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Goals

• Recall, the classical (geometric) McKay correspondence for
Gorenstein quotient surface singularities.

• Recall, known generalization to higher dimensional quotient
singularities.

• Discuss the general case for isolated Gorenstein singularities
(in any dimension).

• Possibly, applications to matrix factorization.
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Objects of interest

• G ⊂ SL2(C) finite subgroup.

• X := C2/G the associated quotient singularity.

• Simple example (A1 singularity): Take the matrix

g =

(
−1 0
0 −1

)
Note g 2 is the identity matrix. Let G :=< g >.

• g acts on C[X1,X2] by Xi 7→ −Xi for i = 1, 2.

• The G -invariant monomials are X 2
1 ,X1X2,X

2
2 .

• Easy to check C2/G is the hypersurface in C3 defined by
uv = w 2.
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McKay correspondence

Theorem (McKay, Gonzalez-Sprinberg, Verdier)

Let X be a quotient surface singularity as before. Then, there is
a bijection between the following three sets:

1 isomorphism classes of indecomposable reflexive
OX -modules (i.e., double dual of the module is isomorphic
to itself e.g., vector bundles).

2 irreducible components of the exceptional divisor of the
minimal resolution (i.e., every resolution factors through it).

3 isomorphism classes of irreducible representations of G (i.e.
group homomorphism from G to GL(V ) such that there is
no non-trivial sub-representation).



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

McKay correspondence

Theorem (McKay, Gonzalez-Sprinberg, Verdier)

Let X be a quotient surface singularity as before. Then, there is
a bijection between the following three sets:

1 isomorphism classes of indecomposable reflexive
OX -modules (i.e., double dual of the module is isomorphic
to itself e.g., vector bundles).

2 irreducible components of the exceptional divisor of the
minimal resolution (i.e., every resolution factors through it).

3 isomorphism classes of irreducible representations of G (i.e.
group homomorphism from G to GL(V ) such that there is
no non-trivial sub-representation).



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

McKay correspondence

Theorem (McKay, Gonzalez-Sprinberg, Verdier)

Let X be a quotient surface singularity as before. Then, there is
a bijection between the following three sets:

1 isomorphism classes of indecomposable reflexive
OX -modules (i.e., double dual of the module is isomorphic
to itself e.g., vector bundles).

2 irreducible components of the exceptional divisor of the
minimal resolution (i.e., every resolution factors through it).

3 isomorphism classes of irreducible representations of G (i.e.
group homomorphism from G to GL(V ) such that there is
no non-trivial sub-representation).



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (3)

• Consider the quotient map π : C2 → X , U ⊂ X the regular
locus.

• Take a reflexive OX -module M.

• Take the pull-back to C2: π∗M/(torsion).

• Standard argument: π∗M/(torsion) is reflexive.

• reflexive module over a regular surface is locally-free.

• Moreover, as C2 is contractible, π∗M/(torsion) is trivial.

• For any g ∈ G , the corresponding U-automorphism of
π−1(U) induces an automorphism of π∗M/(torsion)
restricted to π−1(U). This gives us a representation of G .
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Correspondence (1)←→ (3)

• Conversely, start with a (complex) representation
ρ : G → GL(V ).

• By Riemann-Hilbert correspondence, we can uniquely
associate to ρ a C-local system LG over the regular locus U
of X .

• Take MU := LG ⊗C OU the associated locally-free sheaf
(with flat connection).

• Extend: M := i∗MU is a reflexive OX -module, where
i : U → X .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (3)

• Conversely, start with a (complex) representation
ρ : G → GL(V ).

• By Riemann-Hilbert correspondence, we can uniquely
associate to ρ a C-local system LG over the regular locus U
of X .

• Take MU := LG ⊗C OU the associated locally-free sheaf
(with flat connection).

• Extend: M := i∗MU is a reflexive OX -module, where
i : U → X .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (3)

• Conversely, start with a (complex) representation
ρ : G → GL(V ).

• By Riemann-Hilbert correspondence, we can uniquely
associate to ρ a C-local system LG over the regular locus U
of X .

