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Goal: tropical analogues of Weierstrass semigroups
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X smooth projective curve of genus g

, �x a point P ∈ X

H(P) = {n ∈ N : ∃f ∈ K (X ) regular on X \ {P}, ordP(f ) = −n}
= {n ∈ N : r(nP) > r((n − 1)P)}

Weierstrass semigroup of X at P
(ordP(f1f2) = ordP(f1) + ordP(f2))

Theorem (Weierstrass gap theorem)

|N \ H(P)| = g

numerical semigroup = co�nite submonoid of N
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Question (Hurwitz 1893)

Which numerical semigroups are Weierstrass semigroups?

Example (Buchweitz 1980)

The semigroup S = 〈13, 14, 15, 16, 17, 18, 20, 22, 23〉 is not a
Weierstrass semigroup

Recent work of Cotterill, P�ueger, Zhang (2022) cert�es
Weierstrass-realizability of some numerical semigroups.
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Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008) metric graphs
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Question

What is the tropical analogue of a Weierstrass semigroup?

graph := �nite connected multigraph with no loops

simple graph := graph with no multiple edges
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Divisor theory on graphs

Let G be a graph with n vertices,

a divisor is a formal sum of
the vertices V (G )

D = a1P1 + a2P2 + · · ·+ anPn

where ai ∈ Z. The group of divisors Div(G ) is the free abelian
group on V (G ).

Example

D = 3P1 + P2 + P3

P1 P2

P3P4

3 1

10
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Linear equivalence

Linear equivalence can be thought in terms of chip �ring:

3 1

10

D

0 2

21

1 2

3−1

D ′

D ∼ D ′
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Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f 0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f 0
0 0

00

−3 1

11

∆f

−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f 0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f 0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f

−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f

−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Principal divisors

Let f : V (G )→ Z

−1 0

00

f

−2 0

1−1

f

0
0 0

00

−3 1

11

∆f
−3 1

11

−6 2

22

−6 2

22

−5 2

30

−6 1

6−1

∆f

Two divisors D,D ′ ∈ Div(G ) are linearly equivalent if

D − D ′ = ∆f for some f : V (G )→ Z.

Alessio Borzì Weierstrass sets on �nite graphs



Notation: D(P) = coe�cient of D at P .

D ≥ D ′ if and only if D(P) ≥ D ′(P) for every P ∈ V (G ).

D is e�ective if D ≥ 0.

The degree of D is deg(D) =
∑

P∈V (G)D(P).

Denote by Divd+(G ) the set of e�ective of divisors of degree d .
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The linear system of a divisor D ∈ Div(G ) is

|D| = {E ∈ Div(G ) : D ∼ E ,E ≥ 0}.

The rank of D is −1 if |D| = ∅, otherwise

r(D) = max{d ∈ N : |D − E | 6= ∅,∀E ∈ Divd+(G )}.

Alessio Borzì Weierstrass sets on �nite graphs



The linear system of a divisor D ∈ Div(G ) is

|D| = {E ∈ Div(G ) : D ∼ E ,E ≥ 0}.

The rank of D is −1 if |D| = ∅, otherwise

r(D) = max{d ∈ N : |D − E | 6= ∅,∀E ∈ Divd+(G )}.

Alessio Borzì Weierstrass sets on �nite graphs



Weierstrass sets

Recall (for curves):

H(P) = {n ∈ N : ∃f ∈ K (X ) regular on X \ {P}, ordP(f ) = −n}
= {n ∈ N : r(nP) > r((n − 1)P)}

De�nition (Kang, Matthews, Peachey 2020)

Let G be a graph and let P ∈ V (G ).

Rank Weierstrass set:

Hr (P) = {n ∈ N : r(nP) > r((n − 1)P)}

Functional Weierstrass set:

Hf (P) = {n ∈ N : ∃f such that ∆f + nP ≥ 0,∆f (P) = −n}

For curves: Hr (P) = Hf (P) = H(P),

For graphs: Hf (P) \ Hr (P) can be arbitrarily large!
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Which one is the best?

The genus of a graph G is g = |E (G )| − |V (G )|+ 1.

Lemma (Tropical Weierstrass Gap Theorem)

|N \ Hr (P)| = g

Not true for Hf (P).

Hf (P) is a semigroup, Hr (P) is not.
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Example

Consider the following graph G

It is the vertex gluing of K2,3 and two copies of K2,2.
Let P ∈ V (G ) be the vertex of degree 7. Then

Hr (P) = {0, 3, 5, 7} ∪ (8 + N).

Note that Hr (P) is not a semigroup 6 = 3 + 3 /∈ Hr (P).
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This result was conjectured by Kang, Matthews and Peachey:

Theorem (B. 2022)

Let G be a simple graph. For every P ∈ V (G )

Hr (P) ⊆ Hf (P)

Let Kn+1 be the complete graph on n + 1 vertices.

Lemma (Kang, Matthews, Peachey 2020)

For every P ∈ V (Kn+1) Hf (P) = 〈n, n + 1〉.

Hr (P) ⊆ Hf (P) and |N \ Hr (P)| = g(Kn+1) imply:

Corollary

For every P ∈ V (Kn+1) Hr (P) = Hf (P) = 〈n, n + 1〉.
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Let Km,n be the complete bipartite graph.

Proposition

For every P ∈ V (Km,n)

Hr (P) = Hf (P) = nN ∪ (n(m − 1) + N)

Question

Under which conditions on G we have Hr (P) = Hf (P)?
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Vertex gluing

G1 G2 G

v1 v2 v

Vertex gluing: the graph G obtained by identifying v1 and v1

Proposition

HG
f (v) = HG1

f (v1) + HG2

f (v2)

Theorem (B. 2022)

Functional Weierstrass

sets of graphs
←→ submonoids of N

Functional Weierstrass

sets of simple graphs
←→ numerical semigroups
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Fix P ∈ V (G ), let λP : N→ N de�ned by

λP(k) = min{n ∈ N : r(nP) = k}.

Note that λP completely determines Hr (P) and vice versa.

Proposition

λGv (k) = max{λG1
v1

(k1) + λG2
v2

(k2) : k1 + k2 = k}

Theorem (B. 2022)

Let e1 ≥ e2 ≥ · · · ≥ en ≥ 0 be integers, and set si =
∑i

j=1 ej .
There exists a simple graph G with a vertex P ∈ V (G ) such

that

Hr (P) = {0, s1, . . . , sn−2} ∪ (sn−1 + N)
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Thank you very much!
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