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Lattice Polytopes

Let P = conv{v1, . . . , vn} with vi ∈ Zd be a d-dimensional lattice
polytope in Rd .

A lattice polytope.



The cone over P

cone(P) = spanR≥0
{(1, v1), . . . , (1, vn)} ⊂ Rd+1
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The cone over a triangle.



Arithmetic ∩ Geometry

P has the Integer Decomposition Property, or P is IDP, if

I for every (k , y) ∈ cone(P) ∩ Zd+1,

I there exist (1, x1), . . . , (1, xk) ∈ (1,P) ∩ Zd+1

I with (1, x1) + · · ·+ (1, xk) = (k , y).

P is reflexive if the dual of P is also a lattice polytope.

Remark: IDP is equivalent to projective normality of the associated
toric variety, reflexive implies Gorenstein Fano.



Some examples that many people like

Examples of lattice crosspolytopes. . .

with duals given by lattice (−1/1)-cubes. All of these are IDP.



General Challenges Regarding Lattice Polytopes

The following tasks are all quite difficult:

I Identifying when P is IDP.

I Classifying reflexive polytopes of fixed dimension.

I Classifying lattice polytopes of fixed dimension and bounded
volume.

I Determining algebraic invariants (Ehrhart series, Poincaré
series) associated to cone(P).

Comment: There are a range of interesting conjectures about all
(or large classes of) lattice polytopes motivated by well-behaved
families of combinatorially-defined polytopes.
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Main questions

We are motivated by the following questions (h∗-vectors will be
defined later):

Question (T. Hibi)

Do all reflexive polytopes have unimodal h∗-vectors?

No. Counterexamples due to S. Payne and M. Mustaţǎ.

Question (special case of a conjecture due to F. Brenti, also
asked by T. Hibi & H. Ohsugi)

Do all IDP reflexive polytopes have unimodal h∗-vectors?

Question (special case of a conjecture due to F. Brenti, also
asked by J. Schepers & L. Van Langenhoven)

Do all IDP lattice polytopes have unimodal h∗-vectors?

The latter two questions are (very) open, and fall within a broader
set of questions about reflexivity, IDP, very ampleness, and Ehrhart
h∗-vectors.



Our project goals

I Focus on a specific family of lattice simplices that is
“sufficiently complicated” in that they are farther away from
the combinatorics, but which admit (A) reasonable
computational experimentation in high dimensions and (B)
concrete tools for proving properties like IDP and reflexive.

I First focus on investigating those simplices that are both
reflexive and IDP, then turn attention to unimodality of
h∗-vectors.
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The family of ∆(1,q) simplices

For q = (q1, q2, . . . , qd) ∈ Zd
≥1 and ei ∈ Rd the i-th standard basis

vector, define

∆(1,q) := conv(e1, e2, . . . , ed ,−q) .

Motivation:

1. These correspond to certain weighted projective spaces.

2. These have a Hermite normal form that is “one-column”, a
class of simplices considered by Hibi, Higashitani, and Li.

3. In principle, all properties of ∆(1,q) should be obtainable from
number-theoretic properties of q.



∆(1,q) and reflexivity

Theorem (Conrads/folklore)

∆(1,q) is reflexive if and only if for all j = 1, . . . , d

qj divides

(
1 +

∑
i

qi

)
,

i.e. there exists some k ∈ Z>0 such that

1 +
∑
i

qi = k · qj .

The proof follows immediately from the duality definition of
reflexivity.

The normalized volume of ∆(1,q) is n(q) := 1 +
∑

i qi .



q = (2, 2, 5) has 1 + 2 + 2 + 5 = 10



Specifying multiplicities of distinct weights in q

We say that both q and ∆(1,q) are supported by
r = (r1 < r2 < · · · < rk) if there exist positive integers x1, . . . , xk
such that

q = (q1, . . . , qd) = (r x11 , r
x2
2 , . . . , r

xk
k ) = (r , x)

where r xii indicates that ri has multiplicity xi .

Example

(2, 2, 5) = (22, 51) = ((2, 5), (2, 1))
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Infinitely many reflexive IDP ∆(1,q)’s exist. . .

