# The Integer Decomposition Property and Ehrhart Unimodality for Weighted Projective Space Simplices 

Benjamin Braun<br>University of Kentucky<br>benjamin.braun@uky.edu

Based on joint work with:
Rob Davis, Colgate University
Morgan Lane, Martha Layne Collins High School
Liam Solus, KTH

30 July 2020

# Fundamental Definitions 

A Family of Simplices

IDP Reflexive $\Delta_{(1, q)}$

Ehrhart $h^{*}$-Unimodality

Reflexive Stabilizations


## Lattice Polytopes

Let $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$ with $v_{i} \in \mathbb{Z}^{d}$ be a $d$-dimensional lattice polytope in $\mathbb{R}^{d}$.


A lattice polytope.

## The cone over $P$

$$
\operatorname{cone}(P)=\operatorname{span}_{\mathbb{R}_{\geq 0}}\left\{\left(1, v_{1}\right), \ldots,\left(1, v_{n}\right)\right\} \subset \mathbb{R}^{d+1}
$$



The cone over a triangle.

## Arithmetic $\cap$ Geometry

$P$ has the Integer Decomposition Property, or $P$ is IDP, if

- for every $(k, y) \in \operatorname{cone}(P) \cap \mathbb{Z}^{d+1}$,
- there exist $\left(1, x_{1}\right), \ldots,\left(1, x_{k}\right) \in(1, P) \cap \mathbb{Z}^{d+1}$
- with $\left(1, x_{1}\right)+\cdots+\left(1, x_{k}\right)=(k, y)$.
$P$ is reflexive if the dual of $P$ is also a lattice polytope.

Remark: IDP is equivalent to projective normality of the associated toric variety, reflexive implies Gorenstein Fano.

## Some examples that many people like



Examples of lattice crosspolytopes. . .

with duals given by lattice $(-1 / 1)$-cubes. All of these are IDP.

## General Challenges Regarding Lattice Polytopes

The following tasks are all quite difficult:

- Identifying when $P$ is IDP.
- Classifying reflexive polytopes of fixed dimension.
- Classifying lattice polytopes of fixed dimension and bounded volume.
- Determining algebraic invariants (Ehrhart series, Poincaré series) associated to cone $(P)$.


## General Challenges Regarding Lattice Polytopes

The following tasks are all quite difficult:

- Identifying when $P$ is IDP.
- Classifying reflexive polytopes of fixed dimension.
- Classifying lattice polytopes of fixed dimension and bounded volume.
- Determining algebraic invariants (Ehrhart series, Poincaré series) associated to cone $(P)$.
Comment: There are a range of interesting conjectures about all (or large classes of) lattice polytopes motivated by well-behaved families of combinatorially-defined polytopes.


## Main questions

We are motivated by the following questions ( $h^{*}$-vectors will be defined later):
Question (T. Hibi)
Do all reflexive polytopes have unimodal $h^{*}$-vectors?
No. Counterexamples due to S. Payne and M. Mustațǎ.
Question (special case of a conjecture due to F. Brenti, also asked by T. Hibi \& H. Ohsugi)
Do all IDP reflexive polytopes have unimodal $h^{*}$-vectors?
Question (special case of a conjecture due to F. Brenti, also asked by J. Schepers \& L. Van Langenhoven)
Do all IDP lattice polytopes have unimodal $h^{*}$-vectors?
The latter two questions are (very) open, and fall within a broader set of questions about reflexivity, IDP, very ampleness, and Ehrhart $h^{*}$-vectors.

## Our project goals

- Focus on a specific family of lattice simplices that is "sufficiently complicated" in that they are farther away from the combinatorics, but which admit (A) reasonable computational experimentation in high dimensions and ( $B$ ) concrete tools for proving properties like IDP and reflexive.
- First focus on investigating those simplices that are both reflexive and IDP, then turn attention to unimodality of $h^{*}$-vectors.


