Enumerative geometry in the Extended Tropical Vertex Group

Veronica Fantini

I.H.E.S.

Nottingham Algebraic Geometry seminar May 5, 2022
[arXiv:2012.05069][arXiv:1912.09956]

Overview

(1) Mirror symmetry
(2) Scattering diagrams in the extended tropical vertex group $\tilde{\mathbb{V}}$
(3) Gromov-Witten invariants in \tilde{V}

Mirror Symmetry

Mirror symmetry first appears in string theory as a duality between Calabi-Yau varieties

$$
(X, \omega, J) \longleftrightarrow(\check{X}, \check{J}, \check{\omega})
$$

P. Candelas, X. De La Ossa, P. S. Green and L. Parkes computed Gromov-Witten invariants for the quintic 3-fold, and it was the beginning of the interplay between enumerative geometry and mirror symmetry.

SYZ fibration

According to the Strominger-Yau-Zlasov (SYZ) conjecture

- $\left(X_{t}, \omega_{t}, J_{t}\right)$ and $\left(\check{X}_{t}, \check{J}_{t}, \breve{\omega}_{t}\right)$ appears in families;
- as t approaches the large complex structure limit $t^{*}, X_{t} \rightarrow B$ and $\check{X}_{t} \rightarrow \check{B}$, where B and \check{B} are integral affine manifolds;
- in a neighbourhood of $t^{*}:\left(X_{t}, \omega_{t}\right)$ admits a Lagrangian fibration over B, while $\left(\check{X}_{t}, \breve{J}_{t}\right)$ admits a complex torus fibration over $\check{B}_{0} \subset \check{B}$

$$
\begin{gathered}
\left(\check{X}_{t}, \check{J}_{t}\right) \\
\downarrow_{\check{\pi}} \\
\check{B}_{0}
\end{gathered}
$$

SYZ fibration

According to the Strominger-Yau-Zlasov (SYZ) conjecture

- $\left(X_{t}, \omega_{t}, J_{t}\right)$ and $\left(\check{X}_{t}, \check{J}_{t}, \breve{\omega}_{t}\right)$ appears in families;
- as t approaches the large complex structure limit $t^{*}, X_{t} \rightarrow B$ and $\check{X}_{t} \rightarrow \check{B}$, where B and \check{B} are integral affine manifolds;
- in a neighbourhood of $t^{*}:\left(X_{t}, \omega_{t}\right)$ admits a Lagrangian fibration over B, while $\left(\check{X}_{t}, \breve{J}_{t}\right)$ admits a complex torus fibration over $\check{B}_{0} \subset \check{B}$

$$
\begin{gathered}
\left(\check{X}_{t}, \check{J}_{t}\right) \\
\downarrow_{\check{x}} \\
\check{B}_{0}
\end{gathered}
$$

Unless $\operatorname{dim}_{\mathbb{C}} X=1, \pi$ and $\check{\pi}$ are singular:

- restricting on the smooth locus, π and $\check{\pi}$ are dual torus fibrations [see toy model]
- due to the presence of singularities, quantum corrections are needed in order to get a globally well-defined complex structure on the mirror.

Toy model

Let B_{0} be a smooth integral affine manifold, $\Lambda \subset T^{*} B_{0}$ and $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset T B_{0}$

$$
\left(X=T^{*} B_{0} / \wedge, \omega\right)
$$

ω is the canonical symplectic form on $T^{*} B_{0}$ (in local affine coordinates (x^{i}, y^{i}) it is $\omega=\sum_{i} d x^{i} \wedge d y^{i}$) and \breve{J} is a complex structure on $T B_{0}$ (that in local affine coordinates $\left(x^{i}, y^{i}\right)$ reads $\left.\breve{J}\left(\frac{\partial}{\partial x^{i}}\right)=\sqrt{-1} \frac{\partial}{\partial y^{i}}\right)$.
The discrete Legendre transform defines complex coordinates on X which are symplectic coordinates on \check{X}.

Quantum corrections

- Fukaya's approach [Fukaya,05]: the asymptotic behaviour of deformations of ($\check{X}, \breve{J}_{\hbar}$) as $\hbar \rightarrow 0$ encodes enumerative geometric data of $\left(X, \omega_{\hbar}=\hbar^{-1} \omega\right)$. In particular, the quantum corrections are encoded in counting pseudoholomorphic disks bounding the fibers $\pi^{-1}(b)=X_{b}$.

