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The Lyness map



The Lyness map

The d-dimensional Lyness map is the birational map σd ∈ Bir(Cd)

given by

σd(x1, x2, . . . , xd−1, xd) =

(
x2, x3 . . . , xd ,

1 + x2 + · · ·+ xd
x1

)
If we iterate by σ±1

d we can define a sequence of rational functions

(xi ∈ C (x1, . . . , xd) : i ∈ Z) where

xixi+d = 1 + xi+1 + · · ·+ xi+d−1 ∀i ∈ Z

is the d-dimensional Lyness recurrence relation.
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Behaviour in low dimensions

When d = 2 the recurrence relation is 5-periodic

x1, x2, x3 =
1 + x2
x1

, x4 =
1 + x1 + x2

x1x2
, x5 =

1 + x1
x2

, x6 = x1, . . . .

When d = 3 the recurrence relation is 8-periodic

x1, x2, x3, x4 =
1 + x2 + x3

x1
, x5 =

1 + x1 + x2 + x3 + x1x3
x1x2

,

x6 =
(1 + x1 + x2)(1 + x2 + x3)

x1x2x3
, x7 =

1 + x1 + x2 + x3 + x1x3
x2x3

,

x8 =
1 + x1 + x2

x3
, x9 = x1 . . . .

Also note that there is a Laurent phenomenon, i.e.

xi ∈ C
[
x±1
1 , . . . , x±1

d

]
⊂ C(x1, . . . , xd) ∀i ∈ Z.
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Integrability

When d ≤ 3 this is an integrable system—in other words, this

recurrence has the maximum number d − 1 of first integrals

(functionally independent invariant functions).

When d ≥ 4 the recurrence relation is neither periodic, nor

possesses a Laurent phenomenon. It is no longer integrable, but it

does still preserve a system of bd+1
2 c Laurent polynomials

(Tran–van der Kamp–Quispel).
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Dimension 2: del Pezzo surface dP5



The del Pezzo surface of degree 5

Recall the five functions from the 2-dimensional recurrence

x1, x2, x3 =
1 + x2
x1

, x4 =
1 + x1 + x2

x1x2
, x5 =

1 + x1
x2

.

As is well-known, these are coordinates on an affine del Pezzo

surface U of degree 5

U = Spec

(
C[x1, . . . , x5]

(xi−1xi+1 = xi + 1 : i ∈ Z/5Z)

)
⊂ A5.

The projective closure Y = U ⊂ P5 is a (projective) dP5 where the

complement Y \ U is a pentagon of lines D =
∑5

i=1Di .
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The configuration of lines inside Y

Note that U ⊂ A5 contains five straight lines Ei = U ∩ {xi = 0},
obtained by intersecting U with a coordinate hyperplane.

Taken together with D, these ten lines (i.e. (−1)-curves) intersect

in a very beautiful configuration, obtained by blowing up P2 in the

four points shown on the right.

•
• •

D1
E1

•

•

•

D2

E2

•

•
•

D3

E3

•

•
•

D4
E4

•

•
•

D5

E5

•
E2

•
D3

•D5

•E1

D1

D4

D2

E3
E4

E5
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Three themes

We want to pull out three themes from this example which will

generalise to the dimension 3 case:

1. U is a cluster variety,

2. U ‘comes from’ the Grassmannian Gr(2, 5),

3. U can be used to construct a mirror for dP5.
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1. U is a cluster variety

The variety U is a cluster variety, i.e. it is the interior of a log

Calabi–Yau pair (Y ,D) which admits a toric model

π : (Y ,D)→ (Y ,D). In other words we can blow down two

disjoint (−1)-curves {Ei ,Ei+1} inside U to get a map to a toric

pair.

Changing from blowing down the pair

{Ei−1,Ei} to blowing down the pair

{Ei ,Ei+1} is called a mutation at Ei−1.

