Orientations for DT invariants on quasi-projective Calabi-Yau 4-folds



Arkadij Bojko University of Oxford How to count coherent sheaves on CY4?

- ▶ Solutions to this have been given independently by Borisov–Joyce(15') and Cao–Leung(for some cases), algebraic geometric construction of Oh–Thomas(20').
- One considers three terms instead:  $\operatorname{Ext}^1(E, E)$ ,  $\operatorname{Ext}^2(E, E)$  and  $\operatorname{Ext}^3(E, E)$ . Using Serre duality, one has  $\operatorname{Ext}^1(E, E) \cong (\operatorname{Ext}^3(E, E))^*$  and a non-degenerate billinear form  $q : \operatorname{Ext}^2(E, E) \times \operatorname{Ext}^2(E, E) \to \mathbb{C}$ .
- ▶ Slogan: "Take half of everything". Taking  $\operatorname{Ext}^1(E, E)$  we covered  $\operatorname{Ext}^3(E, E)$ . Equivalently one can take a real subspace in  $V = \operatorname{Ext}^1(E, E) \oplus \operatorname{Ext}^3(E, E)$  invariant under the isomorphism above together with  $(\operatorname{Ext}^3(E, E))^* \cong \operatorname{Ext}^3(E, E)$ . Then  $V_{\mathbb{R}}$  has a natural orientation compatible with the choice  $\operatorname{Ext}^1(E, E)$  as an *isotropic subspace*.
- ▶ Problem: How to choose an isotropic subspace of  $\text{Ext}^2(E, E)$ ? Equivalently, how to choose orientation on  $\text{Ext}^2(E, E)_{\mathbb{R}}$ ? Can this choice be fit together continuously?



# Orientations

- ► Reformulate: Let  $V_{\mathbb{R}} \subset V = (\text{Ext}^2(E, E))$  be the real subspace for a real structure  $\nu : V \to V^* \cong \overline{V}$ . Then an orientation on  $V_{\mathbb{R}}$  is equivalent to an orientation on  $\det_{\mathbb{R}}(V_{\mathbb{R}}) \subset \det(V)$ , which is a choice of isomorphism  $\det_{\mathbb{R}}(V_{\mathbb{R}}) \cong \mathbb{R}$ .
- ▶ In other words, we are looking for  $o : \det(V) \to \mathbb{C}$ , such that

$$o \otimes o = (\det(V)^{\otimes 2} \xrightarrow{\operatorname{id} \otimes \nu} \det(V) \det^*(V) \to \mathbb{C}).$$

### Definition

 $L \to S$  a complex line bundle over  $S, \mu : L \to L^*$  an isomorphism, then one can define square root  $\mathbb{Z}_2$ -bundle associated with  $\mu$  denoted by  $O^{\mu}$ . This bundle is given by the sheaf of its sections:

$$O^{\mu}(U) = \{ o: L|_U \xrightarrow{\sim} \underline{\mathbb{C}}_U : o \otimes o = \mathrm{ad}(\mu)|_U \}.$$



- ► Let X be a quasi-projective Calabi–Yau 4-fold and M a quasi-projective moduli scheme of stable compactly supported sheaves, Hilbert schemes of proper sub-schemes or stable pairs.
- ► Have obstruction theory  $\mathbb{E} = \tau_{[-2,0]} (\operatorname{RHom}(\mathcal{E}, \mathcal{E})) \to \mathbb{L}_M$  resolved as

$$\mathbb{E} \cong (T \to E \to T^*) =: E^{\bullet}.$$

▶ Natural  $E^{\bullet} \cong E_{\bullet}[2]$  induced by (E, q). The  $O(n, \mathbb{C})$  structure of *E* reduces to  $SO(n, \mathbb{C})$  iff the square root  $\mathbb{Z}_2$ -bundle  $O^M$ associated with  $i^M : \det(\mathbb{E}) \xrightarrow{\sim} \det(\mathbb{E})^*$  is orientable.

### Theorem

Let M be a quasi-projective moduli scheme of stable compactly supported sheaves, Hilbert schemes of proper sub-schemes or stable pairs on a quasi-projective Calabi–Yau 4-fold, then  $O^M$  is trivializable.



