Enumerative geometry in the Extended Tropical Vertex Group

Veronica Fantini

I.H.E.S.

Nottingham Algebraic Geometry seminar May 5, 2022

[arXiv:2012.05069][arXiv:1912.09956]

2 Scattering diagrams in the extended tropical vertex group $\tilde{\mathbb{V}}$

3 Gromov–Witten invariants in $\tilde{\mathbb{V}}$

Mirror Symmetry

Mirror symmetry first appears in string theory as a *duality* between Calabi–Yau varieties

$$(X, \omega, J) \longleftrightarrow (\check{X}, \check{J}, \check{\omega})$$

P. Candelas, X. De La Ossa, P. S. Green and L. Parkes computed Gromov–Witten invariants for the quintic 3-fold, and it was the beginning of the interplay between enumerative geometry and mirror symmetry.

SYZ fibration

According to the Strominger-Yau-Zlasov (SYZ) conjecture

- (X_t, ω_t, J_t) and $(\check{X}_t, \check{J}_t, \check{\omega}_t)$ appears in *families*;
- as t approaches the large complex structure limit t^* , $X_t \to B$ and $\check{X}_t \to \check{B}$, where B and \check{B} are integral affine manifolds;
- in a neighbourhood of t^* : (X_t, ω_t) admits a Lagrangian fibration over B, while $(\check{X}_t, \check{J}_t)$ admits a complex torus fibration over $\check{B}_0 \subset \check{B}$

$$\begin{array}{c} (X_t, \omega_t) & (\check{X}_t, \check{J}_t) \\ \pi \\ B & & \check{B}_0 \end{array}$$

SYZ fibration

According to the Strominger-Yau-Zlasov (SYZ) conjecture

- (X_t, ω_t, J_t) and $(\check{X}_t, \check{J}_t, \check{\omega}_t)$ appears in *families*;
- as t approaches the large complex structure limit t^* , $X_t \to B$ and $\check{X}_t \to \check{B}$, where B and \check{B} are integral affine manifolds;
- in a neighbourhood of t^* : (X_t, ω_t) admits a Lagrangian fibration over B, while $(\check{X}_t, \check{J}_t)$ admits a complex torus fibration over $\check{B}_0 \subset \check{B}$

Unless $\dim_{\mathbb{C}} X = 1$, π and $\check{\pi}$ are singular:

- restricting on the smooth locus, π and $\check{\pi}$ are dual torus fibrations [see toy model]
- due to the presence of singularities, *quantum corrections* are needed in order to get a globally well-defined complex structure on the mirror.

Veronica Fantini (I.H.E.S.)

The Extended Tropical Vertex

May 5, 2022 4 / 26

Toy model

Let B_0 be a smooth integral affine manifold, $\Lambda \subset T^*B_0$ and $\Lambda^* = Hom(\Lambda, \mathbb{Z}) \subset TB_0$

 ω is the canonical symplectic form on T^*B_0 (in local affine coordinates (x^i, y^i) it is $\omega = \sum_i dx^i \wedge dy^i$) and \check{J} is a complex structure on TB_0 (that in local affine coordinates (x^i, y^i) reads $\check{J}(\frac{\partial}{\partial x^i}) = \sqrt{-1}\frac{\partial}{\partial y^i}$). The discrete Legendre transform defines complex coordinates on X which are symplectic coordinates on \check{X} .

Quantum corrections

Fukaya's approach [Fukaya,05]: the asymptotic behaviour of deformations of (X, J_ħ) as ħ → 0 encodes enumerative geometric data of (X, ω_ħ = ħ⁻¹ω). In particular, the quantum corrections are encoded in counting pseudoholomorphic disks bounding the fibers π⁻¹(b) = X_b.

