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Goal: tropical analogues of Weierstrass semigroups
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X smooth projective curve of genus g, fix a point P € X

H(P) ={n e N:3f € K(X) regular on X\ {P},ordp(f) = —n}
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H(P) ={n e N:3f € K(X) regular on X\ {P},ordp(f) = —n}
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X smooth projective curve of genus g, fix a point P € X

H(P) ={n e N:3f € K(X) regular on X\ {P},ordp(f) = —n}
={neN:r(nP)>r((n—1)P)}

Weierstrass semigroup of X at P
(ordp(fifo) = ordp(f;) + ordp(fy))

Theorem (Weierstrass gap theorem)

IN\ H(P)| = ¢

numerical semigroup = cofinite submonoid of N
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Which numerical semigroups are Weierstrass semigroups?



Question (Hurwitz 1893)

Which numerical semigroups are Weierstrass semigroups?

The semigroup S = (13,14,15,16,17,18,20,22,23) is not a
Weierstrass semigroup
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Question (Hurwitz 1893)

Which numerical semigroups are Weierstrass semigroups?

The semigroup S = (13,14,15,16,17,18,20,22,23) is not a
Weierstrass semigroup

Recent work of Cotterill, Pflueger, Zhang (2022) certfies
Weierstrass-realizability of some numerical semigroups.
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Baker and Norine (2007) divisors on graphs
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Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008) metric graphs
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)
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Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008) metric graphs
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Question
What is the tropical analogue of a Weierstrass semigroup?
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Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008) metric graphs
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Question
What is the tropical analogue of a Weierstrass semigroup?

graph := finite connected multigraph with no loops
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Baker and Norine (2007) divisors on graphs

Gathmann and Kerber (2008) metric graphs
Mikhalkin and Zharkov (2008) (i.e. abstract tropical curves)

Question
What is the tropical analogue of a Weierstrass semigroup?

graph := finite connected multigraph with no loops
simple graph := graph with no multiple edges
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Let G be a graph with n vertices,



Let G be a graph with n vertices, a divisor is a formal sum of
the vertices V(G)

D:alP1+azP2+---+a,,Pn

where a; € Z.



Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of
the vertices V(G)

D=aP,+aP>+ -+ a,P,

where a; € Z. The group of divisors Div(G) is the free abelian
group on V(G).
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Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of
the vertices V(G)

D=aP+aPo+---+a,P,

where a; € Z. The group of divisors Div(G) is the free abelian
group on V(G).

D =3P, + P, + P;
P, Ps

Py P,
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Divisor theory on graphs

Let G be a graph with n vertices, a divisor is a formal sum of
the vertices V(G)

D=aP+aPo+---+a,P,

where a; € Z. The group of divisors Div(G) is the free abelian
group on V(G).

D =3P + P, + Py
0 Py P 1

3P~ P 1
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Linear equivalence can be thought in terms of chip firing:
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Let f: V(G) = Z




Let f: V(G) = Z




Let f: V(G) = Z

Two divisors D, D’ € Div(G) are linearly equivalent if

D — D' = Af forsome f: V(G) — Z.




Notation: D(P) = coefficient of D at P.
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Notation: D(P) = coefficient of D at P.

D > D' if and only if D(P) > D'(P) for every P € V(G).
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Notation: D(P) = coefficient of D at P.
D > D' if and only if D(P) > D'(P) for every P € V(G).

D is effective if D > 0.

Alessio Borzi Weierstrass sets on finite graphs



Notation: D(P) = coefficient of D at P.
D > D' if and only if D(P) > D'(P) for every P € V(G).
D is effective if D > 0.

The degree of D is deg(D) = > _pc\(6) D(P).
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Notation: D(P) = coefficient of D at P.

D > D' if and only if D(P) > D'(P) for every P € V(G).
D is effective if D > 0.

The degree of D is deg(D) = > _pc\(6) D(P).

Denote by Div?(G) the set of effective of divisors of degree d.
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The linear system of a divisor D € Div(G) is

ID| = {E € Div(G) : D ~ E, E > 0}.
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The linear system of a divisor D € Div(G) is
|D| = {E € Div(G) : D ~ E, E > 0}.
The rank of D is —1 if |D| = (), otherwise

r(D) = max{d € N: |D — E| # (), VE € Div{(G)}.
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Recall (for curves):
H(P) ={n e N: 3f € K(X) regular on X \ {P},ordp(f) = —n}
={neN:r(nP)>r((n—1)P)}



Weierstrass sets

Recall (for curves):

