Weierstrass sets on finite graphs

Alessio Borzì
University of Warwick

17 March 2022

Goal: tropical analogues of Weierstrass semigroups

X smooth projective curve of genus g

X smooth projective curve of genus g, fix a point $P \in X$
X smooth projective curve of genus g, fix a point $P \in X$

$$
H(P)=\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\}
$$

X smooth projective curve of genus g, fix a point $P \in X$

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

X smooth projective curve of genus g, fix a point $P \in X$

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

Weierstrass semigroup of X at P
X smooth projective curve of genus g, fix a point $P \in X$

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

Weierstrass semigroup of X at P $\left(\operatorname{ord}_{P}\left(f_{1} f_{2}\right)=\operatorname{ord}_{P}\left(f_{1}\right)+\operatorname{ord}_{P}\left(f_{2}\right)\right)$
X smooth projective curve of genus g, fix a point $P \in X$

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

Weierstrass semigroup of X at P $\left(\operatorname{ord}_{P}\left(f_{1} f_{2}\right)=\operatorname{ord}_{P}\left(f_{1}\right)+\operatorname{ord}_{P}\left(f_{2}\right)\right)$

Theorem (Weierstrass gap theorem)

$$
|\mathbb{N} \backslash H(P)|=g
$$

numerical semigroup $=$ cofinite submonoid of \mathbb{N}

Question (Hurwitz 1893)
Which numerical semigroups are Weierstrass semigroups?

Question (Hurwitz 1893)
Which numerical semigroups are Weierstrass semigroups?

Example (Buchweitz 1980)

The semigroup $S=\langle 13,14,15,16,17,18,20,22,23\rangle$ is not a Weierstrass semigroup

Question (Hurwitz 1893)

Which numerical semigroups are Weierstrass semigroups?

Example (Buchweitz 1980)

The semigroup $S=\langle 13,14,15,16,17,18,20,22,23\rangle$ is not a Weierstrass semigroup

Recent work of Cotterill, Pflueger, Zhang (2022) certfies Weierstrass-realizability of some numerical semigroups.

Baker and Norine (2007)

 divisors on graphsBaker and Norine (2007)
Gathmann and Kerber (2008)
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008)
metric graphs
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Question

What is the tropical analogue of a Weierstrass semigroup?

Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008)
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Question

What is the tropical analogue of a Weierstrass semigroup?
graph := finite connected multigraph with no loops

Question

What is the tropical analogue of a Weierstrass semigroup?
graph := finite connected multigraph with no loops simple graph := graph with no multiple edges

Divisor theory on graphs

Let G be a graph with n vertices,

Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of the vertices $V(G)$

$$
D=a_{1} P_{1}+a_{2} P_{2}+\cdots+a_{n} P_{n}
$$

where $a_{i} \in \mathbb{Z}$.

Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of the vertices $V(G)$

$$
D=a_{1} P_{1}+a_{2} P_{2}+\cdots+a_{n} P_{n}
$$

where $a_{i} \in \mathbb{Z}$. The group of divisors $\operatorname{Div}(G)$ is the free abelian group on $V(G)$.

Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of the vertices $V(G)$

$$
D=a_{1} P_{1}+a_{2} P_{2}+\cdots+a_{n} P_{n}
$$

where $a_{i} \in \mathbb{Z}$. The group of $\operatorname{divisors} \operatorname{Div}(G)$ is the free abelian group on $V(G)$.

Example

$$
D=3 P_{1}+P_{2}+P_{3}
$$

Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of the vertices $V(G)$

$$
D=a_{1} P_{1}+a_{2} P_{2}+\cdots+a_{n} P_{n}
$$

where $a_{i} \in \mathbb{Z}$. The group of divisors $\operatorname{Div}(G)$ is the free abelian group on $V(G)$.

Example

$$
D=3 P_{1}+P_{2}+P_{3}
$$

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

D

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

Linear equivalence

Linear equivalence can be thought in terms of chip firing:

$$
D \sim D^{\prime}
$$

Principal divisors

Let $f: V(G) \rightarrow \mathbb{Z}$

Two divisors $D, D^{\prime} \in \operatorname{Div}(G)$ are linearly equivalent if

$$
D-D^{\prime}=\Delta f \quad \text { for some } f: V(G) \rightarrow \mathbb{Z}
$$

Notation: $D(P)=$ coefficient of D at P.