## Fundamental Definitions

A Family of Simplices

IDP Reflexive $\Delta_{(1, q)}$

Ehrhart $h^{*}$-Unimodality

Reflexive Stabilizations

## The family of $\Delta_{(1, q)}$ simplices

For $q=\left(q_{1}, q_{2}, \ldots, q_{d}\right) \in \mathbb{Z}_{\geq 1}^{d}$ and $e_{i} \in \mathbb{R}^{d}$ the $i$-th standard basis vector, define

$$
\Delta_{(1, q)}:=\operatorname{conv}\left(e_{1}, e_{2}, \ldots, e_{d},-q\right)
$$

Motivation:

1. These correspond to certain weighted projective spaces.
2. These have a Hermite normal form that is "one-column", a class of simplices considered by Hibi, Higashitani, and Li.
3. In principle, all properties of $\Delta_{(1, q)}$ should be obtainable from number-theoretic properties of $q$.

## $\Delta_{(1, q)}$ and reflexivity

Theorem (Conrads/folklore)
$\Delta_{(1, q)}$ is reflexive if and only if for all $j=1, \ldots, d$

$$
q_{j} \text { divides }\left(1+\sum_{i} q_{i}\right),
$$

i.e. there exists some $k \in \mathbb{Z}_{>0}$ such that

$$
1+\sum_{i} q_{i}=k \cdot q_{j} .
$$

The proof follows immediately from the duality definition of reflexivity.

The normalized volume of $\Delta_{(1, q)}$ is $n(q):=1+\sum_{i} q_{i}$.

## $q=(2,2,5)$ has $1+2+2+5=10$



## Specifying multiplicities of distinct weights in $q$

We say that both $q$ and $\Delta_{(1, q)}$ are supported by $r=\left(r_{1}<r_{2}<\cdots<r_{k}\right)$ if there exist positive integers $x_{1}, \ldots, x_{k}$ such that

$$
q=\left(q_{1}, \ldots, q_{d}\right)=\left(r_{1}^{x_{1}}, r_{2}^{x_{2}}, \ldots, r_{k}^{x_{k}}\right)=(r, x)
$$

where $r_{i}^{x_{i}}$ indicates that $r_{i}$ has multiplicity $x_{i}$.
Example
$(2,2,5)=\left(2^{2}, 5^{1}\right)=((2,5),(2,1))$

## Fundamental Definitions

A Family of Simplices

IDP Reflexive $\Delta_{(1, q)}$

Ehrhart $h^{*}$-Unimodality

Reflexive Stabilizations


## Infinitely many reflexive IDP $\Delta_{(1, q)}$ 's exist. ..

- For each $r$-vector, BB, R. Davis, and L. Solus (2018) proved there are infinitely many reflexive $\Delta_{(1, q)}$ supported on $r$.
- BB and R. Davis (2016) proved that given $q$ and $p$ such that $\Delta_{(1, q)}$ and $\Delta_{(1, p)}$ are both reflexive and IDP, a new vector $p * q$ can be constructed such that $\Delta_{(1, p * q)}$ is reflexive and IDP.
- This corresponds to the affine free sum construction for rational polytopes.
- Thus, there are infinitely many reflexive IDP $\Delta_{(1, q)}$ 's that arise in this manner.
- We will soon see that for a fixed $r$ having some $r_{j} \nmid r_{k}$, only finitely many reflexive $\Delta_{(1, q)}$ 's supported on $r$ are IDP.


## yet arithmetically interesting IDP reflexive $\Delta_{(1, q)}$ seem rare

Consider all $r$-vectors that are partitions of $N \leq 75$ with distinct entries, such that there exists some $r_{j}$ such that $r_{j} \nmid r_{k}$.

| \# of $r$-vectors of this type | \# of IDP reflexives supported by them |
| :---: | :---: |
| 501350 | 509 |

Note: In reality, this data provides a limited glimpse, e.g.,

$$
q=(210,211,211,211,211, \underbrace{1055,1055, \ldots, 1055}_{41 \text { times }})
$$

is not among this sample, but it is both IDP and reflexive with $210 \nmid 1055$.