Relaying on the fact that *B* has integral affine structure, we expect to count tropical curves on B_0 underlying holomorphic curves on (X, ω_{\hbar}) :

• Kontsevich–Soibelman [KS,06]

 \Rightarrow Scattering Diagrams

• Gross-Siebert program [GS,06][GS,10]

Scattering diagrams are combinatorial objects: naively defined as a collections of lines of rational slope in *B* decorated with *automorphisms*

Locally, in a neighbourhood of a smooth point, $\mathfrak{D} = \{(\mathsf{line}_j, \theta_j), j = 1, 2\} \rightsquigarrow \mathfrak{D}_{\infty} = \mathfrak{D} \cup \{(\mathsf{ray}_m, \theta_m)\}$

The Extended Tropical Vertex

Examples

- non archimedean K3 [Kontsevich-Soibelman,06]
- P² [Gross,09] mirror symmetry of P² can be stated and proved via tropical geometry (i.e J_{P²} = J^{trop}_{P²}, where J is Givental J-function).
- log Calabi–Yau surfaces $U := Y \setminus D$ where (Y, D) is a Looijenga pair [Gross–Hacking–Keel,15]; under certain condition on D, the mirror family is $\check{\mathcal{X}} \to S :=$ Spec $\mathbb{C}[P]$, where P := NE(Y) and $\check{\mathcal{X}} \subset \mathbb{A}_S^3$.
- cubic surface [Gross-Hacking-Keel-Siebert,19]
- non-toric del Pezzo [Barrot,19]
- quantum mirror of log Calabi-Yau surfaces [Bousseau,20]

Scattering diagrams and deformations

- K. Chan, N. Conan-Leung and N.Z. Ma [CLM20], according with Fukaya's approach to mirror symmetry, proved that the asymptotic behaviour (as $\hbar \rightarrow 0$) of the infinitesimal deformations of $(\check{X} = TB_0/\Lambda^*, \check{J}_{\hbar})$ gives consistent scattering diagrams.
- K. Chan and N. Z. Ma [CM20] showed that the infinitesimal deformations encode the data of tropical disks.

D-branes mirror symmetry

• in physics *open string*: what is the "complex D-brane" mirror of a "Lagrangian D-brane"? [Vafa,98][Hori-Iqbal-Vafa,00][Aganagic-Vafa,00];

D-branes mirror symmetry

- in physics open string: what is the "complex D-brane" mirror of a "Lagrangian D-brane"? [Vafa,98][Hori-Iqbal-Vafa,00][Aganagic-Vafa,00];
- Kontsevich Homological Mirror Symmetry [Kontsevich,94][KS,01]: equivalence of categories Fuk(X) " ≅ " D^b Coh(X).
- Fukaya's approach [Fukaya,05]: let L₁, ..., L_r ⊂ X be a special Lagrangian submanifolds. Then L = L₁ ⊔ ... ⊔ L_r → B₀ is a ramified cover over B₀ = B₀₀ ∪ {ramification points}. The holomorphic structure on the mirror rank r bundle Ě → X is defined including quantum corrections which encode counting of
 - pseudoholomrphic strips which bounds L and the fiber $\pi^{-1}(b)$, $b \in B$.

Scattering diagrams and deformations of holomorphic pairs

A holomorphic pair (\check{X}, \check{E}) is the datum of a complex manifold \check{X} together with a holomorphic vector bundle $\check{E} \rightarrow \check{X}$. In [-,19], the author studied the relationship between scattering diagrams

and deformations of (\check{X}, \check{E})

The new feature is the extended tropical vertex group $\tilde{\mathbb{V}},$ where the scattering diagrams are defined.

Scattering diagrams and deformations of holomorphic pairs

A holomorphic pair (\check{X}, \check{E}) is the datum of a complex manifold \check{X} together with a holomorphic vector bundle $\check{E} \to \check{X}$. In [-,19], the author studied the relationship between scattering diagrams

and deformations of (\check{X},\check{E})

The new feature is the extended tropical vertex group $\tilde{\mathbb{V}},$ where the scattering diagrams are defined.