Relaying on the fact that B has integral affine structure, we expect to count tropical curves on B_{0} underlying holomorphic curves on $\left(X, \omega_{\hbar}\right)$:

- Kontsevich-Soibelman [KS,06]
\Rightarrow Scattering Diagrams
- Gross-Siebert program [GS,06][GS,10]

Scattering diagrams

Scattering diagrams are combinatorial objects: naively defined as a collections of lines of rational slope in B decorated with automorphisms

Scattering diagrams

Scattering diagrams are combinatorial objects: naively defined as a collections of lines of rational slope in B decorated with automorphisms

Scattering diagrams

Scattering diagrams are combinatorial objects: naively defined as a collections of lines of rational slope in B decorated with automorphisms

Scattering diagrams

Scattering diagrams are combinatorial objects: naively defined as a collections of lines of rational slope in B decorated with automorphisms

Scattering diagrams

Scattering diagrams are combinatorial objects: naively defined as a collections of lines of rational slope in B decorated with automorphisms

Locally, in a neighbourhood of a smooth point,

$$
\mathfrak{D}=\left\{\left(\text { line }_{j}, \theta_{j}\right), j=1,2\right\} \rightsquigarrow \mathfrak{D}_{\infty}=\mathfrak{D} \cup\left\{\left(\text { ray }_{m}, \theta_{m}\right)\right\}
$$

Examples

- non archimedean K3 [Kontsevich-Soibelman,06]
- $\mathbb{P}^{2}\left[\right.$ Gross,09] mirror symmetry of \mathbb{P}^{2} can be stated and proved via tropical geometry (i.e $J_{\mathbb{P}^{2}}=J_{\mathbb{P}^{2}}^{\text {trop }}$, where J is Givental J-function).
- log Calabi-Yau surfaces $U:=Y \backslash D$ where (Y, D) is a Looijenga pair [Gross-Hacking-Keel,15]; under certain condition on D, the mirror family is $\check{\mathcal{X}} \rightarrow S:=\operatorname{Spec} \mathbb{C}[P]$, where $P:=N E(Y)$ and $\check{\mathcal{X}} \subset \mathbb{A}_{S}^{3}$.
- cubic surface [Gross-Hacking-Keel-Siebert,19]
- non-toric del Pezzo [Barrot,19]
- quantum mirror of log Calabi-Yau surfaces [Bousseau,20]

Scattering diagrams and deformations

- K. Chan, N. Conan-Leung and N.Z. Ma [CLM20], according with Fukaya's approach to mirror symmetry, proved that the asymptotic behaviour (as $\hbar \rightarrow 0$) of the infinitesimal deformations of ($\check{X}=T B_{0} / \Lambda^{*}, \breve{J}_{\hbar}$) gives consistent scattering diagrams.
- K. Chan and N. Z. Ma [CM20] showed that the infinitesimal deformations encode the data of tropical disks.

θ_{i} represents a gauge group element

D-branes mirror symmetry

- in physics open string: what is the "complex D-brane" mirror of a
"Lagrangian D-brane"? [Vafa,98][Hori-lqbal-Vafa,00][Aganagic-Vafa,00];

D-branes mirror symmetry

- in physics open string: what is the "complex D-brane" mirror of a "Lagrangian D-brane"? [Vafa,98][Hori-lqbal-Vafa,00][Aganagic-Vafa,00];
- Kontsevich Homological Mirror Symmetry [Kontsevich,94][KS,01]: equivalence of categories $\operatorname{Fuk}(X) " \cong{ }^{"} \mathrm{D}^{b} \operatorname{Coh}(\check{X})$.
- Fukaya's approach [Fukaya,05]: let $L_{1}, \ldots, L_{r} \subset X$ be a special Lagrangian submanifolds. Then $L=L_{1} \sqcup \ldots \sqcup L_{r} \rightarrow B_{0}$ is a ramified cover over $B_{0}=B_{00} \cup\{$ ramification points $\}$.
The holomorphic structure on the mirror rank r bundle $\check{E} \rightarrow \check{X}$ is defined including quantum corrections which encode counting of pseudoholomrphic strips which bounds L and the fiber $\pi^{-1}(b), b \in B$.

