# Combinatorial Mutations and Block Diagonal Polytopes

Oliver Clarke joint with Fatemeh Mohammadi, and Akihiro Higashitani

University of Bristol and Ghent University

oliver.clarke@bristol.ac.uk

12th August 2021

# The Big Picture



- 1. Polytopes and Combinatorial Mutation
- 2. Toric Varieties and Toric Degeneration
- 3. Our Results

## 1. Polytopes and Combinatorial Mutation

# Background on Combinatorial Mutations

### Minkowski Polynomials and Mutations (ACGK-12).

- A mirror partner f ∈ C[x<sub>1</sub><sup>±1</sup>,...,x<sub>n</sub><sup>±1</sup>], for a Fano manifold X, encodes Gromov-Witten invariants of X.
- **Combinatorial mutations** of Laurent polynomials connect polynomials with the same classical period. The induced map on their Newton polytopes gives rise to mutations of polytopes.

#### Mutations of Laurent Polynomials and Flat Families with Toric Fibers (Ilten-12).

• If P and Q are polytopes related by a combinatorial mutation then there exists a flat family  $X \to \mathbb{P}^1$  such that  $X_0 \cong X_P$  and  $X_\infty \cong X_Q$ .

### Wall-Crossing for Newton-Okounkov bodies (EH-20).

• Combinatorial mutations connect Newton-Okounkov bodies arising from adjacent cones in the tropicalization of *G*<sub>2,n</sub>.

### Notation

- Euclidean vector space  $E = (\mathbb{R}^n, \langle \cdot, \cdot \rangle) \supseteq \mathbb{Z}^n$  and lattice.
- Lattice polytope  $Conv(v_1, \ldots, v_k) \subseteq E$  where  $v_i \in \mathbb{Z}^n$ .
- Hyperplane  $H_{v,h} = \{x \in E : \langle x, v \rangle = h\}.$
- Primitive lattice point  $(a_1, \ldots, a_n) \in \mathbb{Z}^n$  if  $gcd(a_1, \ldots, a_n) = 1$ .



# Tropical Maps and Combinatorial Mutation

- $w \in \mathbb{Z}^n \subseteq E$  primitive lattice point.
- $F \subseteq H_{w,0}$  lattice polytope in the orthogonal space to w.
- Tropical map  $\varphi_{w,F} : E \to E : x \mapsto x x_{\min}w$  where  $x_{\min} = \min \{ \langle x, f \rangle : f \in F \}.$
- Combinatorial mutation  $P \mapsto \varphi_{w,F}(P)$  if the image is convex.



A tropical map is a piecewise shear.

# Tropical Map Example



# Ehrhart Polynomial

P = Conv(v<sub>1</sub>,..., v<sub>k</sub>) a lattice polytope of dimension d.
nth dilation of P: nP = Conv(nv<sub>1</sub>,..., nv<sub>k</sub>).

### Theorem / Definition (Ehrhart Polynomial).

There exists a degree d polynomial  $L_P \in \mathbb{Q}[x]$  such that for all  $n \in \mathbb{N}$  $L_P(n) = |\{w \in \mathbb{Z}^n : w \in nP\}|.$ 

Combinatorial mutation preserves the Ehrhart polynomial [ACGK12].



Oliver Clarke (Bristol and Ghent)

# The Polytopes of a Poset

Let  $\Pi$  be a finite set with partial order  $\prec.$ 

• Order polytope:

 $\mathcal{O}(\Pi) = \operatorname{Conv}\{(x_p) \in \mathbb{R}^{\Pi} : 0 \le x_p \le x_q \le 1 \text{ if } p \le q \text{ in } \Pi\}.$ 

#### • Chain polytope:

$$\mathcal{C}(\Pi) = \operatorname{Conv}\{(x_p) \in \mathbb{R}^{\Pi} : x_{p_{i_1}} + \dots + x_{p_{i_k}} \leq 1 \text{ if } p_{i_1} \prec \dots \prec p_{i_k} \text{ in } \Pi$$
  
and  $x_p \geq 0 \text{ for all } p \in \Pi\}.$ 

#### Theorem (Higashitani 2020).

There exists a sequence of combinatorial mutations taking  $\mathcal{O}(\Pi)$  to  $\mathcal{C}(\Pi)$ . In particular, they have the same Ehrhart polynomial.

- We say such polytopes are mutation equivalent.
- Example: GT-polytope and FFLV-polytope are mutation equivalent.