Veronica Fantini (I.H.E.S.)

The Extended Tropical Vertex

The Extended tropical vertex group $\tilde{\mathbb{V}}$

 $\tilde{\mathbb{V}}$ is a subgroup of the gauge group acting on solutions of the Maurer–Cartan equation for (\check{X}, \check{E}) , in the limit $\hbar \to 0$.

Definition ([-,19])

The extended tropical vertex group $\tilde{\mathbb{V}}:=\exp\tilde{\mathfrak{h}}$ where the Lie algebra $\tilde{\mathfrak{h}}$

$$\begin{split} \tilde{\mathfrak{h}} &:= \bigoplus_{m \in \Lambda \setminus \{0\}} \mathfrak{w}^m \, \underline{\mathbb{C}}(U_m, \mathfrak{gl}(r, \mathbb{C}) \oplus m^{\perp}) \llbracket t \rrbracket \\ \llbracket (A\mathfrak{w}^m, \mathfrak{w}^m \partial_n), (A'\mathfrak{w}^{m'}, \mathfrak{w}^{m'} \partial_{n'})]_{\tilde{\mathfrak{h}}} &:= \\ & \left(\llbracket A, A' \rrbracket_{\mathfrak{gl}} \mathfrak{w}^{m+m'} + \left(A' \langle n, m' \rangle - A \langle n', m \rangle \right) \mathfrak{w}^{m+m'}, \\ & \mathfrak{w}^{m+m'} \partial_{\langle n, m' \rangle n' - \langle n', m \rangle n} \right). \end{split}$$

 $ilde{\mathbb{V}}$ is a group with the Baker-Campbell-Hausdorff product.

Remark: why extended

M. Gross, R. Pandharipande and B. Siebert introduced the tropical vertex group $\mathbb{V}:$

Definition ([GPS,10])

The tropical vertex group $\mathbb{V} := \exp \mathfrak{h}$, where the Lie algebra \mathfrak{h} is

$$\mathfrak{h} := \left(\bigoplus_{m \in \Lambda \smallsetminus \{0\}} \mathbb{C} \, \mathfrak{w}^m \cdot \boldsymbol{m}^\perp \right) \hat{\otimes}_{\mathbb{C}} \mathbb{C}[[t]] \subset \left(\mathbb{C}[\Lambda] \hat{\otimes}_{\mathbb{C}} \mathbb{C}[[t]] \right) \otimes_{\mathbb{Z}} \boldsymbol{\Lambda}^*,$$

$$[\mathfrak{w}^{m}\partial_{n},\mathfrak{w}^{m'}\partial_{n'}]_{\mathfrak{h}}:=\mathfrak{w}^{m+m'}\partial_{\langle n,m'\rangle n'-\langle n',m\rangle n}.$$

 $\mathbb V$ is a group with the BCH product.

Scattering diagrams in $\tilde{\mathbb{V}}$

Definition

A (2-dim) scattering diagram \mathfrak{D} is a collection of *walls* $w_i = (\mathfrak{d}_i, \vec{f}_i)$, where:

- \mathfrak{d}_i can be either a *line* $\mathfrak{d}_i = m_i \mathbb{R}$ or a ray $\mathfrak{d}_i = \xi_0 m_i \mathbb{R}_{\geq 0}$ through the point $\xi_0 \in \Lambda_{\mathbb{R}}$ in the direction of $m_i \in \Lambda$;
- $\overrightarrow{f}_i = (\mathbf{I}_r + At \mathfrak{w}^{\mathbf{m}_i}, 1 + t \mathfrak{w}^{\mathbf{m}_i} f)$ where $A \in \mathfrak{gl}(r, \mathbb{C}[\mathfrak{w}^{m_i}][[t]]), f \in \mathbb{C}[\mathfrak{w}^{m_i}][[t]].$

$$heta_i := \exp\left(\log(\mathsf{I}_r + At\mathfrak{w}^{m_i}), \log(1 + t\mathfrak{w}^{m_i}f)\partial_{n_i}
ight) \in \tilde{\mathbb{V}}$$

Moreover, for every N > 0 we assume there are only finitely many walls w_i such that $\theta_i \neq 1 \mod t^N$.