Scattering diagrams and deformations of holomorphic pairs

A holomorphic pair (\check{X}, \check{E}) is the datum of a complex manifold \check{X} together with a holomorphic vector bundle $\check{E} \rightarrow \check{X}$.
In $[-, 19]$, the author studied the relationship between scattering diagrams and deformations of (\check{X}, \check{E})

The new feature is the extended tropical vertex group $\tilde{\mathbb{V}}$, where the scattering diagrams are defined.

Scattering diagrams and deformations of holomorphic pairs

A holomorphic pair (\check{X}, \check{E}) is the datum of a complex manifold \check{X} together with a holomorphic vector bundle $\check{E} \rightarrow \check{X}$. In $[-, 19]$, the author studied the relationship between scattering diagrams and deformations of (\check{X}, \check{E})

The new feature is the extended tropical vertex group $\tilde{\mathbb{V}}$, where the scattering diagrams are defined.

The Extended tropical vertex group $\tilde{\mathbb{V}}$

\tilde{V} is a subgroup of the gauge group acting on solutions of the Maurer-Cartan equation for (\check{X}, \check{E}), in the limit $\hbar \rightarrow 0$.

Definition ([-,19])

The extended tropical vertex group $\tilde{\mathbb{V}}:=\exp \tilde{\mathfrak{h}}$ where the Lie algebra $\tilde{\mathfrak{h}}$

$$
\begin{aligned}
& \tilde{\mathfrak{h}}:=\bigoplus_{m \in \Lambda \backslash\{0\}} \mathfrak{w}^{m} \mathbb{C}\left(U_{m}, \mathfrak{g l}(r, \mathbb{C}) \oplus m^{\perp}\right) \llbracket t \rrbracket \\
& {\left[\left(A \mathfrak{w}^{m}, \mathfrak{w}^{m} \partial_{n}\right),\left(A^{\prime} \mathfrak{w}^{m^{\prime}}, \mathfrak{w}^{m^{\prime}} \partial_{n^{\prime}}\right)\right]_{\mathfrak{h}}:=} \\
&\left(\left[A, A^{\prime}\right]_{\mathfrak{g}} \mathfrak{w}^{m+m^{\prime}}+\left(A^{\prime}\left\langle n, m^{\prime}\right\rangle-A\left\langle n^{\prime}, m\right\rangle\right) \mathfrak{w}^{m+m^{\prime}},\right. \\
&\left.\mathfrak{w}^{m+m^{\prime}} \partial_{\left\langle n, m^{\prime}\right\rangle n^{\prime}-\left\langle n^{\prime}, m\right\rangle n}\right) .
\end{aligned}
$$

\tilde{V} is a group with the Baker-Campbell-Hausdorff product.

Remark: why extended

M. Gross, R. Pandharipande and B. Siebert introduced the tropical vertex group \mathbb{V} :

Definition ([GPS,10])

The tropical vertex group $\mathbb{V}:=\exp \mathfrak{h}$, where the Lie algebra \mathfrak{h} is

$$
\begin{gathered}
\mathfrak{h}:=\left(\bigoplus_{m \in \Lambda \backslash\{0\}} \mathbb{C} \mathfrak{w}^{m} \cdot \boldsymbol{m}^{\perp}\right) \hat{\otimes}_{\mathbb{C}} \mathbb{C}[[t]] \subset\left(\mathbb{C}[\Lambda] \hat{\otimes}_{\mathbb{C}} \mathbb{C}[[t]]\right) \otimes_{\mathbb{Z}} \boldsymbol{\Lambda}^{*}, \\
{\left[\mathfrak{w}^{m} \partial_{n}, \mathfrak{w}^{m^{\prime}} \partial_{n^{\prime}}\right]_{\mathfrak{h}}:=\mathfrak{w}^{m+m^{\prime}} \partial_{\left\langle n, m^{\prime}\right\rangle n^{\prime}-\left\langle n^{\prime}, m\right\rangle n} .}
\end{gathered}
$$

\mathbb{V} is a group with the BCH product.