▶ Oh-Thomas use this to construct an isotropic cone  $C_{E^{\bullet}} \subset E$  and define:

$$[M]^{\operatorname{vir}} = \sqrt{0_E^{\dagger}} [C_{E\bullet}], \qquad \hat{\mathcal{O}}_M^{\operatorname{vir}} = \sqrt{0_E^{\ast}} [\mathcal{O}_{C_{E\bullet}}] \sqrt{\det T^{\ast}}.$$

- ► Example: If M smooth, we have an obstruction bundle Ob(M)then  $[M]^{vir} = e(Ob_{\mathbb{R}}) = e(\Lambda)$  (if isotropic  $\Lambda \subset Ob$  exists).
- If X not compact still can construct  $\hat{O}_M^{\text{vir}}$ , if M compact have  $[M]^{\text{vir}}$ . Otherwise use localization formula to define invariants.
- ▶ Let *T* be a torus acting on *X* preserving  $\omega_X$  (dim(*T*) ≤ 3), then action lifts to *M* of sheaves and  $M^T \hookrightarrow M$ . Have  $E^{\bullet} = \{T \to E \to T^*\} \to \mathbb{L}_M$ , then  $E^{\bullet}|_{M^T} = E_f^{\bullet} \oplus (N^{\mathrm{vir}})^{\vee}$ .



5

► Under Serre-duality positive weights (with respect to some ordering) are paired with negative ones. Gives natural orientation on (N<sup>vir</sup>)<sup>∨</sup>.

### ▶ Using orientations in the non-compact setting:

- 1. If  $E_f^{\bullet} \neq 0$ , then orientation on  $E^{\bullet}$  together with orientation of  $(N^{\operatorname{vir}})^{\vee}$  induces one on  $E_f^{\bullet}$  giving  $[M^T]^{\operatorname{vir}}$ .
- 2. If  $E_f^{\bullet} = 0$ , then  $(N^{\text{vir}})^{\vee} = E^{\bullet}|_{M^T}$  and use the global orientation of  $E^{\bullet}$  instead.

► Localization formulae:

$$[M]^{\rm vir} = i_* \frac{[M^T]^{\rm vir}}{\sqrt{e_T}(N^{\rm vir})} \,, \qquad \hat{\mathcal{O}}_M^{\rm vir} = i_* \frac{\hat{\mathcal{O}}_{M^T}^{\rm vir}}{\sqrt{e_T}(N^{\rm vir})}$$

▶ Used in the works of Cao, Kool, Maulik, Monavari, Nekrasov, Toda...



Global orientation for perfect complexes

► Toën–Vaquié(07') defined a functor  $\mathcal{M}_{(-)}$ : dg-Cat  $\rightarrow$  Hsta<sub>C</sub>. For X smooth quasi-projective  $\mathcal{M}_X = \mathcal{M}_{L_{pe}(X)}$ , where  $L_{pe}(X)$  the dg-category of perfect complexes. It classifies right proper object  $\leftrightarrow$  compactly supported perfect complexes.

▶ We have  $\mathbb{L}_{\mathcal{M}_X}$  the perfect cotangent complex. At a  $\mathbb{C}$ -point  $[E^{\bullet}]$ :

$$H^k(\mathbb{L}_{\mathcal{M}_X}|_{[E^{\bullet}]}) \cong \operatorname{Ext}^{1-k}(E^{\bullet}, E^{\bullet}).$$

- ▶ Brav–Dyckerhoff(18') (PTVV for compact X) prove that  $\mathcal{M}_X$  is -2-shifted symplectic. Induces the Serre-duality isomorphism  $\mathbb{L}_{\mathcal{M}_X} \xrightarrow{\sim} \mathbb{L}_{\mathcal{M}_X}[-2].$
- Defining  $K_{\mathcal{M}_X} = \det(\mathbb{L}_{\mathcal{M}_X})$  and using Serre duality, we get  $i^{\omega}: K_{\mathcal{M}_X} \to (K_{\mathcal{M}_X})^*$ .  $O^{\omega} \to \mathcal{M}_X$  the square root  $\mathbb{Z}_2$ -bundle associated to  $i^{\omega}$ .



| Algebraic geometric                                                                                      | Differential geometric                                                     |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| compactly supported perfect com-                                                                         | compactly supported pseudo-                                                |
| plex $[E^{\bullet}]$                                                                                     | differential operator $\Psi : \Gamma^{\infty}_{cs}(V_0) \rightarrow$       |
|                                                                                                          | $\Gamma^{\infty}(V_1)$                                                     |
| $\det(\operatorname{RHom}(E^{\bullet}, E^{\bullet})) =$                                                  | $\det(\Psi) =$                                                             |
| $\bigotimes_{i\in\mathbb{Z}}\det^{(-1)^{i}}\left(\operatorname{Ext}^{i}(E^{\bullet},E^{\bullet})\right)$ | $\det(\operatorname{Ker}(\Psi))\det^*(\operatorname{Ker}(\Psi^*))$         |
| Serre-duality                                                                                            | Real structure $\Psi = \Psi_{\mathbb{R}} \otimes \mathrm{id}_{\mathbb{C}}$ |
| $\det(\operatorname{RHom}(E^{\bullet}, E^{\bullet})) \cong$                                              |                                                                            |
| $\det(\operatorname{RHom}(E^{\bullet}, E^{\bullet}))^*$                                                  |                                                                            |
| $O^{\omega} _{[E^{\bullet}]}$                                                                            | $\operatorname{or}(\operatorname{det}_{\mathbb{R}}(\Psi_{\mathbb{R}}))$    |



