, 6),Sym3 U∨).

DV Wσ ⊂ Gr(3, 10) Zσ ⊂ Gr(6, 10) as space of Gr(3, 6) ⊂Wσ.

Zσ
def∼ Hilb2(S12). One can describe Z = (Gr(6, 10),

∧3 U∨).
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Other FK3 in literature & Strategy

What about other FK3 varieties? A bunch of other 4-folds are known. When
they are prime they have an actual or conjectural IHS linked to it.

(Gr(2, 5)O(1)⊕O(2)) (GM 4-fold). IHS via Lagrangian data [IM]-[DK].

(Gr(3, 7),
∧2 U∨ ⊕Q∨(1)⊕O(1)) (c5 4-fold). IHS conjectured.

There are several non-prime FK3 in dimension 4 that we found in our lists or in
existing DB. However in most of these cases the K3 structure either comes
from an actual K3 surfaces or from another FK3 blown up. We would therefore
like to extend our search of FK3 varieties in higher dimension, in order to
eliminate many of this type of examples. But how can we do this?

Strategy: Translate the properties of having a K3 structure into relation
between numerical invariants of Fano varieties. An example of such condition
goes as follows:

Example

Let Y be a Fano 2t + 1-fold of index ιY = m, such t|m. Assume that
lv(H2t+1(Y )) ≤ 1 (+ some extra vanishing condition). Then a general element
of | − 1

t
KY | is a FK3.
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There are several non-prime FK3 in dimension 4 that we found in our lists or in
existing DB. However in most of these cases the K3 structure either comes
from an actual K3 surfaces or from another FK3 blown up. We would therefore
like to extend our search of FK3 varieties in higher dimension, in order to
eliminate many of this type of examples. But how can we do this?
Strategy: Translate the properties of having a K3 structure into relation
between numerical invariants of Fano varieties. An example of such condition
goes as follows:

Example

Let Y be a Fano 2t + 1-fold of index ιY = m, such t|m. Assume that
lv(H2t+1(Y )) ≤ 1 (+ some extra vanishing condition). Then a general element
of | − 1

t
KY | is a FK3.
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Some higher-dimensional FK3

It turns out that one can discover many more FK3! Below I recap the first
result on this topic (more to come soon)

Theorem (–, Mongardi)

There exists 23 new families of FK3 varieties of dimension > 4. They have
dimension 6 ≤ n ≤ 20, ρX ∈ {1, 2, 3} and index n

2
− 1 ≤ ιX ≤ n

2
.

Let us focus on some of the most interesting FK3.

1 X = (Gr(3, 9),
∧2 U∨ ⊕O(1)). 14-fold of ιX = 6 with 1× K3 structure in

H14. Given by (σ, ω) ∈
∧3 V∨9 ⊕

∧2 V∨9 . [IM]

2 Y = (Gr(3, 8), (
∧2 U∨)⊕2 ⊕O(1)). 8-fold of ιX = 3 with 1× K3 structure

in H8. Given by (σ, ω1, ω2) ∈
∧3 V∨8 ⊕

∧2 V∨8 ⊕
∧2 V∨8 .

3 T = (Gr(2, 10),Q∨(1)). 8-fold ιX = 3 with 3× K3 structure in H6,8,10.
Given by σ ∈

∧3 V∨10.

4 HT (Gr(2, 10),Q∨(1)⊕O(1)). 7-fold ιX = 2 with 2× K3 structure in
H6,8, 1× 3CY in H7.

5 P ⊂ P9, 6-fold ιX = 3 with 3× K3 structure in H4,6,8. Given by
σ ∈

∧3 V∨10 (as degeneracy locus).
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Hodge numbers and Debarre–Voisin hyperkähler

h0 1 h0 1 h0 1
h2 1 h2 1 h2 1 h0 1
h4 2 h4 2 h4 2 h2 1
h6 6 h6 1 22 1 h6 1 22 1 h4 1 22 1
h8 1 26 1 h8 1 23 1 h7 1 44 44 1 h6 1 22 1

Y T HT P

Table: The nontrivial Hodge numbers of the above varieties

Turns out that the DV hyperkähler 4-fold can be reconstructed from each of
the above varieties! The latter can be obtained as the parameter space for
SGr(3, 6) ⊂ X [IM], (P1)3 ⊂ Y [FM], C1 ⊂ T [FM], C2 ⊂ P [H], where C1 and
C2 are certain rational special fourfolds (resp. threefolds).
Question: Can we obtain the DV from the above Fano as (G ,F)? (Yes for
X ,Y , not known for the others yet).
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Correspondences between FK3

Turns out that the above FK3 are related not via the DV 4-fold. Although very
different varieties, their Hodge structure is the one coming from the linear
section Wσ ⊂ Gr(3, 10), spread and multiplied to all these varieties through a
very specific set of correspondences. Namely we have the following.

Theorem (Bernardara,–,Manivel)

Let K := H20
van(Wσ). Then K ∼= H14

van(X ) ∼= H8
van(Y ) and

K ∼= H i
prim(T ) ∼= H j

prim(P), i = 6, 8, 10, j = 4, 6, 8.

We have a similar statement for the derived category as well, with the
Kuznetsov component AW of Db(W ) playing the role of the vanishing
cohomology. We can predict the shapes of the semiorthogonal decomposition,
as well as who should be the exceptional objects. However their number
(> 100!) means that this is likely to be very hard to prove!
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A diagram of correspondences

An idea of how this works, starting from W = (Gr(3, 10),O(1)):

E

(2)

� � cdim7 //

P7

��

q∗W

P6

��

P2

##

BlSW

(3)
bu

{{
P2

��

F1
? _cdim3oo

P3

��
T
� � // Gr(2, 10) W Gr(3, 9) X?

_oo

E ′

(1)P2

��

� � exc.div.// q∗T

bu

��

P1

OO

BlS1X

bu

OO

(4)P2

��

F2
? _cdim3oo

P3

��
P
� �

cdim3
// P9 S(3, 8) Y ,?

_oo
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Thanks for the attention!
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