Scattering diagrams in $\tilde{\mathbb{V}}$

Definition

A (2-dim) scattering diagram \mathfrak{D} is a collection of walls $w_{i}=\left(\mathfrak{d}_{i}, \vec{f}_{i}\right)$, where:

- \mathfrak{d}_{i} can be either a line $\mathfrak{d}_{i}=m_{i} \mathbb{R}$ or a ray $\mathfrak{d}_{i}=\xi_{0}-m_{i} \mathbb{R}_{\geq 0}$ through the point $\xi_{0} \in \Lambda_{\mathbb{R}}$ in the direction of $m_{i} \in \Lambda$;
$-\vec{f}_{i}=\left(\mathrm{I}_{r}+A t \mathfrak{w}^{m_{i}}, 1+t \mathfrak{w}^{\mathfrak{m}_{i}} f\right)$ where $A \in \mathfrak{g l}\left(r, \mathbb{C}\left[\mathfrak{w}^{m_{i}}\right] \llbracket t \rrbracket\right)$, $f \in \mathbb{C}\left[\mathfrak{w}^{m_{i}}\right] \llbracket t \rrbracket$.

$$
\theta_{i}:=\exp \left(\log \left(\mathrm{I}_{r}+A t \mathfrak{w}^{m_{i}}\right), \log \left(1+t \mathfrak{w}^{m_{i}} f\right) \partial_{n_{i}}\right) \in \tilde{\mathbb{V}}
$$

Moreover, for every $N>0$ we assume there are only finitely many walls w_{i} such that $\theta_{i} \not \equiv 1 \bmod t^{N}$.

Consistent scattering diagrams \mathfrak{D}_{∞}

Theorem [Kontsevich-Soibelman,06]
Let $\mathfrak{D}=\left\{\left(m_{1} \mathbb{R}, \vec{f}_{1}\right) ;\left(m_{2} \mathbb{R}, \vec{f}_{2}\right)\right\}$. The consistent scattering diagram $\mathfrak{D}_{\infty}:=\mathfrak{D} \cup\left\{\left(m_{i} \mathbb{R}_{\geq 0}, \vec{f}_{i}\right)\right\}_{i \geq 3}$ is the unique (up to equivalence) one such that $\Theta_{\gamma, \mathcal{D}_{\infty}}=\operatorname{ld}_{\tilde{\mathbb{V}}}$ for every generic loop $\gamma:[0,1] \rightarrow \Lambda_{\mathbb{R}}$.

$$
\Theta_{\gamma, \mathfrak{D} \infty}:=\theta_{2}^{-1} \cdot \theta_{1} \cdot \theta_{3} \ldots \cdot \theta_{2} \cdot \theta_{1}^{-1}
$$

Enumerative geometric interpretation

Q:Which invariants do we compute via scattering diagrams in $\tilde{\mathbb{V}}$?

Enumerative geometric interpretation

Q:Which invariants do we compute via scattering diagrams in $\tilde{\mathbb{V}}$?
\triangleright scattering diagrams compute log Gromov-Witten invariants for log Calabi-Yau surfaces:

$$
\mathfrak{D}=\left\{\left(m_{1} \mathbb{R}, \vec{f}_{1}\right) ;\left(m_{2} \mathbb{R}, \vec{f}_{2}\right)\right\} \rightsquigarrow \mathfrak{D}_{\infty}
$$

\triangleright the combinatorics behind consistent scattering diagrams encodes tropical curve counting.

Tropical curves

Tropical curves are equivalence classes of parametrized tropical curves (h, Г)

- Γ is a weighted (each edges has a weight $w \in \mathbb{Z}_{>0}$), connected, finite graph without divalent and univalent vertices (with unbounded edges);
- $h: \Gamma \rightarrow B \cong \mathbb{R}^{2}$ is proper:
* for every edge $E \in \Gamma^{[1]}, h(E) \subset \xi_{j}+m_{j} \mathbb{R}$ is contained in an affine line of rational slope;
* for every vertex V, let $\left\{E_{j}\right\}_{j}$ be the set of edges adjacent to V, then $\sum_{j} w_{j} m_{j}=0$.
- (h, Γ) and $\left(h^{\prime}, \Gamma^{\prime}\right)$ are isomorphic if there exists $\Phi: \Gamma \rightarrow \Gamma^{\prime}$ which preserves weights and $h^{\prime}=\Phi \circ h$.