# Compactification

- ▶ Blanc(12') defines  $(-)^{top} : \mathbf{HSta}_{\mathbb{C}} \to \mathbf{Top}$
- ► For X a Hausdorff topological space,  $C_X = \operatorname{Map}((X^+, +), (BU \times \mathbb{Z}, 0))$  classifies  $K^0_{cs}(X)$ .
- ► Think of  $\mathcal{C}_X$  as the differential geometric counter-part of  $(\mathcal{M}_X)^{\text{top}}$  with a natural map  $\Gamma_X : (\mathcal{M}_X)^{\text{top}} \to \mathcal{C}_X$ .
- ►  $K_{cs}^0(X)$  can be expressed in terms of classes of  $(V_1, V_2, \phi_\infty)$ , motivating what follows.
- ▶ Take  $\bar{X}$  smooth projective compactification, s.t.  $D = \bar{X} \setminus X$  is a strict normal crossing divisor.
- ► For any projective scheme Y define  $\mathcal{M}^Y = \operatorname{Map}_{\mathbf{HSta}_{\mathbb{C}}}(Y, \operatorname{Perf}).$
- There is a natural map  $\rho_D : \mathcal{M}_{\bar{X}} \to \mathcal{M}^D$  and we form  $\mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}}$ .



# Spin compactification

### Notation:

- ▶  $\mathcal{E}\operatorname{xt}_L$  the complex on  $\mathcal{M}_X$  given at a point  $[E^\bullet]$  by RHom<sup>•</sup> $(E^\bullet, E^\bullet \otimes L)$  for some coherent sheaf L (not necessarily compactly supported).
- ▶ We then have the duality  $\mathcal{E}xt_L \cong (\mathcal{E}xt_{K_X \otimes L^{\vee}})^{\vee}[-4]$
- Set  $\Lambda_L := \det(\mathcal{E}\mathrm{xt}_L)$ , then

$$\Lambda_L \cong \Lambda^*_{K_X \otimes L^\vee} \,. \tag{1}$$

## Definition

Let X be a smooth projective variety and  $K_X$  its canonical divisor. A divisor  $\Theta$ , such that  $2\Theta = K_X$  is called a *theta characteristic*. We say that  $(X, \Theta)$  for a given choice of a theta characteristic  $\Theta$  is *spin*. Applying (1) to the case  $L = \Theta$ , one obtains an isomorphism of line bundles  $i^{\Theta} := i_{\Theta} : K_{\mathcal{M}_X} \to K^*_{\mathcal{M}_X}$ . We define the orientation  $\mathbb{Z}_2$ -bundle  $O^{\Theta}$  on  $\mathcal{M}_X$  as the associated  $\mathbb{Z}_2$ -bundle to the isomorphism  $i^{\Theta}$ .

# General compactifications

#### Examples:

$$\blacktriangleright \ \mathbb{C}^4 \subset \mathbb{P}^1 \times \mathbb{P}^3$$

- Tot $(E \to V)$ , s.t. det $(E) = K_V$  and rk(E) odd, then take  $\bar{X} = \mathbb{P}(E \oplus \mathcal{O}_S)$ .
- $\blacktriangleright \operatorname{Tot}(L_1 \oplus \mathcal{L}_2 \to S) \subset \mathbb{P}(L_1 \oplus \mathcal{O}_S) \times_S \mathbb{P}(L_2 \oplus \mathcal{O}_S)$
- ▶ Doesn't work if rk(E) = 2 or for general toric CY 4-fold and will most likely depend on a choice of  $\bar{X}$ .

#### General approach:

• Inclusion  $\zeta : \mathcal{M}_X \to \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}}, [E^{\bullet}] \mapsto [i_*E^{\bullet}, 0].$ 

## Proposition

For a choice of extension data  $\bowtie$ , there exist a natural isomorphism  $\vartheta_{\bowtie} : \pi_1^*(\Lambda_{\mathcal{O}_X}) \otimes \pi_2^*(\Lambda_{\mathcal{O}_X})^* \to \pi_1^*(\Lambda_{\mathcal{O}_X})^* \otimes \pi_2^*(\Lambda_{\mathcal{O}_X})$ , such that its associated square root  $\mathbb{Z}_2$ -bundle  $O^{\vartheta_{\bowtie}} \to \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}}$  comes with a natural isomorphism  $\zeta^*(O^{\vartheta_{\bowtie}}) \cong O^{\omega}$  on  $\mathbb{Z}_2$ -bundles on  $\mathcal{M}_X$ .



