The 3-dimensional Lyness map and an explicit mirror for the Fano 3-fold V_{12}

Nottingham algebraic geometry seminar

Tom Ducat
13 May 2020
Imperial College London

The Lyness map

The Lyness map

The d-dimensional Lyness map is the birational map $\sigma_{d} \in \operatorname{Bir}\left(\mathbb{C}^{d}\right)$ given by

$$
\sigma_{d}\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)=\left(x_{2}, x_{3} \ldots, x_{d}, \frac{1+x_{2}+\cdots+x_{d}}{x_{1}}\right)
$$

If we iterate by $\sigma_{d}^{ \pm 1}$ we can define a sequence of rational functions $\left(x_{i} \in \mathbb{C}\left(x_{1}, \ldots, x_{d}\right): i \in \mathbb{Z}\right)$ where

$$
x_{i} x_{i+d}=1+x_{i+1}+\cdots+x_{i+d-1} \quad \forall i \in \mathbb{Z}
$$

is the d-dimensional Lyness recurrence relation.

Behaviour in low dimensions

When $d=2$ the recurrence relation is 5 -periodic

$$
x_{1}, x_{2}, x_{3}=\frac{1+x_{2}}{x_{1}}, x_{4}=\frac{1+x_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{1+x_{1}}{x_{2}}, x_{6}=x_{1}, \ldots
$$

When $d=3$ the recurrence relation is 8 -periodic

$$
\begin{gathered}
x_{1}, x_{2}, x_{3}, x_{4}=\frac{1+x_{2}+x_{3}}{x_{1}}, x_{5}=\frac{1+x_{1}+x_{2}+x_{3}+x_{1} x_{3}}{x_{1} x_{2}}, \\
x_{6}=\frac{\left(1+x_{1}+x_{2}\right)\left(1+x_{2}+x_{3}\right)}{x_{1} x_{2} x_{3}}, x_{7}=\frac{1+x_{1}+x_{2}+x_{3}+x_{1} x_{3}}{x_{2} x_{3}}, \\
x_{8}=\frac{1+x_{1}+x_{2}}{x_{3}}, x_{9}=x_{1} \ldots
\end{gathered}
$$

Also note that there is a Laurent phenomenon, i.e.

$$
x_{i} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right] \subset \mathbb{C}\left(x_{1}, \ldots, x_{d}\right) \quad \forall i \in \mathbb{Z}
$$

Integrability

When $d \leq 3$ this is an integrable system-in other words, this recurrence has the maximum number $d-1$ of first integrals (functionally independent invariant functions).

When $d \geq 4$ the recurrence relation is neither periodic, nor possesses a Laurent phenomenon. It is no longer integrable, but it does still preserve a system of $\left\lfloor\frac{d+1}{2}\right\rfloor$ Laurent polynomials (Tran-van der Kamp-Quispel).

Dimension 2: del Pezzo surface $d P_{5}$

The del Pezzo surface of degree 5

Recall the five functions from the 2-dimensional recurrence

$$
x_{1}, x_{2}, x_{3}=\frac{1+x_{2}}{x_{1}}, x_{4}=\frac{1+x_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{1+x_{1}}{x_{2}} .
$$

As is well-known, these are coordinates on an affine del Pezzo surface U of degree 5

$$
U=\operatorname{Spec}\left(\frac{\mathbb{C}\left[x_{1}, \ldots, x_{5}\right]}{\left(x_{i-1} x_{i+1}=x_{i}+1: i \in \mathbb{Z} / 5 \mathbb{Z}\right)}\right) \subset \mathbb{A}^{5}
$$

The projective closure $Y=\bar{U} \subset \mathbb{P}^{5}$ is a (projective) $d P_{5}$ where the complement $Y \backslash U$ is a pentagon of lines $D=\sum_{i=1}^{5} D_{i}$.

The configuration of lines inside Y

Note that $U \subset \mathbb{A}^{5}$ contains five straight lines $E_{i}=U \cap\left\{x_{i}=0\right\}$, obtained by intersecting U with a coordinate hyperplane.