Oliver Clarke (Bristol and Ghent)

Polytopes and Mutations

#### Questions

- Which properties are shared by mutation equivalent polytopes?
- What is the relationship between their toric varieties?

$$\begin{array}{c} X_P \cong \mathbb{P}^1 \times \mathbb{P}^1 \subseteq \mathbb{P}^3 \\ \hline \langle z_{12} z_{34} - z_{13} z_{24} \rangle \subseteq \mathbb{C}[z_{12}, z_{13}, z_{24}, z_{34}] \end{array} \qquad \begin{array}{c} X_Q \subseteq \mathbb{P}^3 \quad "Parabolic Cylinder" \\ \hline \langle z_{22} z_{33} - z_{23}^2 \rangle \subseteq \mathbb{C}[z_1, z_{22}, z_{23}, z_{33}] \end{array}$$

### 2. Toric Varieties and Toric Degeneration

A toric degeneration (of a variety X) is a flat family  $\mathcal{F}_t \to \mathbb{A}^1$  such that  $\mathcal{F}_0$  is a toric variety and all other fibers  $\mathcal{F}_t$  where  $t \neq 0$  are isomorphic (to X).

- If X is a variety and  $\mathcal{F}$  is toric degeneration, then some algebraic invariants of X can be read from any fiber, in particular the toric fiber.
- Toric varieties are well studied and many of their algebraic invariants can be given combinatorially in terms of their polytope.

#### Questions.

- What are the toric degenerations of a given variety X?
- What structures exist to parametrise toric degenerations?

### Grassmannians

- **Grassmannian**  $G_{k,n}$ , the set of k-dimensional linear subspaces of  $\mathbb{C}^n$ .
- Under the Plücker embedding, G<sub>k,n</sub> ⊆ P<sup>(n)/k-1</sup> is the vanishing set of the Plücker ideal I<sub>k,n</sub> ⊆ C[P<sub>J</sub> : J ∈ (<sup>[n]</sup><sub>k</sub>)]. The ideal is

$$I_{k,n} = \ker(\mathbb{C}[P_J] \to \mathbb{C}[x_{i,j}] : P_J \mapsto \det(X_J))$$

where det( $X_J$ ) is a maximal minor of a  $k \times n$  matrix of variables.

Example:  $G_{2,4}$ .

Let 
$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{bmatrix}$$
.

The ideal  $I_{2,4}$  is the kernel of the map  $P_{ij} \mapsto (x_i y_j - x_j y_i)$ .

The Plücker ideal is:

$$I_{2,4} = \langle P_{12}P_{34} - P_{13}P_{24} + P_{14}P_{23} \rangle.$$

A toric degeneration of  $G_{2,4}$  is  $\mathcal{F}_t$  where  $\mathcal{F}_t = V(tP_{12}P_{34} - P_{13}P_{24} + P_{14}P_{23}),$  $\mathcal{F}_0 = V(P_{13}P_{24} - P_{14}P_{23}).$ 

## Gröbner Degeneration

- $R = \mathbb{C}[x_1, \ldots, x_n]$  polynomial ring and  $w \in \mathbb{R}^n$  a weight vector for R.
- $f = \sum_{u \in \mathbb{N}^n} c_u x^u \in R$  polynomial.
- $\operatorname{in}_w(f) = \sum_u c_u x^u$  lead term of f, where the sum is taken over  $u \in \mathbb{N}^n$  such that  $c_u \neq 0$  and u.w is minimum.
- $I \subseteq R$  ideal.
- in<sub>w</sub>(I) = ⟨in<sub>w</sub>(f) : f ∈ I⟩ initial ideal. There exists a flat family whose special fiber is V(in<sub>w</sub>(I)).

#### Example.

- $R = \mathbb{C}[P_{12}, P_{13}, P_{14}, P_{23}, P_{24}, P_{34}]$
- $w = (1, 0, 0, 0, 0, 0) \in \mathbb{R}^6$

The initial ideal  $in_w(I)$  is a toric ideal:

• 
$$I = \langle P_{12}P_{34} - P_{13}P_{24} + P_{14}P_{23} \rangle \subset R$$

$$in_w(I) = \langle P_{13}P_{24} - P_{14}P_{23} \rangle$$

# Matching Fields from Induced Weight Vectors

### Question.

Which weight vectors give toric degenerations for the Grassmannian?

- Recall that  $I_{k,n} = \ker(\mathbb{C}[P_J] \to \mathbb{C}[x_{i,j}] : P_J \mapsto \det(X_J)).$
- Let  $v \in \mathbb{R}^{k \times n}$  be a weight vector for  $\mathbb{C}[x_{i,j}]$ .
- Induced weight  $w \in \mathbb{R}^{\binom{n}{k}-1}$  for  $\mathbb{C}[P_J]$  is  $w(P_J) = v(\det(X_J))$ .

#### Example: $G_{2,4}$ .

Let 
$$v = \begin{bmatrix} 1 & 2 & 0 & 8 \\ 2 & 5 & 2 & 4 \end{bmatrix} \in \mathbb{R}^{2 \times 4}$$
 be a weight for  $\mathbb{C} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{bmatrix}$ .  
Induced weight:  $w(P_{12}) = v(x_1y_2 - x_2y_1) = \min\{1 + 5, 2 + 2\} = 4$ .

- For any  $f \in I_{k,n}$ , we have that  $in_w(f)$  is not a monomial.
- A (coherent) matching field ∧ is *induced* by a vector v ∈ ℝ<sup>k×n</sup> if in<sub>v</sub>(det(X<sub>J</sub>)) is a monomial for each maximal minor det(X<sub>J</sub>).