• Take MU := LG ⊗C OU the associated locally-free sheaf
(with flat connection).

• Extend: M := i∗MU is a reflexive OX -module, where
i : U → X .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (3)

• Conversely, start with a (complex) representation
ρ : G → GL(V ).

• By Riemann-Hilbert correspondence, we can uniquely
associate to ρ a C-local system LG over the regular locus U
of X .

• Take MU := LG ⊗C OU the associated locally-free sheaf
(with flat connection).

• Extend: M := i∗MU is a reflexive OX -module, where
i : U → X .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (2)

• Take an indecomposable reflexive OX -module M.

• Let π : X̃ → X be the minimal resolution of X . Let E be
the exceptional divisor.

• FACT: M̃ := π∗M/(torsion) is a globally generated
reflexive O

X̃
-module. Hence, locally-free (X̃ is a regular

surface).

• Let r = rank(M).

Theorem (Artin-Verdier/Wunram)

For a general choice of r sections s1, ..., sr of M̃, the cokernel of
the induced morphism O⊕r

X̃
→ M̃ is isomorphic to OD , where D

is a smooth curve in X̃ intersecting (transversally) an unique
irreducible component of E .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (2)

• Take an indecomposable reflexive OX -module M.

• Let π : X̃ → X be the minimal resolution of X . Let E be
the exceptional divisor.

• FACT: M̃ := π∗M/(torsion) is a globally generated
reflexive O

X̃
-module. Hence, locally-free (X̃ is a regular

surface).

• Let r = rank(M).

Theorem (Artin-Verdier/Wunram)

For a general choice of r sections s1, ..., sr of M̃, the cokernel of
the induced morphism O⊕r

X̃
→ M̃ is isomorphic to OD , where D

is a smooth curve in X̃ intersecting (transversally) an unique
irreducible component of E .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (2)

• Take an indecomposable reflexive OX -module M.

• Let π : X̃ → X be the minimal resolution of X . Let E be
the exceptional divisor.

• FACT: M̃ := π∗M/(torsion) is a globally generated
reflexive O

X̃
-module. Hence, locally-free (X̃ is a regular

surface).

• Let r = rank(M).

Theorem (Artin-Verdier/Wunram)

For a general choice of r sections s1, ..., sr of M̃, the cokernel of
the induced morphism O⊕r

X̃
→ M̃ is isomorphic to OD , where D

is a smooth curve in X̃ intersecting (transversally) an unique
irreducible component of E .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (2)

• Take an indecomposable reflexive OX -module M.

• Let π : X̃ → X be the minimal resolution of X . Let E be
the exceptional divisor.

• FACT: M̃ := π∗M/(torsion) is a globally generated
reflexive O

X̃
-module. Hence, locally-free (X̃ is a regular

surface).

• Let r = rank(M).

Theorem (Artin-Verdier/Wunram)

For a general choice of r sections s1, ..., sr of M̃, the cokernel of
the induced morphism O⊕r

X̃
→ M̃ is isomorphic to OD , where D

is a smooth curve in X̃ intersecting (transversally) an unique
irreducible component of E .



McKay cor-
respondence
for isolated
Gorenstein
singularities

Ananyo Dan

Classical
McKay cor-
respondence

Generalizations
of Ito-Reid

Higher
dimensional
generaliza-
tions

Applications:
Matrix
factorization

Correspondence (1)←→ (2)

• Conversely, choose an irreducible component Ei of E and a
smooth curve D (transversally) intersecting E at a single
point on Ei .

• Let r be the minimum number of sections necessary to
generate π∗OD as an OX -module.

• Choose r sections (t1, .., tr ) generating π∗OD . Consider the
resulting exact sequence:

0→ N → O⊕r
X̃

(t1,...,tr )−−−−−→ OD → 0.

• Check that M := π∗(N∨) is a reflexive OX -module and this
construction gives the inverse correspondence.
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Example: A1 singularity

• Recall, X is a hypersurface singularity defined by uv = w 2.