H(P) ={n e N:3f € K(X) regular on X \ {P},ordp(f) = —n}
={neN:r(nP)>r((n—1)P)}

Definition (Kang, Matthews, Peachey 2020)

Let G be a graph and let P € V/(G).
Rank Weierstrass set:

H.(P)={neN:r(nP)>r((n—1)P)}
Functional Weierstrass set:

H¢(P) = {n € N : 3f such that Af + nP > 0, Af(P) = —n}
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Welerstrass sets
Recall (for curves):
H(P) ={n e N:3f € K(X) regular on X \ {P},ordp(f) = —n}
={neN:r(nP)>r((n—1)P)}
Definition (Kang, Matthews, Peachey 2020)

Let G be a graph and let P € V/(G).
Rank Weierstrass set:

H.(P)={neN:r(nP)>r((n—1)P)}
Functional Weierstrass set:

H¢(P) = {n € N : 3f such that Af + nP > 0, Af(P) = —n}

For curves: H,(P) = He(P) = H(P),
For graphs: H¢(P) \ H,(P) can be arbitrarily large!
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The genus of a graph G is g = |[E(G)| — |V(G)| + 1.

IN\ H(P)| = &
Not true for H¢(P).



The genus of a graph G is g = |[E(G)| — |V(G)| + 1.

IN\ H(P)| = &
Not true for H¢(P).

H¢(P) is a semigroup, H,(P) is not.



Consider the following graph G

It is the vertex gluing of K, 3 and two copies of Kj .
Let P € V(G) be the vertex of degree 7. Then

H,(P) ={0,3,5,7} U(8 + N).

Note that H,(P) is not a semigroup 6 = 3+ 3 ¢ H,(P).
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This result was conjectured by Kang, Matthews and Peachey:

Theorem (B. 2022)
Let G be a simple graph. For every P € V(G)

H.(P) € H¢(P)
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This result was conjectured by Kang, Matthews and Peachey:

Theorem (B. 2022)
Let G be a simple graph. For every P € V(G)

H.(P) € H¢(P)
Let K, 1 be the complete graph on n+ 1 vertices.

Lemma (Kang, Matthews, Peachey 2020)
For every P € V(K1) He(P) = (n,n+1).
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This result was conjectured by Kang, Matthews and Peachey:
Theorem (B. 2022)
Let G be a simple graph. For every P € V(G)
H.(P) S H¢(P)
Let K, 1 be the complete graph on n+ 1 vertices.

Lemma (Kang, Matthews, Peachey 2020)
For every P € V(K1) He(P) = (n,n+1).

H,(P) C H¢(P) and I[N\ H,(P)| = g(Knt1) imply:

Corollary
For every P € V(K1) H,(P) = H:(P) = (n,n+1).
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Let K., » be the complete bipartite graph.

Proposition
For every P € V(K.»)

H,(P) = H¢(P) = nNU (n(m — 1) + N)
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Let K., » be the complete bipartite graph.

Proposition
For every P € V(K.»)

H,(P) = H¢(P) = nNU (n(m — 1) + N)

Question
Under which conditions on G we have H,(P) = H¢(P)?
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Vertex gluing: the graph G obtained by identifying v; and v



Vi W v

Vertex gluing: the graph G obtained by identifying v; and v

HE (v) = He*(v1) + He? (v2)



Vertex gluing
G G

G
G - \G
Vi W /V

Vertex gluing: the graph G obtained by identifying v; and v

Proposition

HF (v) = He () + He?(v2)

Theorem (B. 2022)

Functional Weierstrass

sets of graphs submonoids of N

Functional Weierstrass

. numerical semigroups
sets of simple graphs group
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Fix P € V(G), let A\p : N — N defined by
Ap(k) = min{n € N: r(nP) = k}.

Note that Ap completely determines H,(P) and vice versa.
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Fix P € V(G), let A\p : N — N defined by
Ap(k) = min{n € N: r(nP) = k}.
Note that Ap completely determines H,(P) and vice versa.

Proposition

AS (k) = max{AS (ki) + AZ (ko) : ki + ko = k}
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Fix P € V(G), let A\p : N — N defined by
Ap(k) = min{n € N: r(nP) = k}.

Note that Ap completely determines H,(P) and vice versa.

Proposition
AS (k) = max{AS (ki) + AZ (ko) : ki + ko = k}
Theorem (B. 2022)

Let e > ey > --- > e, > 0 be integers, and set s; = Z}Zl g.
There exists a simple graph G with a vertex P € V(G) such
that

Hr(P) = {O, St,... ,Sn_g} U (Sn—l = N)
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Thank you very much!
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