## When is a reflexive $\Delta_{(1, q)}$ also IDP?

Theorem (BB, R. Davis, L. Solus, 2018)
The reflexive simplex $\Delta_{(1, q)}$ is IDP if and only if for every $j=1, \ldots, d$, for all $b=0,1, \ldots, q_{j}-1$ satisfying

$$
\begin{equation*}
b\left(\frac{1+\sum_{i \neq j} q_{i}}{q_{j}}\right)-\sum_{i \neq j}\left\lfloor\frac{b q_{i}}{q_{j}}\right\rfloor \geq 2 \tag{1}
\end{equation*}
$$

there exists a positive integer $c<b$ satisfying the following equations, where the first is considered for all $i \neq j$ between 1 and d:

$$
\begin{align*}
& \left\lfloor\frac{(b-c) q_{i}}{q_{j}}\right\rfloor+\left\lfloor\frac{c q_{i}}{q_{j}}\right\rfloor=\left\lfloor\frac{b q_{i}}{q_{j}}\right\rfloor, \text { and }  \tag{2}\\
& c\left(\frac{1+\sum_{i \neq j} q_{i}}{q_{j}}\right)-\sum_{i \neq j}\left\lfloor\frac{c q_{i}}{q_{j}}\right\rfloor=1 . \tag{3}
\end{align*}
$$

## A Useful Necessary Condition

We call the following the necessary condition.
Theorem (BB, R. Davis, L. Solus, 2018)
If $q$ is reflexive and IDP, then for each $1 \leq j \leq d$,

$$
1+\sum_{i=1}^{d}\left(q_{i} \bmod q_{j}\right)=q_{j}
$$

Note: Compare this to $\Delta_{(1, q)}$ reflexive if and only if

$$
1+\sum_{i=1}^{d} q_{i}=k \cdot q_{j}
$$

## Reframing The Necessary Condition

Theorem (BB, R. Davis, L. Solus, 2018)
If $q=(r, x)$ is reflexive and IDP, then for each $1 \leq j \leq k$,

$$
1+\sum_{i=1}^{k} x_{i}\left(r_{i} \bmod r_{j}\right)=r_{j}
$$

The following corollary is very useful.

## Reframing The Necessary Condition

Theorem (BB, R. Davis, L. Solus, 2018)
If $q=(r, x)$ is reflexive and IDP, then for each $1 \leq j \leq k$,

$$
1+\sum_{i=1}^{k} x_{i}\left(r_{i} \bmod r_{j}\right)=r_{j} .
$$

The following corollary is very useful.
Corollary (BB, R. Davis, M. Lane, L. Solus, 2020+)
If $q=(r, x)$ has $\Delta_{(1, q)}$ reflexive and IDP, and if there exists some $r_{j}$ such that $r_{j} \nmid r_{k}$, then

- $1 \leq x_{i} \leq r_{i+1} / r_{i}$
- $1 \leq x_{k} \leq r_{j} /\left(r_{k} \bmod r_{j}\right)$


## A change in perspective

The previous corollary is a restriction on the multiplicities in terms of the entries.

We should also consider what happens when we think of the entries in terms of the multiplicities.

## 1- and 2-supported $\Delta_{(1, q)}$

## Proposition

If $q=\left(r_{1}^{x_{1}}\right)$ is IDP reflexive, then $q=(1,1, \ldots, 1)$.
Theorem (BB, R. Davis, L. Solus 2018)
For the vector $q=\left(r_{1}^{x_{1}}, r_{2}^{\chi_{2}}\right), \Delta_{(1, q)}$ is IDP reflexive if and only if it satisfies the necessary condition. The following is a classification of all such vectors, for $x_{1}, x_{2} \geq 1$ :

- $q=\left(1^{x_{1}},\left(1+x_{1}\right)^{x_{2}}\right)$
- $q=\left(\left(1+x_{2}\right)^{x_{1}},\left(1+\left(1+x_{2}\right) x_{1}\right)^{x_{2}}\right)$

Remark: In the first case, $r_{1} \mid r_{2}$. In the second, $r_{1} \nmid r_{2}$.