Taken together with D, these ten lines (i.e. (-1)-curves) intersect in a very beautiful configuration, obtained by blowing up \mathbb{P}^{2} in the four points shown on the right.

We want to pull out three themes from this example which will generalise to the dimension 3 case:

1. U is a cluster variety,
2. U 'comes from' the Grassmannian $\operatorname{Gr}(2,5)$,
3. U can be used to construct a mirror for $d P_{5}$.

1. U is a cluster variety

The variety U is a cluster variety, i.e. it is the interior of a log Calabi-Yau pair (Y, D) which admits a toric model $\pi:(Y, D) \rightarrow(\bar{Y}, \bar{D})$. In other words we can blow down two disjoint (-1)-curves $\left\{E_{i}, E_{i+1}\right\}$ inside U to get a map to a toric pair.

Changing from blowing down the pair $\left\{E_{i-1}, E_{i}\right\}$ to blowing down the pair $\left\{E_{i}, E_{i+1}\right\}$ is called a mutation at E_{i-1}.
The induced map on the dense open torus is the Lyness map $\sigma_{2}\left(x_{i-1}, x_{i}\right)=\left(x_{i}, \frac{1+x_{i}}{x_{i-1}}\right)$.

2. Relationship with $\operatorname{Gr}(2,5)$

We can write the equations of U as the 4×4 Pfaffians of a 5×5 skew matrix

$$
\operatorname{Pfaff}_{4}\left(\begin{array}{cccc}
1 & x_{1} & x_{4} & 1 \\
& 1 & x_{2} & x_{5} \\
& & 1 & x_{3} \\
& & & 1
\end{array}\right) \xrightarrow{\begin{array}{c}
\text { homogenise } \\
\text { nicely }
\end{array}} \operatorname{Pfaff}_{4}\left(\begin{array}{cccc}
y_{3} & x_{1} & x_{4} & y_{2} \\
& y_{4} & x_{2} & x_{5} \\
& & y_{5} & x_{3} \\
& & & y_{1}
\end{array}\right)
$$

to get a homogeneous recurrence relation

$$
x_{i-1} x_{i+1}=x_{i} y_{i}+y_{i-2} y_{i+2} \quad i=1, \ldots, 5
$$

The resulting variety $\mathcal{U} \subset \mathbb{A}_{x_{i}, y_{i}}^{10}$ is the affine cone over the Grassmannian $\operatorname{Gr}(2,5)$.

2. Relationship with $\operatorname{Gr}(2,5)$

Consider the projection $\pi: \mathcal{U} \rightarrow \mathbb{A}_{y_{1}, \ldots, y_{5}}^{5}$, which is a fibration of affine del Pezzo surfaces.

Clearly we have $U=\pi^{-1}(1, \ldots, 1)$, but in fact all of the fibres of π over $\left(\mathbb{C}^{\times}\right)^{5} \subset \mathbb{A}^{5}$ are isomorphic. They start to degenerate over the coordinate strata, with the 'worst' fibre being $\pi^{-1}(0, \ldots, 0)$ a cycle of five coordinate planes.

3. Mirror symmetry for $d P_{5}$

Consider the invariant Laurent polynomial

$$
\begin{aligned}
w & =x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \\
& =\frac{\left(1+x_{1}\right)\left(1+x_{1}+x_{2}\right)\left(1+x_{2}\right)}{x_{1} x_{2}}-3
\end{aligned}
$$

and the corresponding fibration $w: U \rightarrow \mathbb{A}^{1}$. We see that the two complementary anticanonical pentagons in Y appear as fibres $w^{-1}(-3)=E$ and $w^{-1}(\infty)=D$.

Extending to the compactified variety $w: Y \rightarrow \mathbb{P}^{1}$, the map w has five basepoints which are given by the five points of $D \cap E$.

3. Mirror symmetry for $d P_{5}$

Blowing these five points up gives an elliptic fibration with four singular fibres. The dashed locus is everything not contained in U.

Thus the fibres of $w: U \rightarrow \mathbb{A}^{1}$ are elliptic curves with five points deleted. This fibration is the Landau-Ginzburg model which is mirror to $d P_{5}$ with an anticanonical section $s \in H^{0}\left(d P_{5},-K_{d P_{5}}\right)$ such that div s is a pentagon of (-1)-curves. The five deleted sections correspond to the five nodes of div s.