Consistent scattering diagrams \mathfrak{D}_∞

Theorem [Kontsevich–Soibelman,06]

Let $\mathfrak{D} = \{(m_1\mathbb{R}, \vec{f}_1); (m_2\mathbb{R}, \vec{f}_2)\}$. The *consistent* scattering diagram $\mathfrak{D}_{\infty} := \mathfrak{D} \cup \{(m_i\mathbb{R}_{\geq 0}, \vec{f}_i)\}_{i\geq 3}$ is the unique (up to equivalence) one such that $\Theta_{\gamma,\mathfrak{D}_{\infty}} = \operatorname{Id}_{\tilde{\mathbb{V}}}$ for every generic loop $\gamma : [0, 1] \to \Lambda_{\mathbb{R}}$.

Enumerative geometric interpretation

Q:Which invariants do we compute via scattering diagrams in $\tilde{\mathbb{V}}$?

Enumerative geometric interpretation

 $\textbf{Q}{:}Which$ invariants do we compute via scattering diagrams in $\tilde{\mathbb{V}}?$

 scattering diagrams compute log Gromov–Witten invariants for log Calabi–Yau surfaces:

$$\mathfrak{D} = \{(m_1\mathbb{R}, \overrightarrow{f}_1); (m_2\mathbb{R}, \overrightarrow{f}_2)\} \rightsquigarrow \mathfrak{D}_{\infty}$$

▷ the combinatorics behind consistent scattering diagrams encodes tropical curve counting.

Tropical curves

Tropical curves are equivalence classes of parametrized tropical curves (h, Γ)

- Γ is a weighted (each edges has a weight w ∈ Z_{>0}), connected, finite graph without divalent and univalent vertices (with unbounded edges);
- $h: \Gamma \to B \cong \mathbb{R}^2$ is proper:
 - * for every edge $E \in \Gamma^{[1]}$, $h(E) \subset \xi_j + m_j \mathbb{R}$ is contained in an affine line of rational slope;
 - * for every vertex V, let $\{E_j\}_j$ be the set of edges adjacent to V, then $\sum_j w_j m_j = 0$.
- (h, Γ) and (h', Γ') are isomorphic if there exists $\Phi \colon \Gamma \to \Gamma'$ which preserves weights and $h' = \Phi \circ h$.

Let $\mathfrak D$ be a scattering diagram, there is an algorithm to compute the consistent scattering diagram $\mathfrak D_\infty$

The Extended Tropical Vertex

Log Calabi-Yau surfaces

Let $\mathbf{m} = (m_1, m_2, m_{out}) \in \Lambda \setminus 0$ primitive, let $\{\xi_{ij}, j = 1, ..., \ell_i\}$ be generic points on $D_i := -m_i \mathbb{R}_{\geq 0}$ for i = 1, 2 and $D_{out} = m_{out} \mathbb{R}_{\geq 0}$.

Toric

 $(\overline{Y}_{\mathbf{m}}, \partial \overline{Y}_{\mathbf{m}} := D_1 + D_2 + D_{\text{out}})$

Log Calabi–Yau surfaces

Let $\mathbf{m} = (m_1, m_2, m_{out}) \in \Lambda \setminus 0$ primitive, let $\{\xi_{ij}, j = 1, ..., \ell_i\}$ be generic points on $D_i := -m_i \mathbb{R}_{>0}$ for i = 1, 2 and $\underline{D}_{out} = \underline{m}_{out} \mathbb{R}_{>0}$.