• Reflexive module: Ideal sheaf (u − w , v − w).

• Exceptional divisor: E ∼= P1.

• Non-trivial irreducible representations: Character
ρ : G → C∗ defined by g 7→ (−1).
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What are the complications?

• What if n ≥ 3 i.e., if G ⊂ SLn(C) is a finite subgroup and
X := Cn/G the associated quotient singularity?

• Problem I: No minimal resolution of singularity.

• Solution I: Replace minimal resolution by minimal model (in
the sense of Mori). Partial results in this case.

• Problem II: Crepant resolution does not always exist in the
case n ≥ 4. Example: C4/± does not admit a Crepant
resolution.

• Solution II: Instead of considering all the components of the
exceptional divisor, only consider the “Crepant” divisors.
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Crepant divisors and Juniors

• Crepant divisors: Let f : Y → X be a resolution of
singularities, with exceptional divisor E . Write
KY := f ∗KX +

∑
i aiEi , where Ei are the irreducible

components of E . Recall, ai ≥ 0 for all i . We say Ei is a
Crepant divisor, if ai = 0.

• What should the Crepant divisors correspond to?

• Any element g ∈ G has n eigenvalues λ1, ..., λn, where
• λi = ζai for some ai ∈ Z,
• ζ := e2πi/r i.e., r -th primitive root of unity,
• and r := min{a|g a = 1}.

• Junior: Define age(g) := 1
r

∑
ai . If age(g) = 1, then g is

called a junior.
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Ito-Reid correspondence

Theorem (Ito-Reid)

There is a 1− 1 correspondence between:

{
junior elements of G

upto conjugacy classes

}
←→


Crepant divisors in

resolutions of X
upto birational eq.


• Idea of the proof:

• Step I: Reduce to the case when G is a cyclic subgroup,

• Step II: If G is cyclic then X is a toric variety. Study the
toric resolution.

• Further generalization by Bridgeland-King-Reid to the case
M/G , where M is a non-singular quasi-projective variety
and G ⊂ Aut(M) a finite subgroup satisfying some
condition.
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What’s the problem?

• What if we do not have quotient singularity?

• Problem I: In the case X = C2/G , for every reflexive
OX -module M, we have R1π∗M̃ = 0, where π : X̃ → X is
the minimal resolution and M̃ := π∗M/(torsion).

• This does not hold, even in the (rational) surface singularity
case, for non-quotient singularities.

• Solution I: In the rational surface singularity case, instead of
looking at all reflexive modules, restrict to those which
satisfy R1π∗M̃

∨ = 0. Such modules are called Wunram
modules.

• In the case of RDPs, all reflexive modules are Wunram
modules.
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Understand better

• Why does Wunram modules give the correct
correspondence in the rational surface singularity case?

• For π : X̃ → X the minimal resolution, we have
R1π∗OX̃

= 0.

• Problem II: If X is Gorenstein, non-rational surface
singularity, then R1π∗OX̃

6= 0. The dimension equals the
geometric genus ρg of X .

• Solution II: In the Gorenstein surface singularities case,
instead of considering Wunram modules, we consider
reflexive modules satisfying dim R1π∗M̃

∨ = ρg . We will call
such modules generalized Wunram modules.
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More problems...

• Problem III: Reflexive modules vs Maximal Cohen-Macaulay
modules (i.e., depth of the module equals the dimension of
the variety) in higher dimension. In the surface case, they
coincide.

• Key step in the surface case: the correspondence uses
degeneracy locus of globally generated vector bundles.

• Reflexive modules in dimension greater than 3 need not be
locally-free

• Solution III: Maximal Cohen-Macaulay module over a
non-singular variety is locally-free.
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Problem with intersection theory

• Key step in the RDP surface case: the first Chern class of
M̃ intersects an unique irreducible component of the
exceptional divisor transversally at exactly one point.

• Problem IV: In higher dimension, the first Chern class of M̃
intersects every irreducible component of the exceptional
divisor.