I For each r -vector, BB, R. Davis, and L. Solus (2018) proved
there are infinitely many reflexive ∆(1,q) supported on r .

I BB and R. Davis (2016) proved that given q and p such that
∆(1,q) and ∆(1,p) are both reflexive and IDP, a new vector
p ∗ q can be constructed such that ∆(1,p∗q) is reflexive and
IDP.

I This corresponds to the affine free sum construction for
rational polytopes.

I Thus, there are infinitely many reflexive IDP ∆(1,q)’s that
arise in this manner.

I We will soon see that for a fixed r having some rj - rk , only
finitely many reflexive ∆(1,q)’s supported on r are IDP.



yet arithmetically interesting IDP reflexive ∆(1,q) seem rare

Consider all r -vectors that are partitions of N ≤ 75 with distinct
entries, such that there exists some rj such that rj - rk .

# of r -vectors of this type # of IDP reflexives supported by them

501350 509

Note: In reality, this data provides a limited glimpse, e.g.,

q = (210, 211, 211, 211, 211, 1055, 1055, . . . , 1055︸ ︷︷ ︸
41 times

)

is not among this sample, but it is both IDP and reflexive with
210 - 1055.



When is a reflexive ∆(1,q) also IDP?

Theorem (BB, R. Davis, L. Solus, 2018)

The reflexive simplex ∆(1,q) is IDP if and only if for every
j = 1, . . . , d , for all b = 0, 1, . . . , qj − 1 satisfying

b

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
bqi
qj

⌋
≥ 2 (1)

there exists a positive integer c < b satisfying the following
equations, where the first is considered for all i 6= j between 1 and
d : ⌊

(b − c)qi
qj

⌋
+

⌊
cqi
qj

⌋
=

⌊
bqi
qj

⌋
, and (2)

c

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
cqi
qj

⌋
= 1. (3)



A Useful Necessary Condition

We call the following the necessary condition.

Theorem (BB, R. Davis, L. Solus, 2018)

If q is reflexive and IDP, then for each 1 ≤ j ≤ d ,

1 +
d∑

i=1

(qi mod qj) = qj .

Note: Compare this to ∆(1,q) reflexive if and only if

1 +
d∑

i=1

qi = k · qj .



Reframing The Necessary Condition

Theorem (BB, R. Davis, L. Solus, 2018)

If q = (r , x) is reflexive and IDP, then for each 1 ≤ j ≤ k,

1 +
k∑

i=1

xi (ri mod rj) = rj .

The following corollary is very useful.

Corollary (BB, R. Davis, M. Lane, L. Solus, 2020+)

If q = (r , x) has ∆(1,q) reflexive and IDP, and if there exists some
rj such that rj - rk , then

I 1 ≤ xi ≤ ri+1/ri
I 1 ≤ xk ≤ rj/(rk mod rj)
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A change in perspective

The previous corollary is a restriction on the multiplicities in terms
of the entries.

We should also consider what happens when we think of the
entries in terms of the multiplicities.



1- and 2-supported ∆(1,q)

Proposition

If q = (r x11 ) is IDP reflexive, then q = (1, 1, . . . , 1).

Theorem (BB, R. Davis, L. Solus 2018)

For the vector q = (r x11 , r
x2
2 ), ∆(1,q) is IDP reflexive if and only if it

satisfies the necessary condition. The following is a classification of
all such vectors, for x1, x2 ≥ 1:

I q = (1x1 , (1 + x1)x2)

I q = ((1 + x2)x1 , (1 + (1 + x2)x1)x2)

Remark: In the first case, r1 | r2. In the second, r1 - r2.



3-supported ∆(1,q)

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+)

Consider a 3-supported vector q = (r , x) such that ∆(1,q) satisfies
the necessity condition. If x = (x1, x2, x3) is the multiplicity vector,
then r is of one of the following eight forms (see next slide):

1. (1, 1 + x1, (1 + x1)(1 + x2)).

2. (1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)).

3. ((1 + x2)(1 + x3), 1 + x1(1 + x2)(1 + x3), (1 + x1(1 + x2)(1 +
x3))(1 + x2)).