$h(\Gamma)$

Scattering diagrams and tropical curves

Let \mathfrak{D} be a scattering diagram, there is an algorithm to compute the consistent scattering diagram \mathfrak{D}_{∞}

$$
\begin{array}{c|c}
\mathfrak{D} \\
\left(\operatorname{ld},\left(1+t_{1} x\right)\right) & \\
\hline & \\
& \\
& \left(\left(\mathrm{Id}+A t_{2} y\right),\left(1+t_{2} y\right)\right)
\end{array}
$$

Scattering diagrams and tropical curves

Let \mathfrak{D} be a scattering diagram, there is an algorithm to compute the consistent scattering diagram \mathfrak{D}_{∞}

Scattering diagrams and tropical curves

Let \mathfrak{D} be a scattering diagram, there is an algorithm to compute the consistent scattering diagram \mathfrak{D}_{∞}

Scattering diagrams and tropical curves

Let \mathfrak{D} be a scattering diagram, there is an algorithm to compute the consistent scattering diagram \mathfrak{D}_{∞}

Scattering diagrams and tropical curves

Let \mathfrak{D} be a scattering diagram, there is an algorithm to compute the consistent scattering diagram \mathfrak{D}_{∞}

Scattering diagrams and tropical curves

Let \mathfrak{D} be a scattering diagram, there is an algorithm to compute the consistent scattering diagram \mathfrak{D}_{∞}

Log Calabi-Yau surfaces

Let $\mathbf{m}=\left(m_{1}, m_{2}, m_{\text {out }}\right) \in \Lambda \backslash 0$ primitive, let $\left\{\xi_{i j}, j=1, \ldots, \ell_{i}\right\}$ be generic points on $D_{i}:=-m_{i} \mathbb{R}_{\geq 0}$ for $i=1,2$ and $D_{\text {out }}=m_{\text {out }} \mathbb{R}_{\geq 0}$.

Toric

$$
\left(\bar{Y}_{\mathbf{m}}, \partial \bar{Y}_{\mathbf{m}}:=D_{1}+D_{2}+D_{\text {out }}\right)
$$

Log Calabi-Yau surfaces

Let $\mathbf{m}=\left(m_{1}, m_{2}, m_{\text {out }}\right) \in \Lambda \backslash 0$ primitive, let $\left\{\xi_{i j}, j=1, \ldots, \ell_{i}\right\}$ be generic points on $D_{i}:=-m_{i} \mathbb{R}_{\geq 0}$ for $i=1,2$ and $D_{\text {out }}=m_{\text {out }} \mathbb{R}_{\geq 0}$.

Toric

$$
\left(\bar{Y}_{\mathbf{m}}, \partial \bar{Y}_{\mathbf{m}}:=D_{1}+D_{2}+D_{\text {out }}\right)
$$

$\left(Y_{\mathbf{m}}, \partial Y_{\mathbf{m}}:=\right.$ strict transform of $\left.\partial \bar{Y}_{\mathbf{m}}\right)$

Log Gromov-Witten invariants

Let $\mathbf{w}=\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)$ be a pair of weight vectors $\mathbf{w}_{i}=\left(w_{i 1}, \ldots, w_{i_{i}}\right), i=1,2$ of lenght s_{i} such that $\sum_{i}\left|\mathbf{w}_{i}\right|=\lambda_{\mathbf{w}} m_{\text {out }}$. The curve class $\beta_{\mathbf{w}} \in H_{2}\left(\bar{Y}_{\mathbf{m}}, \mathbb{Z}\right)$ is such that

$$
D_{i} \cdot \beta_{\mathbf{w}}=\left|\mathbf{w}_{i}\right|, \quad D_{\text {out }} \cdot \beta_{\mathbf{w}}=\lambda_{\mathbf{w}} \text { and } D \cdot \beta_{\mathbf{w}}=0 \text { if } D \neq\left\{D_{1}, D_{2}, D_{\text {out }}\right\}
$$

$N_{0, w}\left(\bar{Y}_{\mathrm{m}}\right)$ is the number of (log stable) rational curves of class $\beta_{\mathbf{w}}$.