Notation: $D(P)=$ coefficient of D at P.
$D \geq D^{\prime}$ if and only if $D(P) \geq D^{\prime}(P)$ for every $P \in V(G)$.

Notation: $D(P)=$ coefficient of D at P.
$D \geq D^{\prime}$ if and only if $D(P) \geq D^{\prime}(P)$ for every $P \in V(G)$.
D is effective if $D \geq 0$.

Notation: $D(P)=$ coefficient of D at P.
$D \geq D^{\prime}$ if and only if $D(P) \geq D^{\prime}(P)$ for every $P \in V(G)$.
D is effective if $D \geq 0$.
The degree of D is $\operatorname{deg}(D)=\sum_{P \in V(G)} D(P)$.

Notation: $D(P)=$ coefficient of D at P.
$D \geq D^{\prime}$ if and only if $D(P) \geq D^{\prime}(P)$ for every $P \in V(G)$.
D is effective if $D \geq 0$.
The degree of D is $\operatorname{deg}(D)=\sum_{P \in V(G)} D(P)$.
Denote by $\operatorname{Div}_{+}^{d}(G)$ the set of effective of divisors of degree d.

The linear system of a divisor $D \in \operatorname{Div}(G)$ is

$$
|D|=\{E \in \operatorname{Div}(G): D \sim E, E \geq 0\} .
$$

The linear system of a divisor $D \in \operatorname{Div}(G)$ is

$$
|D|=\{E \in \operatorname{Div}(G): D \sim E, E \geq 0\} .
$$

The rank of D is -1 if $|D|=\emptyset$, otherwise

$$
r(D)=\max \left\{d \in \mathbb{N}:|D-E| \neq \emptyset, \forall E \in \operatorname{Div}_{+}^{d}(G)\right\} .
$$

Weierstrass sets

Recall (for curves):

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

Weierstrass sets

Recall (for curves):

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

Definition (Kang, Matthews, Peachey 2020)
Let G be a graph and let $P \in V(G)$.
Rank Weierstrass set:

$$
H_{r}(P)=\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
$$

Functional Weierstrass set:
$H_{f}(P)=\{n \in \mathbb{N}: \exists f$ such that $\Delta f+n P \geq 0, \Delta f(P)=-n\}$

Weierstrass sets

Recall (for curves):

$$
\begin{aligned}
H(P) & =\left\{n \in \mathbb{N}: \exists f \in K(X) \text { regular on } X \backslash\{P\}, \operatorname{ord}_{P}(f)=-n\right\} \\
& =\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
\end{aligned}
$$

Definition (Kang, Matthews, Peachey 2020)
Let G be a graph and let $P \in V(G)$.
Rank Weierstrass set:

$$
H_{r}(P)=\{n \in \mathbb{N}: r(n P)>r((n-1) P)\}
$$

Functional Weierstrass set:
$H_{f}(P)=\{n \in \mathbb{N}: \exists f$ such that $\Delta f+n P \geq 0, \Delta f(P)=-n\}$
For curves: $H_{r}(P)=H_{f}(P)=H(P)$,
For graphs: $H_{f}(P) \backslash H_{r}(P)$ can be arbitrarily large!

Which one is the best?

Which one is the best?

The genus of a graph G is $g=|E(G)|-|V(G)|+1$.
Lemma (Tropical Weierstrass Gap Theorem)

$$
\left|\mathbb{N} \backslash H_{r}(P)\right|=g
$$

Not true for $H_{f}(P)$.

Which one is the best?

The genus of a graph G is $g=|E(G)|-|V(G)|+1$.
Lemma (Tropical Weierstrass Gap Theorem)

$$
\left|\mathbb{N} \backslash H_{r}(P)\right|=g
$$

Not true for $H_{f}(P)$.
$H_{f}(P)$ is a semigroup, $H_{r}(P)$ is not.

Example

Consider the following graph G

It is the vertex gluing of $K_{2,3}$ and two copies of $K_{2,2}$.
Let $P \in V(G)$ be the vertex of degree 7. Then

$$
H_{r}(P)=\{0,3,5,7\} \cup(8+\mathbb{N}) .
$$

Note that $H_{r}(P)$ is not a semigroup $6=3+3 \notin H_{r}(P)$.