Log Gromov-Witten invariants

Let $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2)$ be a pair of weight vectors $\mathbf{w}_i = (w_{i1}, ..., w_{is_i})$, i = 1, 2of lenght s_i such that $\sum_i |\mathbf{w}_i| = \lambda_{\mathbf{w}} m_{\text{out}}$. The curve class $\beta_{\mathbf{w}} \in H_2(\overline{Y}_{\mathbf{m}}, \mathbb{Z})$ is such that

$$D_i \cdot \beta_{\mathbf{w}} = |\mathbf{w}_i|, \quad D_{\text{out}} \cdot \beta_{\mathbf{w}} = \lambda_{\mathbf{w}} \text{ and } D \cdot \beta_{\mathbf{w}} = 0 \text{ if } D \neq \{D_1, D_2, D_{\text{out}}\}$$

 $N_{0,\mathbf{w}}(\overline{Y}_{\mathbf{m}})$ is the *number* of (log stable) rational curves of class $\beta_{\mathbf{w}}$.

Log Gromov-Witten invariants

Let $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2)$ be a pair of weight vectors $\mathbf{w}_i = (w_{i1}, ..., w_{is_i})$, i = 1, 2of lenght s_i such that $\sum_i |\mathbf{w}_i| = \lambda_{\mathbf{w}} m_{\text{out}}$. The curve class $\beta_{\mathbf{w}} \in H_2(\overline{Y}_{\mathbf{m}}, \mathbb{Z})$ is such that

$$D_i \cdot \beta_{\mathbf{w}} = |\mathbf{w}_i|, \quad D_{\text{out}} \cdot \beta_{\mathbf{w}} = \lambda_{\mathbf{w}} \text{ and } D \cdot \beta_{\mathbf{w}} = 0 \text{ if } D \neq \{D_1, D_2, D_{\text{out}}\}$$

 $N_{0,\mathbf{w}}(\overline{Y}_{\mathbf{m}})$ is the *number* of (log stable) rational curves of class $\beta_{\mathbf{w}}$. Let $\mathbf{P} = (P_1, P_2)$ be a vector partitions such that $P_i = p_{i1} + ... + p_{i\ell_i}$, for i = 1, 2 and $\sum_i |P_i| m_i = \lambda_{\mathbf{P}} m_{\text{out}}$. Let $\beta \in H_2(\overline{Y}_{\mathbf{m}}, \mathbb{Z})$ be such that

$$D_i \cdot \beta = |P_i|, \quad D_{\mathsf{out}} \cdot \beta = \lambda_{\mathbf{P}} \text{ and } D \cdot \beta = 0 \text{ if } D \neq \{D_1, D_2, D_{\mathsf{out}}\}$$

The curve class $\beta_{\mathbf{P}} \in H_2(Y_{\mathbf{m}}, \mathbb{Z})$ is $\beta_{\mathbf{P}} = \nu^*(\beta) - \sum_{i,j} p_{ij}[E_{ij}]$. $N_{0,\mathbf{P}}(Y_{\mathbf{m}})$ is the *number* of (log stable) rational curves of class $\beta_{\mathbf{P}}$.

Tropical vs toric invariants

[Bousseau,20][GPS,10]

Veronica Fantini (I.H.E.S.)

The Extended Tropical Vertex

Theorem 1 ([-,20])

Let m_1, m_2 be primitive non zero vectors in Λ . Set

$$\mathfrak{D} = \left\{ \left(\mathfrak{d}_{i} = m_{1}\mathbb{R}, \overrightarrow{f}_{i} = (\mathsf{I}_{r} + A_{1}t_{i}\mathfrak{w}^{m_{1}}, 1 + t_{i}\mathfrak{w}^{m_{1}})\right); \\ \left(\mathfrak{d}_{i} = m_{2}\mathbb{R}, \overrightarrow{f}_{j} = (\mathsf{I}_{r} + A_{2}s_{j}\mathfrak{w}^{m_{2}}, 1 + s_{j}\mathfrak{w}^{m_{2}})\right) \left| 1 \le i \le \ell_{1}, 1 \le j \le \ell_{2} \right\}$$