Log Gromov-Witten invariants

Let $\mathbf{w}=\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)$ be a pair of weight vectors $\mathbf{w}_{i}=\left(w_{i 1}, \ldots, w_{i s_{i}}\right), i=1,2$ of lenght s_{i} such that $\sum_{i}\left|\mathbf{w}_{i}\right|=\lambda_{\mathbf{w}} m_{\text {out }}$. The curve class $\beta_{\mathbf{w}} \in H_{2}\left(\bar{Y}_{\mathbf{m}}, \mathbb{Z}\right)$ is such that

$$
D_{i} \cdot \beta_{\mathbf{w}}=\left|\mathbf{w}_{i}\right|, \quad D_{\text {out }} \cdot \beta_{\mathbf{w}}=\lambda_{\mathbf{w}} \text { and } D \cdot \beta_{\mathbf{w}}=0 \text { if } D \neq\left\{D_{1}, D_{2}, D_{\text {out }}\right\}
$$

$N_{0, \boldsymbol{w}}\left(\bar{Y}_{\mathrm{m}}\right)$ is the number of (log stable) rational curves of class $\beta_{\mathbf{w}}$. Let $\mathbf{P}=\left(P_{1}, P_{2}\right)$ be a vector partitions such that $P_{i}=p_{i 1}+\ldots+p_{i \ell_{i}}$, for $i=1,2$ and $\sum_{i}\left|P_{i}\right| m_{i}=\lambda_{\mathbf{P}} m_{\text {out }}$. Let $\beta \in H_{2}\left(\bar{Y}_{\mathbf{m}}, \mathbb{Z}\right)$ be such that

$$
D_{i} \cdot \beta=\left|P_{i}\right|, \quad D_{\text {out }} \cdot \beta=\lambda_{\mathbf{P}} \text { and } D \cdot \beta=0 \text { if } D \neq\left\{D_{1}, D_{2}, D_{\text {out }}\right\}
$$

The curve class $\beta_{\mathbf{P}} \in H_{2}\left(Y_{\mathbf{m}}, \mathbb{Z}\right)$ is $\beta_{\mathbf{P}}=\nu^{*}(\beta)-\sum_{i, j} p_{i j}\left[E_{i j}\right]$. $N_{0, \mathbf{P}}\left(Y_{\mathbf{m}}\right)$ is the number of (log stable) rational curves of class $\beta_{\mathbf{P}}$.

Tropical vs toric invariants

$\mathbf{w}=\left(j_{1} m_{1}, \ldots, j_{3} m_{1}, j_{4} m_{2}, \ldots, j_{7} m_{2}\right)$

$$
\left(\bar{Y}_{\mathbf{m}}, \partial \bar{Y}_{\mathbf{m}}:=D_{1}+D_{2}+D_{\text {out }}\right)
$$

$$
N_{0, w}^{\text {trop }}=N_{0, w}\left(\bar{Y}_{\mathrm{m}}\right) \prod_{k \geq 1} j_{k}
$$

[Bousseau, 20][GPS,10]

Theorem $1([-, 20])$

Let m_{1}, m_{2} be primitive non zero vectors in Λ. Set

$$
\begin{aligned}
& \mathfrak{D}=\left\{\left(\mathfrak{d}_{i}=m_{1} \mathbb{R}, \vec{f}_{i}=\left(\mathrm{I}_{r}+A_{1} t_{i} \mathfrak{w}^{m_{1}}, 1+t_{j} \mathfrak{w}^{m_{1}}\right)\right) ;\right. \\
& \left.\quad\left(\mathfrak{d}_{i}=m_{2} \mathbb{R}, \vec{f}_{j}=\left(I_{r}+A_{2} s_{j} \mathfrak{w}^{m_{2}}, 1+s_{j} \mathfrak{w}^{m_{2}}\right)\right) \mid 1 \leq i \leq \ell_{1}, 1 \leq j \leq \ell_{2}\right\}
\end{aligned}
$$

where $A_{1}, A_{2} \in \mathfrak{g l}(r, \mathbb{C})$ and assume $\left[A_{1}, A_{2}\right]=0$. Then for every wall $\left(\mathfrak{d}_{\text {out }}=m_{\text {out }} \mathbb{R}_{\geq 0}, \vec{f}_{\text {out }}\right) \in \mathfrak{D}_{\infty} \backslash \mathfrak{D}:$