## 3-supported $\Delta_{(1, q)}$

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+)
Consider a 3-supported vector $q=(r, x)$ such that $\Delta_{(1, q)}$ satisfies the necessity condition. If $x=\left(x_{1}, x_{2}, x_{3}\right)$ is the multiplicity vector, then $r$ is of one of the following eight forms (see next slide):

1. $\left(1,1+x_{1},\left(1+x_{1}\right)\left(1+x_{2}\right)\right)$.
2. $\left(1+x_{2}, 1+x_{1}\left(1+x_{2}\right),\left(1+x_{1}\left(1+x_{2}\right)\right)\left(1+x_{2}\right)\right)$.
3. $\left(\left(1+x_{2}\right)\left(1+x_{3}\right), 1+x_{1}\left(1+x_{2}\right)\left(1+x_{3}\right),\left(1+x_{1}\left(1+x_{2}\right)(1+\right.\right.$ $\left.\left.\left.x_{3}\right)\right)\left(1+x_{2}\right)\right)$.
4. $\left(1,\left(1+x_{1}\right)\left(1+x_{3}\right),\left(1+x_{1}\right)\left(1+x_{2}\left(1+x_{3}\right)\right)\right)$.
5. $\left(1+\left(1+x_{3}\right) x_{2},\left(1+x_{3}\right)\left(1+x_{1}\left(1+\left(1+x_{3}\right) x_{2}\right)\right),(1+(1+\right.$ $\left.\left.\left.\left(1+x_{3}\right) x_{2}\right) x_{1}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right)$.
6. $\left(\left(1+x_{3}\right)\left(1+\left(1+x_{3}\right) x_{2}\right),\left(1+x_{3}\right)\left(1+x_{1}\left(1+x_{3}\right)(1+(1+\right.\right.$ $\left.\left.\left.x_{3}\right) x_{2}\right),\left(1+\left(1+x_{3}\right)\left(1+\left(1+x_{3}\right) x_{2}\right) x_{1}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right)$.
7. $\left(1+x_{3},\left(1+x_{3}\right)\left(1+x_{1}\left(1+x_{3}\right)\right),\left(1+\left(1+x_{3}\right) x_{1}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right)$.
8. There exists some $k, s \geq 1$, where $r=\left(1+k x_{2},\left(s k x_{2}+s+\right.\right.$

$$
\begin{aligned}
& \left.k)\left(1+x_{1}\left(1+k x_{2}\right)\right),\left(1+x_{1}\left(1+k x_{2}\right)\right)\left(1+x_{2}\left(s k x_{2}+s+k\right)\right)\right) \\
& \text { and } x=\left(s k x_{2}+s+k-1, x_{2}, x_{3}\right) .
\end{aligned}
$$

Note that the first seven $r$-vectors each correspond to a unique divisibility criteria for $r=\left(r_{1}, r_{2}, r_{3}\right)$, as follows:

1. $r_{1}\left|r_{2}, r_{1}\right| r_{3}, r_{2} \mid r_{3}$
2. $r_{1} \nmid r_{2}, r_{1}\left|r_{3}, r_{2}\right| r_{3}$
3. $r_{1} \nmid r_{2}, r_{1} \nmid r_{3}, r_{2} \mid r_{3}$
4. $r_{1}\left|r_{2}, r_{1}\right| r_{3}, r_{2} \nmid r_{3}$
5. $r_{1} \nmid r_{2}, r_{1} \mid r_{3}, r_{2} \nmid r_{3}$
6. $r_{1} \nmid r_{2}, r_{1} \nmid r_{3}, r_{2} \nmid r_{3}$
7. $r_{1} \mid r_{2}, r_{1} \nmid r_{3}, r_{2} \nmid r_{3}$
8. $r_{1} \nmid r_{2}, r_{1} \mid r_{3}, r_{2} \nmid r_{3}$

Note that (5) and (8) share the same divisibility pattern. Of these families, only (8) appears to be non-IDP, and we are in the process of proving this.