Dimension 3: the Fano 3-fold V_{12}

The 3-dimensional Lyness recurrence

Recall the eight functions of the 3-dimensional recurrence

$$
x_{1}, x_{2}, x_{3}, x_{4}=\frac{1+x_{2}+x_{3}}{x_{1}}, x_{5}=\frac{1+x_{1}+x_{2}+x_{3}+x_{1} x_{3}}{x_{1} x_{2}}, \text { etc. }
$$

What is the 3 -fold $U=\operatorname{Spec}\left(\mathbb{C}\left[x_{1}, \ldots, x_{8}\right]\right) \subset \mathbb{A}^{8}$?
Just as the affine del Pezzo surface turned out to be a 'dehomogenisation' of the Grassmannian $\operatorname{Gr}(2,5)$, it turns out that there is another type of Grassmannian lurking in the background here.

The orthogonal Grassmannian $\operatorname{OGr}(4,9)$

The orthogonal Grassmannian $\operatorname{OGr}(4,9)$ parameterises 4-planes in \mathbb{C}^{9} which are isotropic with respect to a given quadratic form (or equivalently, one of the two isomorphic connected components of $\operatorname{OGr}(5,10))$.

The relevant Lie group is $S O(9)$ of type B_{4}, with 16 -dimensional spin representation $S=\bigoplus_{i=0}^{4} \bigwedge^{i} \mathbb{C}^{4} \cong \mathbb{C}^{16}$.

The weight polytope in the weight lattice for B_{4} is a 4-dimensional hypercube C with vertices $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)$.

The Weyl group $W\left(B_{4}\right)$ is the symmetry group of C and the Coxeter element is a rotation of C of order 8 .

The equations of $\operatorname{OGr}(4,9)$

To define $\operatorname{OGr}(4,9) \subset \mathbb{P}^{16}$ call the 16 variables x_{1}, \ldots, x_{8} and y_{1}, \ldots, y_{8} according to the following labelling of the vertices of C.

> Now $\operatorname{OGr}(4,9)$ has eight equations corresponding
to the 3 -cube faces of C : $x_{1} x_{4}=x_{2} y_{5}+x_{3} y_{8}+y_{2} y_{3}$, etc.
and two equations corresponding to bipartite decompositions:
$x_{1} x_{5}-x_{3} x_{7}=y_{1} y_{5}-y_{3} y_{7}$, etc.

Summary of the equations

Let $\mathcal{U} \subset \mathbb{A}^{16}$ be the affine cone over $\operatorname{OGr}(4,9)$. Then summarising the last slide, \mathcal{U} is defined by the ten equations

$$
\begin{array}{ll}
x_{1} x_{4}=x_{2} y_{5}+x_{3} y_{8}+y_{2} y_{3} & x_{5} x_{8}=x_{6} y_{1}+x_{7} y_{4}+y_{6} y_{7} \\
x_{2} x_{5}=x_{3} y_{6}+x_{4} y_{1}+y_{3} y_{4} & x_{6} x_{1}=x_{7} y_{2}+x_{8} y_{5}+y_{7} y_{8} \\
x_{3} x_{6}=x_{4} y_{7}+x_{5} y_{2}+y_{4} y_{5} & x_{7} x_{2}=x_{8} y_{3}+x_{1} y_{6}+y_{8} y_{1} \\
x_{4} x_{7}=x_{5} y_{8}+x_{6} y_{3}+y_{5} y_{6} & x_{8} x_{3}=x_{1} y_{4}+x_{2} y_{7}+y_{1} y_{2} \\
x_{1} x_{5}-x_{3} x_{7}=y_{1} y_{5}-y_{3} y_{7} & x_{2} x_{6}-x_{4} x_{8}=y_{2} y_{6}-y_{4} y_{8}
\end{array}
$$

Note that this a nice homogenisation of the 3-dimensional Lyness recurrence.