$$
\begin{aligned}
\log \vec{f}_{\text {out }}=\left(\sum_{k \geq 1} \sum_{\mathbf{P}} \sum_{\mathbf{k} \vdash \mathbf{P}} N_{0, \mathbf{w}(\mathbf{k})}\left(\bar{Y}_{\mathrm{m}}\right)\right. & \left(C_{1}\left(\mathbf{k}_{1}\right) A_{1}+C_{2}\left(\mathbf{k}_{2}\right) A_{2}\right) t^{P_{1}} s^{P_{2}} \mathfrak{w}^{k m_{\text {out }}}, \\
& \left.\sum_{k \geq 1} \sum_{\mathbf{P}=\left(P_{1}, P_{2}\right)} k N_{0, \mathbf{P}}\left(Y_{\mathbf{m}}\right) t^{P_{1}} s^{P_{2}} \mathfrak{w}^{k m_{\mathrm{out}}}\right)
\end{aligned}
$$

where the sum is over all $\mathbf{P}=\left(P_{1}, P_{2}\right)$ such that $\sum_{i=1}^{2}\left|P_{i}\right| m_{i}=k m_{\text {out }}$ and $C_{i}\left(\mathbf{k}_{i}\right)$ are explicit constants which depend on partitions \mathbf{k}_{i} of P_{i}.

The result for $N_{0, \mathbf{P}}\left(Y_{\mathbf{m}}\right)$ is analogous to the result of [GPS,2010], and it can be rephrased by saying that $\log f_{\text {out }}$ is a generating series of $N_{0, \mathbf{P}}\left(Y_{\mathbf{m}}\right)$.

Idea of the proof:
\triangleright Scattering diagrams $\leadsto \rightarrow$ tropical curve
\triangleright tropical curves counting $\longleftrightarrow l$ log (toric) Gromov-Witten invariants
\triangleright Degeneration formula

$$
N_{0, \mathbf{P}}\left(Y_{\mathbf{m}}\right)=\sum_{\mathbf{k} \vdash \mathbf{P}} N_{0, w(\mathrm{k})}\left(\bar{Y}_{\mathbf{m}}\right) \prod_{j=1}^{2} \prod_{l=1}^{l_{j}} \frac{l_{\mathrm{k} j}}{k_{j j}!}\left(R_{l}\right)^{k_{j j}} .
$$

Remarks: Lagrangian multisections

- Lagrangian multisections $\mathbb{L}=\left(L, \pi, \mathcal{P}_{\pi}, \varphi^{\prime}\right)$ allow to reconstruct the mirror sheaf of a Lagrangian $\pi: L \rightarrow B$. [Chan-Ma-Suen,21]
* reconstruct $T_{\mathbb{P}^{2}}$ from the data of $\mathbb{L}=\left(L, \pi: L \xrightarrow{2: 1} \mathbb{R}^{2}, \varphi\right)$ together with local automorphisms $\Theta_{10}, \Theta_{21}, \Theta_{02}$ which encode the quantum corrections.[Suen,21]

$$
\varphi_{k}^{ \pm}: \sigma_{k}^{ \pm} \rightarrow \mathbb{R}
$$

Q:are the quantum corrections $\Theta_{i j}$ elements of $\tilde{\mathbb{V}}$?

Remarks: Lagrangian multisections

- Lagrangian multisections $\mathbb{L}=\left(L, \pi, \mathcal{P}_{\pi}, \varphi^{\prime}\right)$ allow to reconstruct the mirror sheaf of a Lagrangian $\pi: L \rightarrow B$. [Chan-Ma-Suen,21]
* reconstruct $T_{\mathbb{P}^{2}}$ from the data of $\mathbb{L}=\left(L, \pi: L \xrightarrow{2: 1} \mathbb{R}^{2}, \varphi\right)$ together with local automorphisms $\Theta_{10}, \Theta_{21}, \Theta_{02}$ which encode the quantum corrections.[Suen,21]

Q:are the quantum corrections $\Theta_{i j}$ elements of $\tilde{\mathbb{V}}$?