# Tropicalisation

- The tropicalisation Trop(1) ⊂ ℝ<sup>n</sup> is the collection of weight vectors w such that initial ideal in<sub>w</sub>(1) contains no monomials.
- A weight w ∈ Trop(I) gives rise to a toric degeneration if in<sub>w</sub>(I) is a toric ideal, i.e. it is *binomial* and *prime*.



# Block Diagonal Matching Fields

- Mohammadi and Shaw show that not all matching fields (*hexagonal* matching fields) give rise to toric degenerations.
- The 2-block diagonal matching field B<sub>ℓ</sub>, for ℓ ∈ {0,..., n − 1} is the matching field induced by the weight

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \ell & \ell - 1 & \cdots & 1 & n & n - 1 & \cdots & \ell + 1 \\ 2n & 2(n-1) & \cdots & \cdots & \cdots & \cdots & 2 \\ \vdots & \vdots & & & & \vdots \\ n(k-1) & (n-1)(k-1) & \cdots & \cdots & \cdots & \cdots & k - 1 \end{bmatrix}$$

#### Theorem (C-Mohammadi 2020).

Each matching field  $B_{\ell}$  produces a toric degeneration of  $G_{k,n}$ .

#### • The case $B_0$ is the **Gelfand-Tsetlin degeneration**.

Oliver Clarke (Bristol and Ghent)

Polytopes and Mutations

# Toric Ideals from Matching Fields

- Suppose v ∈ ℝ<sup>k×n</sup> induces a matching field Λ, i.e. in<sub>v</sub>(det(X<sub>J</sub>)) is a monomial for each J. Let w ∈ ℝ<sup>(<sup>n</sup><sub>k</sub>)−1</sup> be the induced weight vector.
- Let  $J_{\Lambda} = \ker(\psi_{\Lambda})$  where  $\psi_{\Lambda} : \mathbb{C}[P_J] \to \mathbb{C}[x_{i,j}]$  is the monomial map sending  $P_J$  to  $\operatorname{in}_{\nu}(\det(X_J))$ .
- If  $\Lambda$  gives produces a toric degeneration of  $G_{k,n}$ , then the ideal of the toric variety is exactly  $in_w(I_{k,n}) = J_{\Lambda}$ .
- Moreover, the polytope  $P_{\Lambda}$  of the toric variety is the convex hull of the exponent vectors of  $\psi_{\Lambda}(P_J)$  (matching field polytope).

#### Example: $G_{2,4}$ .

The matching field  $B_2$  is induced by the weight vector  $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 2 & 1 & 4 & 3 \end{bmatrix}$ . Since  $\psi_{B_2}(P_{12}) = x_1 y_2$ , we get the vertex  $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$  of  $P_{B_2}$ . The *f*-vector of  $P_{\Lambda}$  is (6, 13, 13, 6, 1).

### 3. Our Results

# Toric Degenerations of the Grassmannian

• The GT-polytope is the polytope of the matching field  $B_0$ .

### Theorem (C-Higashitani-Mohammadi 2021).

- Any pair of 2-block diagonal matching field polytopes for the Grassmannian  $G_{k,n}$  are mutation equivalent.
- There exists a sequence of mutations which passes only through matching field polytopes.
- If the polytope of a matching field Λ is mutation equivalent to the GT-polytope, then Λ gives a toric degeneration of the Grassmannian.
- As a result we extend the known family of toric degenerations for  $G_{k,n}$ .
- For each tropical map we construct, the *factor polytope F* is a line segment.
- We show that tropical maps also preserve the *integer decomposition property (IDP)* for this family of polytopes.

# Mutation Diagram



Mutation from the block diagonal matching field polytope  $P_{\mathcal{B}_1}$  to  $P_{\mathcal{B}_2}$ .

- Blue boxes are matching field polytopes.
- $\Pi_i^j$  are linear maps acting as isomophisms on the polytopes.
- $\varphi_{(i,j)}$  are tropical maps.

## Vertex-Edge Graph under Mutation



Vertex-Edge graph of matching field polytopes for Gr(3,5) which differ by a single mutation.

## References

Oliver Clarke, Akihiro Higashitani, Fatemeh Mohammadi

Combinatorial Mutations and Block Diagonal Polytopes arXiv:2010.04079



Oliver Clarke, Fatemeh Mohammadi

Toric degenerations of Grassmannians and Schubert varieties from matching field tableaux

arXiv:1904.00981



Akihiro Higashitani

Two poset polytopes are mutation-equivalent arXiv:2002.01364



Mohammad Akhtar, Tom Coates, Sergey Galkin, Alexander M. Kasprzyk Minkowski Polynomials and Mutations *doi* 10.3842/SIGMA.2012.094

Laura Escobar, Megumi Harada

Wall-crossing for Newton-Okounkov bodies and the tropical Grassmannian arXiv:1912.04809

Oliver Clarke (Bristol and Ghent)

Polytopes and Mutations