The induced map on the dense

open torus is the Lyness map

σ2(xi−1, xi ) = (xi ,
1+xi
xi−1

).

σ2

Y

•
0

−1

−1

−1

−1

0

−1

−1

−1

0
• •

0

0

−1

−1

−1
•
•
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2. Relationship with Gr(2, 5)

We can write the equations of U as the 4× 4 Pfaffians of a 5× 5

skew matrix

Pfaff4

1 x1 x4 1
1 x2 x5

1 x3
1


homogenise

nicely
−−−−−−−−→ Pfaff4

y3 x1 x4 y2
y4 x2 x5

y5 x3
y1


to get a homogeneous recurrence relation

xi−1xi+1 = xiyi + yi−2yi+2 i = 1, . . . , 5

The resulting variety U ⊂ A10
xi ,yi

is the affine cone over the

Grassmannian Gr(2, 5).
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2. Relationship with Gr(2, 5)

Consider the projection π : U → A5
y1,...,y5 , which is a fibration of

affine del Pezzo surfaces.

Clearly we have U = π−1(1, . . . , 1), but in fact all of the fibres of π

over (C×)5 ⊂ A5 are isomorphic. They start to degenerate over

the coordinate strata, with the ‘worst’ fibre being π−1(0, . . . , 0) a

cycle of five coordinate planes.
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3. Mirror symmetry for dP5

Consider the invariant Laurent polynomial

w = x1 + x2 + x3 + x4 + x5

=
(1 + x1)(1 + x1 + x2)(1 + x2)

x1x2
− 3

and the corresponding fibration w : U → A1. We see that the two

complementary anticanonical pentagons in Y appear as fibres

w−1(−3) = E and w−1(∞) = D.

Extending to the compactified variety w : Y 99K P1, the map w

has five basepoints which are given by the five points of D ∩ E .
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3. Mirror symmetry for dP5

Blowing these five points up gives an elliptic fibration with four

singular fibres. The dashed locus is everything not contained in U.

×
−3

× × ×
∞

Thus the fibres of w : U → A1 are elliptic curves with five points

deleted. This fibration is the Landau–Ginzburg model which is

mirror to dP5 with an anticanonical section s ∈ H0(dP5,−KdP5)

such that div s is a pentagon of (−1)-curves. The five deleted

sections correspond to the five nodes of div s.
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Dimension 3: the Fano 3-fold V12



The 3-dimensional Lyness recurrence

Recall the eight functions of the 3-dimensional recurrence

x1, x2, x3, x4 =
1 + x2 + x3

x1
, x5 =

1 + x1 + x2 + x3 + x1x3
x1x2

, etc.

What is the 3-fold U = Spec(C[x1, . . . , x8]) ⊂ A8?

Just as the affine del Pezzo surface turned out to be a

‘dehomogenisation’ of the Grassmannian Gr(2, 5), it turns out that

there is another type of Grassmannian lurking in the background

here.
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The orthogonal Grassmannian OGr(4, 9)

The orthogonal Grassmannian OGr(4, 9) parameterises 4-planes in

C9 which are isotropic with respect to a given quadratic form (or

equivalently, one of the two isomorphic connected components of

OGr(5, 10)).

The relevant Lie group is SO(9) of type B4, with 16-dimensional

spin representation S =
⊕4

i=0

∧i C4 ∼= C16.

The weight polytope in the weight lattice for B4 is a 4-dimensional

hypercube C with vertices (±1
2 ,±

1
2 ,±

1
2 ,±

1
2).

The Weyl group W (B4) is the symmetry group of C and the

Coxeter element is a rotation of C of order 8.
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The equations of OGr(4, 9)

To define OGr(4, 9) ⊂ P16 call the 16 variables x1, . . . , x8 and

y1, . . . , y8 according to the following labelling of the vertices of C .

y1

x1

y2

x2

y3x3

y4

x4

y5

x5

y6

x6

y7 x7

y8

x8

y2

y5

y8

y3x3

x4
x1

x2

y1

y3

y5

y7

x1

x3

x5

x7

and two equations corresponding

to bipartite decompositions:

x1x5 − x3x7 = y1y5 − y3y7, etc.