This result was conjectured by Kang, Matthews and Peachey:
Theorem (B. 2022)
Let G be a simple graph. For every $P \in V(G)$

$$
H_{r}(P) \subseteq H_{f}(P)
$$

This result was conjectured by Kang, Matthews and Peachey:
Theorem (B. 2022)
Let G be a simple graph. For every $P \in V(G)$

$$
H_{r}(P) \subseteq H_{f}(P)
$$

Let K_{n+1} be the complete graph on $n+1$ vertices.
Lemma (Kang, Matthews, Peachey 2020)
For every $P \in V\left(K_{n+1}\right) \quad H_{f}(P)=\langle n, n+1\rangle$.

This result was conjectured by Kang, Matthews and Peachey:

Theorem (B. 2022)

Let G be a simple graph. For every $P \in V(G)$

$$
H_{r}(P) \subseteq H_{f}(P)
$$

Let K_{n+1} be the complete graph on $n+1$ vertices.
Lemma (Kang, Matthews, Peachey 2020)
For every $P \in V\left(K_{n+1}\right) \quad H_{f}(P)=\langle n, n+1\rangle$.
$H_{r}(P) \subseteq H_{f}(P)$ and $\left|\mathbb{N} \backslash H_{r}(P)\right|=g\left(K_{n+1}\right)$ imply:
Corollary
For every $P \in V\left(K_{n+1}\right) \quad H_{r}(P)=H_{f}(P)=\langle n, n+1\rangle$.

Let $K_{m, n}$ be the complete bipartite graph.

Proposition

For every $P \in V\left(K_{m, n}\right)$

$$
H_{r}(P)=H_{f}(P)=n \mathbb{N} \cup(n(m-1)+\mathbb{N})
$$

Let $K_{m, n}$ be the complete bipartite graph.

Proposition

For every $P \in V\left(K_{m, n}\right)$

$$
H_{r}(P)=H_{f}(P)=n \mathbb{N} \cup(n(m-1)+\mathbb{N})
$$

Question

Under which conditions on G we have $H_{r}(P)=H_{f}(P)$?

Vertex gluing

Vertex gluing: the graph G obtained by identifying v_{1} and v_{1}

Vertex gluing

Vertex gluing: the graph G obtained by identifying v_{1} and v_{1}

Proposition

$$
H_{f}^{G}(v)=H_{f}^{G_{1}}\left(v_{1}\right)+H_{f}^{G_{2}}\left(v_{2}\right)
$$

Vertex gluing

Vertex gluing: the graph G obtained by identifying v_{1} and v_{1}

Proposition

$$
H_{f}^{G}(v)=H_{f}^{G_{1}}\left(v_{1}\right)+H_{f}^{G_{2}}\left(v_{2}\right)
$$

Theorem (B. 2022)
Functional Weierstrass sets of graphs

Functional Weierstrass
sets of simple graphs

Fix $P \in V(G)$, let $\lambda_{P}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\lambda_{P}(k)=\min \{n \in \mathbb{N}: r(n P)=k\} .
$$

Note that λ_{P} completely determines $H_{r}(P)$ and vice versa.

Fix $P \in V(G)$, let $\lambda_{P}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\lambda_{P}(k)=\min \{n \in \mathbb{N}: r(n P)=k\} .
$$

Note that λ_{P} completely determines $H_{r}(P)$ and vice versa.

Proposition

$$
\lambda_{v}^{G}(k)=\max \left\{\lambda_{v_{1}}^{G_{1}}\left(k_{1}\right)+\lambda_{v_{2}}^{G_{2}}\left(k_{2}\right): k_{1}+k_{2}=k\right\}
$$

Fix $P \in V(G)$, let $\lambda_{P}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\lambda_{P}(k)=\min \{n \in \mathbb{N}: r(n P)=k\} .
$$

Note that λ_{P} completely determines $H_{r}(P)$ and vice versa.

Proposition

$$
\lambda_{v}^{G}(k)=\max \left\{\lambda_{v_{1}}^{G_{1}}\left(k_{1}\right)+\lambda_{v_{2}}^{G_{2}}\left(k_{2}\right): k_{1}+k_{2}=k\right\}
$$

Theorem (B. 2022)
Let $e_{1} \geq e_{2} \geq \cdots \geq e_{n} \geq 0$ be integers, and set $s_{i}=\sum_{j=1}^{i} e_{j}$. There exists a simple graph G with a vertex $P \in V(G)$ such that

$$
H_{r}(P)=\left\{0, s_{1}, \ldots, s_{n-2}\right\} \cup\left(s_{n-1}+\mathbb{N}\right)
$$

Thank you very much!