4. (1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

5. (1 + (1 + x3)x2, (1 + x3)(1 + x1(1 + (1 + x3)x2)), (1 + (1 +
(1 + x3)x2)x1)(1 + (1 + x3)x2)).

6. ((1 + x3)(1 + (1 + x3)x2), (1 + x3)(1 + x1(1 + x3)(1 + (1 +
x3)x2)), (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)).

7. (1+x3, (1+x3)(1+x1(1+x3)), (1+(1+x3)x1)(1+(1+x3)x2)).



8. There exists some k , s ≥ 1, where r = (1 + kx2, (skx2 + s +
k)(1 + x1(1 + kx2)), (1 + x1(1 + kx2))(1 + x2(skx2 + s + k)))
and x = (skx2 + s + k − 1, x2, x3).

Note that the first seven r -vectors each correspond to a unique
divisibility criteria for r = (r1, r2, r3), as follows:

1. r1 | r2, r1 | r3, r2 | r3
2. r1 - r2, r1 | r3, r2 | r3
3. r1 - r2, r1 - r3, r2 | r3
4. r1 | r2, r1 | r3, r2 - r3
5. r1 - r2, r1 | r3, r2 - r3
6. r1 - r2, r1 - r3, r2 - r3
7. r1 | r2, r1 - r3, r2 - r3
8. r1 - r2, r1 | r3, r2 - r3

Note that (5) and (8) share the same divisibility pattern. Of these
families, only (8) appears to be non-IDP, and we are in the process
of proving this.
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The semigroup algebra associated to P

C[P] is the C-semigroup algebra for cone(P) ∩ Zd+1, graded by
the “height” coordinate.

The Hilbert/Ehrhart series of P is

∑
t≥0
|tP ∩ Zd |z t =

∑
t≥0

dimC(C[P]t)z
t =

∑d
j=0 h

∗
j z

j

(1− z)d+1

where by a result due to Stanley it is known h∗j ∈ Z≥0 for all j .

We call h∗(P; z) =
d∑

j=0

h∗j z
j the h-star-polynomial of P, with

coefficient vector the h∗-vector of P.
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Symmetry and unimodality

Theorem (Hibi)

P is reflexive if and only if h∗(P; z) has degree d = dim(P) and
the h∗-vector of P is symmetric.

We say P is h∗-unimodal if the h∗-vector of P is unimodal.



A Deep Result

Theorem (Bruns and Römer)

If P is Gorenstein and admits a regular unimodular triangulation,
then P is h∗-unimodal.

Remark: Reflexive implies Gorenstein, and regular unimodular
triangulation implies IDP.

Aside: The reflexive polytopes that are IDP reflexive but do not
admit a regular unimodular triangulation are completely
mysterious, both in general and for the ∆(1,q) simplices.

Aside: In new work with my student Derek Hanely, we are
investigating regular unimodular triangulations for 2-supported IDP
reflexive ∆(1,q)’s.
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h∗(∆(1,q); z)

Theorem (BB, R. Davis, L. Solus, 2018)

The h∗-polynomial of ∆(1,q) is

q1+···+qd∑
b=0

zw(b)

where

w(b) := b −
d∑

i=1

⌊
qib

1 + q1 + · · ·+ qd

⌋
.



What does this look like?

For q = (3, 20, 24, 24, 24, 24) = ((3, 20, 24), (1, 1, 4)):

I link to animation

I h∗ = [1, 16, 29, 28, 29, 16, 1]

I The Hilbert basis for cone(∆(1,q)) has only one element
outside (1,∆(1,q)), at height 2.

For q = (1, 1, 1, 1, 1, 1, 1, 12, 40, 60) = ((1, 12, 40, 60), (7, 1, 1, 1)):

I link to animation

I h∗ = [1, 7, 15, 14, 16, 14, 16, 14, 15, 7, 1]

I The Hilbert basis for cone(∆(1,q)) has only two elements
outside (1,∆(1,q)), both at height 2.



Naive Question

Ignoring IDP, reflexive, etc, do we expect ∆(1,q) to be
h∗-unimodal?

Let’s experiment!

Partition the ∆(1,q)’s by n(q) = 1 +
∑

i qi .