where $A_1, A_2 \in \mathfrak{gl}(\underline{r}, \mathbb{C})$ and assume $[A_1, A_2] = 0$. Then for every wall $(\mathfrak{d}_{out} = m_{out} \mathbb{R}_{\geq 0}, \overline{f}_{out}) \in \mathfrak{D}_{\infty} \setminus \mathfrak{D}$:

$$\log \overrightarrow{f}_{out} = \left(\sum_{k \ge 1} \sum_{\mathbf{P}} \sum_{\mathbf{k} \vdash \mathbf{P}} N_{0,\mathbf{w}(\mathbf{k})}(\overrightarrow{\mathbf{Y}}_{\mathbf{m}}) \left(C_1(\mathbf{k}_1)A_1 + C_2(\mathbf{k}_2)A_2\right) t^{P_1} s^{P_2} \mathfrak{w}^{km_{out}}, \right.$$
$$\sum_{k \ge 1} \sum_{\mathbf{P} = (P_1, P_2)} kN_{0,\mathbf{P}}(\mathbf{Y}_{\mathbf{m}}) t^{P_1} s^{P_2} \mathfrak{w}^{km_{out}}\right)$$

where the sum is over all $\mathbf{P} = (P_1, P_2)$ such that $\sum_{i=1}^2 |P_i| m_i = k m_{out}$ and $C_i(\mathbf{k}_i)$ are explicit constants which depend on partitions \mathbf{k}_i of P_i .

The result for $N_{0,P}(Y_m)$ is analogous to the result of [GPS,2010], and it can be rephrased by saying that log f_{out} is a generating series of $N_{0,P}(Y_m)$.

Idea of the proof:

- Scattering diagrams ++++ tropical curve
- ▷ tropical curves counting ↔ log (toric) Gromov–Witten invariants
- Degeneration formula

 $N_{0,\mathbf{P}}(Y_{\mathbf{m}}) = \sum_{\mathbf{k}\vdash\mathbf{P}} N_{0,\mathbf{w}(\mathbf{k})}(\overline{Y}_{\mathbf{m}}) \prod_{j=1}^{2} \prod_{l=1}^{l_{j}} \frac{l^{k_{jl}}}{k_{jl}!} (R_{l})^{k_{jl}}.$

Remarks: Lagrangian multisections

- Lagrangian multisections $\mathbb{L} = (L, \pi, \mathcal{P}_{\pi}, \varphi')$ allow to reconstruct the mirror sheaf of a Lagrangian $\pi: L \to B$. [Chan–Ma–Suen,21]
 - * reconstruct $T_{\mathbb{P}^2}$ from the data of $\mathbb{L} = (L, \pi : L \xrightarrow{2:1} \mathbb{R}^2, \varphi)$ together with local automorphisms $\Theta_{10}, \Theta_{21}, \Theta_{02}$ which encode the *quantum corrections*.[Suen,21]

Q:are the quantum corrections Θ_{ij} elements of $\tilde{\mathbb{V}}$?

Remarks: Lagrangian multisections

- Lagrangian multisections L = (L, π, P_π, φ') allow to reconstruct the mirror sheaf of a Lagrangian π: L → B. [Chan–Ma–Suen,21]
 - * reconstruct $T_{\mathbb{P}^2}$ from the data of $\mathbb{L} = (L, \pi : L \xrightarrow{2:1} \mathbb{R}^2, \varphi)$ together with local automorphisms $\Theta_{10}, \Theta_{21}, \Theta_{02}$ which encode the *quantum corrections*.[Suen,21]

Q:are the quantum corrections Θ_{ij} elements of $\tilde{\mathbb{V}}$?