• Solution IV: Replace c1(M̃) with intersection of c1(M̃) by
(dim X − 2) number of general hyperplane sections.
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• Solution IV: Replace c1(M̃) with intersection of c1(M̃) by
(dim X − 2) number of general hyperplane sections.
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Main result

• Let (X , x) isolated, normal Gorenstein singularity (i.e., the
canonical sheaf is invertible, e.g. local complete intersection
subvarieties) of dimension n.

• Given an OX -module N, denote by syzn−2(N), the
(n − 2)-th syzygy associated to N i.e., we have a minimal
resolution of N of the form

0→ syzn−2(N)→ O⊕an−3

X → O⊕an−2

X ...O⊕a0
X → N → 0.

• Depth comparison in short exact sequence implies that if N
is Cohen-Macaulay of dimension 1, then syzn−2(N) is a
maximal Cohen-Macaulay module.
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Main result

Theorem (-, Fernández de Bobadilla, Velázquez)

There is a 1− 1 correspondence between
Crepant divisors in

resolutions of X
upto birational eq.

←→


Indecomposable generalized
Wunram OX −modules

modulo isomorphism


which associates to a Crepant divisor Ei contained in a resolution

π : X̃ → X

of X , the (n − 2)-th syzygy syzn−2(π∗OD), where D is a
smooth curve intersecting Ei at exactly one point.
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What is Matrix factorization...

• Let X ⊂ Cn hypersurface singularity defined by f .

• A matrix factorization of f is a pair of m ×m-matrices A
and B with coefficients in C[X1, ...,Xn] such that
AB = BA = f .Idm×m.

Theorem (Eisenbud)
There is a one-to-one correspondence between:

1 equivalence classes of reduced matrix factorizations of f .

2 maximal Cohen-Macaulay OX -modules without free summands.
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How to get the bijection?

• Start with a maximal Cohen-Macaulay OX -module M. So,
depth(M) = dim X = n − 1.

• By Auslander-Buchsbaum theorem, the projective
dimension of M is 1.

• So, we have a projective resolution of M of the form

0→ O⊕mCn

φ−→ O⊕mCn → M → 0

• As Supp(M) = X , we have f .M = 0. Hence,
f .O⊕mCn ⊂ Im(φ).

• In other words, for any v ∈ O⊕mCn there is an unique
w ∈ O⊕mCn such that f .v = φ(w). Set ψ(v) = w .

• ψ gives a OCn -linear morphism from O⊕mCn to itself.

• Note that, φ ◦ ψ = ψ ◦ φ = f .Id.
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Wild representation types

• Singularities can be classified into three categories:

1 (finite type) there exists finitely many indecomposable
Cohen-Macaulay modules over the singularity. E.g. Du Val
surface singularities.

2 (tame type) for each fixed r , the Cohen-Macaulay modules
of rank r over the singularity form a finite set of one
parameter families. E.g. simple elliptic surface singularity
i.e., the exceptional divisor of the minimal resolution is an
irreducible elliptic curve.

3 (wild type) for almost all (in terms of density) positive
integer n, there exists a n-parameter family of
non-isomorphic indecomposable Cohen-Macaulay modules
over the singularity. E.g. Minimally elliptic surface
singularities that are neither simple elliptic nor a cusp.
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Parametrization of matrix factorization

• How do we parameterize the matrix factorization
corresponding to hypersurface singularities of wild
representation type?

Theorem (-,Velázquez)
Let X be a quasi-homogeneous surface singularity of weights
(a, b, c) (i.e., hypersurface singularity defined by f satisfying
f (λaX1, λ

bX2, λ
cX3) = λd f (X1,X2,X3) for some d). Then, the

matrix factorization associated to any generalized Wunram
modules of rank 1 is given by a 2× 2-matrix (mi ,j) of the form:

1 m1,1 = X b
1 y0 − X2xb

0 ,

2 m1,2 = X3xc
0 − X c

1 z0

3 m2,1 and m2,2 are certain linear combination of X ic
1 X j

3 and X ib
1 X j

2

depending on (x0, y0, z0),

where (x0, y0, z0) ∈ X .
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Thank you for your attention !
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