We have computed h∗(∆(1,q); z) for all 61 537 394 ∆(1,q) with
1 ≤ n(q) ≤ 75, and randomly sampled q-vectors up to n(q) = 120.
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Fraction of h∗-unimodal ∆(1,q) with fixed normalized
volume — based on random sampling



h∗-unimodality for ∆(1,q) with small support

Theorem (BB, R. Davis, L. Solus, 2018)

If ∆(1,q) is 2-supported and IDP reflexive, then ∆(1,q) is
h∗-unimodal.

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+)

If ∆(1,q) is 3-supported and IDP reflexive, supported by r satisfying
one of the following, then it is h∗-unimodal.

1. r1 | r2, r1 | r3, r2 | r3
2. r1 - r2, r1 | r3, r2 | r3
3. r1 - r2, r1 - r3, r2 | r3
4. r1 | r2, r1 | r3, r2 - r3

Remark: We have lots of computational evidence that for
divisibility criteria 5–7, h∗-unimodality also holds. Unfortunately,
the proofs of unimodality are not particularly enlightening.
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Motivating question

What happens when we have a reflexive ∆(1,q) with a very large
multiplicity for one of the weights?

We begin by investigating this for the weight 1.



Reflexive stabilizations

Definition
Let q ∈ Zn

≥1. The first reflexive stabilization of q, denoted rs(q), is
the vector (1, 1, . . . , 1, q) such that ∆(1,rs(q)) is reflexive and the
number of 1’s prepended to q is the minimum necessary for this
condition to hold; if q is reflexive, then no 1’s are prepended.

We say the number of 1’s prepended to q in rs(q) is the reflexive
stabilization number of q, denoted rsn(q). Thus, we can write

rs(q) := (1rsn(q), q) .

Note that when prepending lcm (q) copies of 1 as many times as
desired, the corresponding simplex will remain reflexive.



Higher reflexive stabilizations

More generally, the m-th reflexive stabilization of q, denoted
rs(q,m), is defined as

rs(q,m) := (1rsn(q)+(m−1)·lcm(q), q) .

Example

Let q = (2, 2, 3). Then 1 + 2 + 2 + 3 = 8, and thus
rs(q) = (1, 1, 1, 1, 2, 2, 3) is reflexive with rsn(q) = 4.

Further, rs(q, 3) = (r , x) = ((1, 2, 3), (16, 2, 1)).



Properties of reflexive stabilizations

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+)

Assume that q ∈ Zd
≥2. For m ≥ 2, ∆(1,rs(q,m)) is not IDP.

Theorem (BB, R. Davis, M. Lane, L. Solus, 2020+)

Assume that q ∈ Zd
≥2. For m sufficiently large, ∆(1,rs(q,m)) is not

h∗-unimodal. Further, the h∗-vector of ∆(1,rs(q,m)) contains only
1’s and 2’s.



Key tool

Given a reflexive q = (r , x), set 1 +
∑

qi = ` · lcm (r1, . . . , rk).

Let si := lcm (r1, . . . , rk) /ri for each 1 ≤ i ≤ k We define

g x
r (z) :=

∑
0≤α<lcm(r1,...,rd )

zu(α)

where

u(α) = uxr (α) := α`−
d∑

i=1

xi

⌊
α

si

⌋
.



Key Tool

Theorem (Braun and Liu)

Given q = (r , x), if 1 +
∑

qi = ` · lcm (r1, . . . , rk), we have that

h∗(∆(1,q); z) =

(
`−1∑
t=0

z t

)
· g x

r (z) .

Example

For q = (17, 34, 55), we have

(z2 + z + 1)(z14 + z11 + 2z10 + 2z8 + 3z7 + 2z6 + 2z4 + z3 + 1) .

Note that in this case, ` = 3 and a factor of z2 + z + 1 appears in
the h∗-polynomial.



Study of h∗-vectors for ∆(1,q) is ongoing

I The wide range of arithmetic, geometric and enumerative
properties for the ∆(1,q) simplices demonstrate that they are
“sufficiently complicated” to be interesting.

I One interesting aspect of these simplices is that their
properties are number-theoretic in nature rather than
combinatorial in nature (such as lattice polytopes arising from
graphs, posets, matroids, etc).



Thank you!
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