## Fundamental Definitions

## A Family of Simplices

IDP Reflexive $\Delta_{(1, q)}$

Ehrhart $h^{*}$-Unimodality

## The semigroup algebra associated to $P$

$\mathbb{C}[P]$ is the $\mathbb{C}$-semigroup algebra for $\operatorname{cone}(P) \cap \mathbb{Z}^{d+1}$, graded by the "height" coordinate.

## The semigroup algebra associated to $P$

$\mathbb{C}[P]$ is the $\mathbb{C}$-semigroup algebra for $\operatorname{cone}(P) \cap \mathbb{Z}^{d+1}$, graded by the "height" coordinate.

The Hilbert/Ehrhart series of $P$ is

$$
\sum_{t \geq 0}\left|t P \cap \mathbb{Z}^{d}\right| z^{t}=\sum_{t \geq 0} \operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[P]_{t}\right) z^{t}=\frac{\sum_{j=0}^{d} h_{j}^{*} z^{j}}{(1-z)^{d+1}}
$$

where by a result due to Stanley it is known $h_{j}^{*} \in \mathbb{Z}_{\geq 0}$ for all $j$.

## The semigroup algebra associated to $P$

$\mathbb{C}[P]$ is the $\mathbb{C}$-semigroup algebra for $\operatorname{cone}(P) \cap \mathbb{Z}^{d+1}$, graded by the "height" coordinate.

The Hilbert/Ehrhart series of $P$ is

$$
\sum_{t \geq 0}\left|t P \cap \mathbb{Z}^{d}\right| z^{t}=\sum_{t \geq 0} \operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[P]_{t}\right) z^{t}=\frac{\sum_{j=0}^{d} h_{j}^{*} z^{j}}{(1-z)^{d+1}}
$$

where by a result due to Stanley it is known $h_{j}^{*} \in \mathbb{Z}_{\geq 0}$ for all $j$.
We call $h^{*}(P ; z)=\sum_{j=0}^{d} h_{j}^{*} z^{j}$ the $h$-star-polynomial of $P$, with coefficient vector the $h^{*}$-vector of $P$.

## Symmetry and unimodality

Theorem (Hibi)
$P$ is reflexive if and only if $h^{*}(P ; z)$ has degree $d=\operatorname{dim}(P)$ and the $h^{*}$-vector of $P$ is symmetric.

We say $P$ is $h^{*}$-unimodal if the $h^{*}$-vector of $P$ is unimodal.

## A Deep Result

Theorem (Bruns and Römer)
If $P$ is Gorenstein and admits a regular unimodular triangulation, then $P$ is $h^{*}$-unimodal.

Remark: Reflexive implies Gorenstein, and regular unimodular triangulation implies IDP.

## A Deep Result

Theorem (Bruns and Römer)
If $P$ is Gorenstein and admits a regular unimodular triangulation, then $P$ is $h^{*}$-unimodal.

Remark: Reflexive implies Gorenstein, and regular unimodular triangulation implies IDP.

Aside: The reflexive polytopes that are IDP reflexive but do not admit a regular unimodular triangulation are completely mysterious, both in general and for the $\Delta_{(1, q)}$ simplices.