Remarks: Lagrangian multisections

- Lagrangian multisections $\mathbb{L}=\left(L, \pi, \mathcal{P}_{\pi}, \varphi^{\prime}\right)$ allow to reconstruct the mirror sheaf of a Lagrangian $\pi: L \rightarrow B$. [Chan-Ma-Suen,21]
* reconstruct $T_{\mathbb{P}^{2}}$ from the data of $\mathbb{L}=\left(L, \pi: L \xrightarrow{2: 1} \mathbb{R}^{2}, \varphi\right)$ together with local automorphisms $\Theta_{10}, \Theta_{21}, \Theta_{02}$ which encode the quantum corrections.[Suen,21]

Q:are the quantum corrections $\Theta_{i j}$ elements of $\tilde{\mathbb{V}}$?

Thank you for your attention!

Deformations of (\check{X}, E)

* $\pi: \mathcal{X} \rightarrow B_{\epsilon}(0)$ holomorphic, proper

$$
\begin{aligned}
& \mathcal{X}_{0}:=\left(\check{X}, \bar{\partial}_{\check{X}}\right) \\
& \pi^{-1}(t)=: \mathcal{X}_{t} \text { is a complex manifold }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathcal{X}_{t}=\left(\check{X}, \bar{\partial}_{\ddot{\ddot{ }}}+\varphi_{t}\right\lrcorner \partial\right), \\
& \varphi_{t} \in \Omega^{0,1}\left(\check{X}, T^{1,0} \check{X}\right) \\
& + \text { integrability }
\end{aligned}
$$

* $\varpi: \mathcal{E} \rightarrow \mathcal{X}$ holomorphic

$$
\begin{aligned}
& \mathcal{E}_{0}:=\left(E, \bar{\partial}_{E}\right) \\
& \left.\mathcal{E}\right|_{\pi^{-1}(t)}=: \mathcal{E}_{t} \\
& \left(\mathcal{E}_{t}, \mathcal{X}_{t}\right) \text { is a holomorphic pair }
\end{aligned}
$$

$\left.\mathcal{E}_{t}=\left(E, \bar{\partial}_{E}+A_{t}+\varphi_{t}\right\lrcorner \nabla^{E}\right)$,
$A_{t} \in \Omega^{0,1}(\check{X}$, End $E)$

+ integrability

Infinitesimal deformations of (\check{X}, E)

Let $\left(E, \bar{\partial}_{E}\right)$ be a rank r holomorphically trivial vector bundle on \check{X}. Then define $\mathbf{A}(E):=$ End $E \oplus T^{1,0} \check{X}$ and $\left(\mathbf{A}(E), \bar{\partial}_{\mathbf{A}(E)}\right)$ is a holomorphic bundle on \check{X}.

$$
\mathrm{KS}(\check{X}, E):=\left(\Omega^{0, \bullet}(\check{X}, \mathbf{A}(E)), \bar{\partial}_{\mathbf{A}(E)},[-,-]_{\mathrm{KS}}\right)
$$

where $[-,-]_{\mathrm{KS}}$ is the Lie bracket.

Infinitesimal deformations of (\check{X}, E)

Let $\left(E, \bar{\partial}_{E}\right)$ be a rank r holomorphically trivial vector bundle on \check{X}. Then define $\mathbf{A}(E):=$ End $E \oplus T^{1,0} \check{X}$ and $\left(\mathbf{A}(E), \bar{\partial}_{\mathbf{A}(E)}\right)$ is a holomorphic bundle on \check{X}.

$$
\mathrm{KS}(\check{X}, E):=\left(\Omega^{0, \bullet}(\check{X}, \mathbf{A}(E)), \bar{\partial}_{\mathbf{A}(E)},[-,-]_{\mathrm{KS}}\right),
$$

where $[-,-]_{\text {KS }}$ is the Lie bracket.
Infinitesimal deformations of (\check{X}, E) are elements in degree one $(A, \varphi) \in \Omega^{0,1}(\check{X}, \mathbf{A}(E)) \llbracket t \rrbracket$, which are solutions of the Maurer-Cartan equation

$$
\begin{equation*}
\bar{\partial}_{\mathbf{A}(E)}(A, \varphi)+\frac{1}{2}[(A, \varphi),(A, \varphi)]_{\mathrm{KS}}=0 \tag{1}
\end{equation*}
$$

up to gauge equivalence. The action of the gauge group is defined by $h \in \Omega^{0}(\check{X}, \mathbf{A}(E)) \llbracket t \rrbracket$ via $\exp (h) *(A, \varphi)$.