Now OGr(4, 9) has eight

equations corresponding

to the 3-cube faces of C :

x1x4 = x2y5 + x3y8 + y2y3, etc.
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Summary of the equations

Let U ⊂ A16 be the affine cone over OGr(4, 9). Then summarising

the last slide, U is defined by the ten equations

x1x4 = x2y5 + x3y8 + y2y3 x5x8 = x6y1 + x7y4 + y6y7

x2x5 = x3y6 + x4y1 + y3y4 x6x1 = x7y2 + x8y5 + y7y8

x3x6 = x4y7 + x5y2 + y4y5 x7x2 = x8y3 + x1y6 + y8y1

x4x7 = x5y8 + x6y3 + y5y6 x8x3 = x1y4 + x2y7 + y1y2

x1x5 − x3x7 = y1y5 − y3y7 x2x6 − x4x8 = y2y6 − y4y8

Note that this a nice homogenisation of the 3-dimensional Lyness

recurrence.
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A fibration of affine Fano 3-folds

Consider the projection π : U → A8
y1,...y8 . This is a flat family of

affine Fano 3-folds of type V12 (an intersection of OGr(4, 9) with

seven hyperplane sections). However these are special V12s, since

the projective closure of each of fibre is very singular.

Proposition. For all λ, µ ∈ C×, the fibres of π are all isomorphic

over { y1y5y3y7
= λ, y2y6y4y8

= µ} ⊂ (C×)8yi . Call this fibre Uλ,µ ⊂ A8
xi

.

The projective closure Uλ,µ ⊂ P16 is a (non-Q-factorial) Fano

3-fold of type V12. It has boundary divisor with ten components

meeting as follows:

•
•

8× P2

2× P1 × P1

16× • nodes

•• 8× P2

2× P1 × P1

16× • nodes

••
8× P2

2× P1 × P1

16× • nodes

•
•

8× P2

2× P1 × P1

16× • nodes

•
•

8× P2

2× P1 × P1

16× • nodes• •

8× P2

2× P1 × P1

16× • nodes
• •

8× P2

2× P1 × P1

16× • nodes•
•

8× P2

2× P1 × P1

16× • nodes
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Uλ,µ as a cluster variety

By considering the projection p : Uλ,µ → A3
x1,x2,x3 we see that for

all λ, µ 6= 1 the 3-fold Uλ,µ is given by blowing up two lines

L1 ⊂ {x1 = 0}, L3 ⊂ {x3 = 0} and a conic C2 ⊂ {x2 = 0} in A3

and deleting the strict transform of the coordinate axes.

If µ = 1 then the conic C2 splits into two lines. If λ = 1 then the

two lines L1, L3 touch in the x2-axis, and p also blows up an

embedded point at L1 ∩ L3.

(1)

λ, µ 6= 1

(2)

λ 6= 1, µ = 1

(3)

λ = 1, µ 6= 1

•
(4)

λ = µ = 1

•
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Mutations in Uλ,µ

Consider the generic case λ, µ 6= 1. Then we have three exceptional

divisors {E1,E2,E3} in the projection U → A3
x1,x2,x3 , which

dominate L1, C2, L3 respectively. The homogenised Lyness map

(x1, x2, x3) 7→
(
x2y5 + x3y8 + y2y3

x1
, x2, x3

)
is the mutation at E1 and similarly for the mutation at L3.