Aside: In new work with my student Derek Hanely, we are investigating regular unimodular triangulations for 2-supported IDP reflexive $\Delta_{(1, q)}$ 's.
$h^{*}\left(\Delta_{(1, q)} ; z\right)$

Theorem (BB, R. Davis, L. Solus, 2018)
The $h^{*}$-polynomial of $\Delta_{(1, q)}$ is

$$
\sum_{b=0}^{q_{1}+\cdots+q_{d}} z^{w(b)}
$$

where

$$
w(b):=b-\sum_{i=1}^{d}\left\lfloor\frac{q_{i} b}{1+q_{1}+\cdots+q_{d}}\right\rfloor
$$

## What does this look like?

For $q=(3,20,24,24,24,24)=((3,20,24),(1,1,4))$ :

- link to animation
- $h^{*}=[1,16,29,28,29,16,1]$
- The Hilbert basis for cone $\left(\Delta_{(1, q)}\right)$ has only one element outside $\left(1, \Delta_{(1, q)}\right)$, at height 2 .

For $q=(1,1,1,1,1,1,1,12,40,60)=((1,12,40,60),(7,1,1,1))$ :

- link to animation
- $h^{*}=[1,7,15,14,16,14,16,14,15,7,1]$
- The Hilbert basis for cone $\left(\Delta_{(1, q)}\right)$ has only two elements outside $\left(1, \Delta_{(1, q)}\right)$, both at height 2 .


## Naive Question

Ignoring IDP, reflexive, etc, do we expect $\Delta_{(1, q)}$ to be $h^{*}$-unimodal?

## Naive Question

Ignoring IDP, reflexive, etc, do we expect $\Delta_{(1, q)}$ to be $h^{*}$-unimodal?

Let's experiment!
Partition the $\Delta_{(1, q)}$ 's by $n(q)=1+\sum_{i} q_{i}$.
We have computed $h^{*}\left(\Delta_{(1, q)} ; z\right)$ for all $61537394 \Delta_{(1, q)}$ with $1 \leq n(q) \leq 75$, and randomly sampled $q$-vectors up to $n(q)=120$.

Fraction of $h^{*}$-unimodal $\Delta_{(1, q)}$ with fixed normalized volume - based on random sampling


## $h^{*}$-unimodality for $\Delta_{(1, q)}$ with small support

Theorem (BB, R. Davis, L. Solus, 2018)
If $\Delta_{(1, q)}$ is 2-supported and IDP reflexive, then $\Delta_{(1, q)}$ is
$h^{*}$-unimodal.

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+)
If $\Delta_{(1, q)}$ is 3 -supported and IDP reflexive, supported by $r$ satisfying one of the following, then it is $h^{*}$-unimodal.

1. $r_{1}\left|r_{2}, r_{1}\right| r_{3}, r_{2} \mid r_{3}$
2. $r_{1} \nmid r_{2}, r_{1}\left|r_{3}, r_{2}\right| r_{3}$
3. $r_{1} \nmid r_{2}, r_{1} \nmid r_{3}, r_{2} \mid r_{3}$
4. $r_{1}\left|r_{2}, r_{1}\right| r_{3}, r_{2} \nmid r_{3}$

Remark: We have lots of computational evidence that for divisibility criteria $5-7, h^{*}$-unimodality also holds. Unfortunately, the proofs of unimodality are not particularly enlightening.

Fundamental Definitions

A Family of Simplices

IDP Reflexive $\Delta_{(1, q)}$

Ehrhart $h^{*}$-Unimodality

Reflexive Stabilizations

## Motivating question

What happens when we have a reflexive $\Delta_{(1, q)}$ with a very large multiplicity for one of the weights?

We begin by investigating this for the weight 1 .

## Reflexive stabilizations

## Definition

Let $q \in \mathbb{Z}_{\geq 1}^{n}$. The first reflexive stabilization of $q$, denoted $\operatorname{rs}(q)$, is the vector $(1,1, \ldots, 1, q)$ such that $\Delta_{(1, \mathrm{rs}(q))}$ is reflexive and the number of 1 's prepended to $q$ is the minimum necessary for this condition to hold; if $q$ is reflexive, then no 1 's are prepended.