A fibration of affine Fano 3-folds

Consider the projection $\pi: \mathcal{U} \rightarrow \mathbb{A}_{y_{1}, \ldots y_{8}}^{8}$. This is a flat family of affine Fano 3 -folds of type V_{12} (an intersection of $\operatorname{OGr}(4,9)$ with seven hyperplane sections). However these are special $V_{12} s$, since the projective closure of each of fibre is very singular.

Proposition. For all $\lambda, \mu \in \mathbb{C}^{\times}$, the fibres of π are all isomorphic over $\left\{\frac{y_{1} y_{5}}{y_{3} y_{7}}=\lambda, \frac{y_{2} y_{6}}{y_{4} y_{8}}=\mu\right\} \subset\left(\mathbb{C}^{\times}\right)_{y_{i}}^{8}$. Call this fibre $U_{\lambda, \mu} \subset \mathbb{A}_{x_{i}}^{8}$.
The projective closure $\bar{U}_{\lambda, \mu} \subset \mathbb{P}^{16}$ is a (non- \mathbb{Q}-factorial) Fano 3-fold of type V_{12}. It has boundary divisor with ten components meeting as follows:

$$
\begin{gathered}
8 \times \mathbb{P}^{2} \\
2 \times \mathbb{P}^{1} \times \mathbb{P}^{1} \\
16 \times \bullet \text { nodes }
\end{gathered}
$$

$U_{\lambda, \mu}$ as a cluster variety

By considering the projection $p: U_{\lambda, \mu} \rightarrow \mathbb{A}_{x_{1}, x_{2}, x_{3}}^{3}$ we see that for all $\lambda, \mu \neq 1$ the 3 -fold $U_{\lambda, \mu}$ is given by blowing up two lines $L_{1} \subset\left\{x_{1}=0\right\}, L_{3} \subset\left\{x_{3}=0\right\}$ and a conic $C_{2} \subset\left\{x_{2}=0\right\}$ in \mathbb{A}^{3} and deleting the strict transform of the coordinate axes.

If $\mu=1$ then the conic C_{2} splits into two lines. If $\lambda=1$ then the two lines L_{1}, L_{3} touch in the x_{2}-axis, and p also blows up an embedded point at $L_{1} \cap L_{3}$.
(1)

$\lambda, \mu \neq 1$
(2)

(3)

(4)

$\lambda=\mu=1$

Mutations in $U_{\lambda, \mu}$

Consider the generic case $\lambda, \mu \neq 1$. Then we have three exceptional divisors $\left\{E_{1}, E_{2}, E_{3}\right\}$ in the projection $U \rightarrow \mathbb{A}_{\chi_{1}, x_{2}, \chi_{3}}^{3}$, which dominate L_{1}, C_{2}, L_{3} respectively. The homogenised Lyness map

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{2} y_{5}+x_{3} y_{8}+y_{2} y_{3}}{x_{1}}, x_{2}, x_{3}\right)
$$

is the mutation at E_{1} and similarly for the mutation at L_{3}.
But what about the mutation of E_{2} ? It is given by

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, \frac{x_{1} x_{3} y_{6}+x_{1} y_{3} y_{4}+x_{3} y_{8} y_{1}+y_{1} y_{2} y_{3}}{x_{2}}, x_{3}\right)
$$

where the numerator is the equation defining the conic C_{2}.

Mutations in $U_{\lambda, \mu}$

Amazingly, the new cluster variable

$$
q_{1}:=\frac{x_{1} x_{3} y_{6}+x_{1} y_{3} y_{4}+x_{3} y_{8} y_{1}+y_{1} y_{2} y_{3}}{x_{2}}
$$

turns out to be equivalent to $q_{1}=x_{1} x_{5}-y_{1} y_{5}=x_{3} x_{7}-y_{3} y_{7}$. By similarly adding in $q_{2}=x_{2} x_{6}-y_{2} y_{6}=x_{4} x_{8}-y_{4} y_{8}$ we get a cluster variety with a closed and finite system of torus charts related by mutations.

Finite number of cluster torus charts

In fact this also holds in the other cases where one or both of $\lambda, \mu=1$ (even though there are more divisors to mutate).