Remarks: Lagrangian multisections

- Lagrangian multisections L = (L, π, P_π, φ') allow to reconstruct the mirror sheaf of a Lagrangian π: L → B. [Chan–Ma–Suen,21]
 - * reconstruct $T_{\mathbb{P}^2}$ from the data of $\mathbb{L} = (L, \pi : L \xrightarrow{2:1} \mathbb{R}^2, \varphi)$ together with local automorphisms $\Theta_{10}, \Theta_{21}, \Theta_{02}$ which encode the *quantum corrections*.[Suen,21]

Q:are the quantum corrections Θ_{ij} elements of $\tilde{\mathbb{V}}$?

Thank you for your attention!

Deformations of (\check{X}, E)

* $\pi \colon \mathcal{X} \to B_{\epsilon}(0)$ holomorphic, proper

$$\mathcal{X}_0 := (\check{X}, ar{\partial}_{\check{X}})$$

 $\pi^{-1}(t) =: \mathcal{X}_t$ is a complex manifold

$$\begin{split} \mathcal{X}_t &= (\check{X}, \bar{\partial}_{\check{X}} + \varphi_t \lrcorner \partial), \\ \varphi_t &\in \Omega^{0,1}(\check{X}, T^{1,0}\check{X}) \\ + \text{ integrability} \end{split}$$

*
$$\varpi \colon \mathcal{E} \to \mathcal{X}$$
 holomorphic

$$\begin{split} \mathcal{E}_0 &:= (E, \bar{\partial}_E) \\ \mathcal{E}|_{\pi^{-1}(t)} &=: \mathcal{E}_t \\ (\mathcal{E}_t, \mathcal{X}_t) \text{ is a holomorphic pair } \end{split}$$

$$\begin{split} \mathcal{E}_t &= (E, \bar{\partial}_E + A_t + \varphi_t \lrcorner \nabla^E), \\ A_t &\in \Omega^{0,1}(\check{X}, \operatorname{End} E) \\ &+ \text{ integrability} \end{split}$$

Infinitesimal deformations of (\check{X}, E)

Let $(E, \overline{\partial}_E)$ be a rank r holomorphically trivial vector bundle on \check{X} . Then define $\mathbf{A}(E) := \text{End } E \oplus T^{1,0}\check{X}$ and $(\mathbf{A}(E), \overline{\partial}_{\mathbf{A}(E)})$ is a holomorphic bundle on \check{X} .

$$\mathsf{KS}(\check{X}, E) := (\Omega^{0, \bullet}(\check{X}, \mathbf{A}(E)), \bar{\partial}_{\mathbf{A}(E)}, [-, -]_{\mathsf{KS}}),$$

where $[-, -]_{\text{KS}}$ is the Lie bracket.

Infinitesimal deformations of (\check{X}, E)

Let $(E, \overline{\partial}_E)$ be a rank r holomorphically trivial vector bundle on \check{X} . Then define $\mathbf{A}(E) := \text{End } E \oplus T^{1,0}\check{X}$ and $(\mathbf{A}(E), \overline{\partial}_{\mathbf{A}(E)})$ is a holomorphic bundle on \check{X} .

$$\mathsf{KS}(\check{X}, E) := (\Omega^{0, \bullet}(\check{X}, \mathbf{A}(E)), \bar{\partial}_{\mathbf{A}(E)}, [-, -]_{\mathsf{KS}}),$$

where $[-, -]_{KS}$ is the Lie bracket.

Infinitesimal deformations of (\check{X}, E) are elements in degree one $(A, \varphi) \in \Omega^{0,1}(\check{X}, \mathbf{A}(E))[[t]]$, which are solutions of the Maurer-Cartan equation

$$\bar{\partial}_{\mathbf{A}(E)}(A,\varphi) + \frac{1}{2}[(A,\varphi),(A,\varphi)]_{\mathsf{KS}} = 0 \tag{1}$$

up to **gauge equivalence**. The action of the gauge group is defined by $h \in \Omega^0(\check{X}, \mathbf{A}(E))[[t]]$ via $\exp(h) * (A, \varphi)$.