We say the number of 1 's prepended to $q$ in $\operatorname{rs}(q)$ is the reflexive stabilization number of $q$, denoted $\operatorname{rsn}(q)$. Thus, we can write

$$
\operatorname{rs}(q):=\left(1^{\operatorname{rsn}(q)}, q\right)
$$

Note that when prepending lcm (q) copies of 1 as many times as desired, the corresponding simplex will remain reflexive.

## Higher reflexive stabilizations

More generally, the $m$-th reflexive stabilization of $q$, denoted $\mathrm{rs}(q, m)$, is defined as

$$
\operatorname{rs}(q, m):=\left(1^{\mathrm{rsn}(q)+(m-1) \cdot \operatorname{cm}(q)}, q\right)
$$

## Example

Let $q=(2,2,3)$. Then $1+2+2+3=8$, and thus $\mathrm{rs}(q)=(1,1,1,1,2,2,3)$ is reflexive with $\operatorname{rsn}(q)=4$.

Further, $\operatorname{rs}(q, 3)=(r, x)=((1,2,3),(16,2,1))$.

## Properties of reflexive stabilizations

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+) Assume that $q \in \mathbb{Z} \geq 2$. For $m \geq 2, \Delta_{(1, r s(q, m))}$ is not IDP.

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+) Assume that $q \in \mathbb{Z}_{\geq 2}^{d}$. For $m$ sufficiently large, $\Delta_{(1, \mathrm{rs}(q, m))}$ is not $h^{*}$-unimodal. Further, the $h^{*}$-vector of $\Delta_{(1, \mathrm{rs}(q, m))}$ contains only 1 's and 2's.

## Key tool

Given a reflexive $q=(r, x)$, set $1+\sum q_{i}=\ell \cdot \operatorname{lcm}\left(r_{1}, \ldots, r_{k}\right)$.
Let $s_{i}:=\operatorname{lcm}\left(r_{1}, \ldots, r_{k}\right) / r_{i}$ for each $1 \leq i \leq k$ We define

$$
g_{r}^{x}(z):=\sum_{0 \leq \alpha<\operatorname{lcm}\left(r_{1}, \ldots, r_{d}\right)} z^{u(\alpha)}
$$

where

$$
u(\alpha)=u_{r}^{x}(\alpha):=\alpha \ell-\sum_{i=1}^{d} x_{i}\left\lfloor\frac{\alpha}{s_{i}}\right\rfloor .
$$

## Key Tool

Theorem (Braun and Liu)
Given $q=(r, x)$, if $1+\sum q_{i}=\ell \cdot \operatorname{lcm}\left(r_{1}, \ldots, r_{k}\right)$, we have that

$$
h^{*}\left(\Delta_{(1, q)} ; z\right)=\left(\sum_{t=0}^{\ell-1} z^{t}\right) \cdot g_{r}^{x}(z)
$$

Example
For $q=\left(1^{7}, 3^{4}, 5^{5}\right)$, we have
$\left(z^{2}+z+1\right)\left(z^{14}+z^{11}+2 z^{10}+2 z^{8}+3 z^{7}+2 z^{6}+2 z^{4}+z^{3}+1\right)$.
Note that in this case, $\ell=3$ and a factor of $z^{2}+z+1$ appears in the $h^{*}$-polynomial.

## Study of $h^{*}$-vectors for $\Delta_{(1, q)}$ is ongoing

- The wide range of arithmetic, geometric and enumerative properties for the $\Delta_{(1, q)}$ simplices demonstrate that they are "sufficiently complicated" to be interesting.
- One interesting aspect of these simplices is that their properties are number-theoretic in nature rather than combinatorial in nature (such as lattice polytopes arising from graphs, posets, matroids, etc).

Thank you!