But what about the mutation of E2? It is given by

(x1, x2, x3) 7→
(
x1,

x1x3y6 + x1y3y4 + x3y8y1 + y1y2y3
x2

, x3

)
where the numerator is the equation defining the conic C2.
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Mutations in Uλ,µ

Amazingly, the new cluster variable

q1 :=
x1x3y6 + x1y3y4 + x3y8y1 + y1y2y3

x2

turns out to be equivalent to q1 = x1x5 − y1y5 = x3x7 − y3y7. By

similarly adding in q2 = x2x6 − y2y6 = x4x8 − y4y8 we get a cluster

variety with a closed and finite system of torus charts related by

mutations.

q1

x3

x5x7

x1

q2

x2

x4

x6

x8
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Finite number of cluster torus charts

In fact this also holds in the other cases where one or both of

λ, µ = 1 (even though there are more divisors to mutate).

Proposition. Uλ,µ is a rank 3 (resp. 4, 5) cluster variety with 16

(resp. 28, 48) different torus charts if λ, µ 6= 1 (resp. one of λ = 1

or µ = 1, both λ = µ = 1). The exchange graphs in each case are

given by

••

•
•

•

•
•
•

• •

•
•

•

•
•

•
••

•
•

•

•
•
•

• •

•
•

•

•
•

•
•
•

•••
•
•
•
• • •

•
••

•
•

•

•
•
•

• •

•
•

•

•
•

•
• •

•
••

•••••••
•
•
•
••• • • • •

••
•
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A mirror K3 fibration for V12

From now on concentrate on the special fibre U := U1,1, for which

the two new cluster variables are

q1 =
(1 + x1)(1 + x3)

x2
q2 =

(1 + x2)(1 + x1 + x2 + x3)

x1x3

The Lyness-invariant Laurent polynomial

w = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + q1 + q2

=
(1 + x1 + x2)(1 + x1 + x2 + x3 + x1x3)(1 + x2 + x3)

x1x2x3
− 5

should give a fibration of K3 surfaces on w : U → A1 which is

mirror to the Fano 3-fold V12.

(This is because the classical period of w agrees with the

regularised quantum period of V12.)
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A mirror K3 fibration for V12

Indeed we can use the explicit equations and the geometry to see

this fibration. Resolving w we get a symmetric pencil of K3

surfaces w : U → A1 with two type III fibres and two fibres of

Picard rank 20.

×
−5

×
ρ = 20

×
ρ = 20

×
∞

The fibres w−1(t) ⊂ U have 24 (−2)-curves deleted. The classes

of these 24 curves span the lattice NS(Ut) of rank 19, such that

H1,1(Ut ,Z) = NS(Ut)⊕ 〈12〉 as expected (since a general

hyperplane section of V12 is a K3 surface with Néron–Severi lattice

〈12〉). 23/25



Mirrors for other Fano 3-folds

Interestingly, x1, . . . , x8, q1, q2 can be used as building blocks to

construct other interesting potentials on U.

Proposition. Consider w =
∑8

i=1 εixi + ε9q1 + ε10q2 with
coefficients εi ∈ {0, 1}. The 1024 possibilities for w give rise to 46
distinct non-degenerate period sequences, of which 20 are period
sequences for smooth Fano 3-folds.

Fano 3-fold Mirror Laurent polynomial w

V12 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + q1 + q2
V14 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + q1
V16 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
V18 x1 + x2 + x3 + x4 + x5 + x6 + x7
V22 x1 + x2 + x3 + x4 + x5 + x6

MM2−9 x1 + x2 + x3 + x6 + q1 + q2
MM2−12 x1 + x2 + x3 + x5 + x6 + x7

...
... 24/25



Mirrors for other Fano 3-folds

This can be used to study how the geometry of these fibrations

changes, e.g.

U ⊂ P10 q̂2
99K U ⊂ P9 q̂1

99K U ⊂ P8 x̂8
99K · · ·

wV12 ↓ wV14 ↓ wV16 ↓
A1 A1 A1

We can see how the extra (−2)-curves needed to complete the

fibres of the K3 fibration changes.

V12 V14 V16 etc...
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The end
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