Proposition. $U_{\lambda, \mu}$ is a rank 3 (resp. 4,5) cluster variety with 16 (resp. 28, 48) different torus charts if $\lambda, \mu \neq 1$ (resp. one of $\lambda=1$ or $\mu=1$, both $\lambda=\mu=1$). The exchange graphs in each case are given by

A mirror K3 fibration for V_{12}

From now on concentrate on the special fibre $U:=U_{1,1}$, for which the two new cluster variables are

$$
q_{1}=\frac{\left(1+x_{1}\right)\left(1+x_{3}\right)}{x_{2}} \quad q_{2}=\frac{\left(1+x_{2}\right)\left(1+x_{1}+x_{2}+x_{3}\right)}{x_{1} x_{3}}
$$

The Lyness-invariant Laurent polynomial

$$
\begin{aligned}
w & =x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+q_{1}+q_{2} \\
& =\frac{\left(1+x_{1}+x_{2}\right)\left(1+x_{1}+x_{2}+x_{3}+x_{1} x_{3}\right)\left(1+x_{2}+x_{3}\right)}{x_{1} x_{2} x_{3}}-5
\end{aligned}
$$

should give a fibration of K 3 surfaces on $w: U \rightarrow \mathbb{A}^{1}$ which is mirror to the Fano 3-fold V_{12}.
(This is because the classical period of w agrees with the regularised quantum period of V_{12}.)

A mirror K3 fibration for V_{12}

Indeed we can use the explicit equations and the geometry to see this fibration. Resolving w we get a symmetric pencil of K3 surfaces $w: U \rightarrow \mathbb{A}^{1}$ with two type III fibres and two fibres of Picard rank 20.

The fibres $w^{-1}(t) \subset U$ have $24(-2)$-curves deleted. The classes of these 24 curves span the lattice $N S\left(\bar{U}_{t}\right)$ of rank 19 , such that $H^{1,1}\left(\bar{U}_{t}, \mathbb{Z}\right)=N S\left(\bar{U}_{t}\right) \oplus\langle 12\rangle$ as expected (since a general hyperplane section of V_{12} is a K3 surface with Néron-Severi lattice $\langle 12\rangle)$.

Mirrors for other Fano 3-folds

Interestingly, $x_{1}, \ldots, x_{8}, q_{1}, q_{2}$ can be used as building blocks to construct other interesting potentials on U.
Proposition. Consider $w=\sum_{i=1}^{8} \varepsilon_{i} x_{i}+\varepsilon_{9} q_{1}+\varepsilon_{10} q_{2}$ with coefficients $\varepsilon_{i} \in\{0,1\}$. The 1024 possibilities for w give rise to 46 distinct non-degenerate period sequences, of which 20 are period sequences for smooth Fano 3-folds.

Fano 3-fold	Mirror Laurent polynomial w
V_{12}	$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+q_{1}+q_{2}$
V_{14}	$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+q_{1}$
V_{16}	$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}$
V_{18}	$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}$
V_{22}	$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$
$M M_{2-9}$	$x_{1}+x_{2}+x_{3}+x_{6}+q_{1}+q_{2}$
$M M_{2-12}$	$x_{1}+x_{2}+x_{3}+x_{5}+x_{6}+x_{7}$
\vdots	\vdots

Mirrors for other Fano 3-folds

This can be used to study how the geometry of these fibrations changes, e.g.

$$
\begin{array}{cccccc}
\bar{U} \subset \mathbb{P}^{10} & \xrightarrow{\widehat{q}_{2}} & \bar{U} \subset \mathbb{P}^{9} & \xrightarrow{\widehat{q_{1}}} & \bar{U} \subset \mathbb{P}^{8} & \stackrel{\widehat{x_{8}}}{\rightarrow} \cdots \\
w_{V_{12} \downarrow} \downarrow & & w_{V_{14}} \downarrow & & w_{V_{16}} \downarrow & \\
\mathbb{A}^{1} & & \mathbb{A}^{1} & & \mathbb{A}^{1} &
\end{array}
$$

We can see how the extra (-2)-curves needed to complete the fibres of the K3 fibration changes.

The end