# Construction of $O^{\vartheta_{\bowtie}}$ , part 1

- ► Consider  $[E^{\bullet}, F^{\bullet}, \phi] \in \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}}$ . Use notation  $\det(E^{\bullet}, F^{\bullet}) = \det(\operatorname{RHom}(E^{\bullet}, F^{\bullet})).$
- ► Isomorphism:

 $\det(E^{\bullet}, E^{\bullet})\det^*(F^{\bullet}, F^{\bullet}) \cong \det^*(E^{\bullet}, E^{\bullet} \otimes K_{\bar{X}})\det(F^{\bullet}, F^{\bullet} \otimes K_{\bar{X}})$ 

- express  $K_{\bar{X}} = \sum_{i=1}^{N} a_i D_i$ , where  $D_i$  smooth irreducible divisors, s.t.  $D = \bigcup_{i=1}^{N} D_i$ .
- ▶ For each line bundle L have  $0 \to L \xrightarrow{\cdot s_i} L(D_i) \to L(D_i)|_{D_i} \to 0$  which gives

$$\det(E^{\bullet}, E^{\bullet} \otimes L(D_i)) \det^*(F^{\bullet}, F^{\bullet} \otimes L(D_i))$$
  

$$\cong \det(E^{\bullet}, E^{\bullet} \otimes L) \det^*(F^{\bullet}, F^{\bullet} \otimes L)$$



 $\blacktriangleright$  Repeat to obtain

 $\vartheta_{\bowtie}: \det(E^{\bullet}, E^{\bullet}) \det^*(F^{\bullet}, F^{\bullet}) \cong \det^*(E^{\bullet}, E^{\bullet}) \det(F^{\bullet}, F^{\bullet})$ 

►  $O^{\vartheta_{\bowtie}}|_{[E^{\bullet},F^{\bullet},\phi]}$  square-root  $\mathbb{Z}_2$ -bundle associated to  $\vartheta_{\bowtie}$ .

• Extension data  $\bowtie$  is collecting the data of the sections  $s_i$  and order of  $D_i$  used. One requires that  $\prod (s_i)^{a_i}$  is a meromorphic extension of  $\omega$ .

Now prove  $O^{\vartheta_{\bowtie}}$  is trivializable and so  $O^{\omega} \to \mathcal{M}_X$  is.



• Have the map 
$$\Gamma : (\mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}})^{\mathrm{top}} \to \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_D} \mathcal{C}_{\bar{X}},$$

## Theorem

Let X be a smooth Calabi–Yau 4-fold,  $\overline{X}$  its smooth projective compactification by a strictly normal crossing divisor D. For any extension data  $\bowtie$  the  $\mathbb{Z}_2$ -bundle

$$O^{\vartheta_{\bowtie}} \to \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}} \tag{2}$$

is trivializable. There exists a natural trivializable  $\mathbb{Z}_2$ -bundle  $D_O^{\mathcal{C}} \to \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_D} \mathcal{C}_{\bar{X}}$  with a natural isomorphism

$$\mathfrak{I}^{\bowtie}: \Gamma^*(D_O^{\mathcal{C}}) \cong (O^{\vartheta_{\bowtie}})^{top} \,. \tag{3}$$



# Immediate Corollaries

Composing

$$\Gamma \circ \zeta^{\mathrm{top}} : (\mathcal{M}_X)^{\mathrm{top}} \to \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_D} \mathcal{C}_{\bar{X}} ,$$

get a map that factors through  $\Gamma_X : (\mathcal{M}_X)^{\mathrm{top}} \to \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_D} \{0\}$ , where

$$\mathcal{C}_{\bar{X}} \times_{\mathcal{C}_D} \{0\} = \operatorname{Map}_{C^0} \left( (X^+, +), (BU \times \mathbb{Z}, 0) \right) = \mathcal{C}_X.$$

## Theorem Let $(X, \omega)$ be a quasi-projective Calabi–Yau 4-fold, then the $\mathbb{Z}_2$ -bundle

$$O^{\omega} \to \mathcal{M}_X$$
 (4)

is trivializable. Moreover, there is a canonical isomorphism

$$\mathfrak{I}: (\Gamma_X)^*(O^{cs}) \cong (O^{\omega})^{top}.$$



- $\blacktriangleright$  Can extend by the structure sheaf on D to get orientability of stable pair moduli spaces and Hilbert schemes.
- ► Let  $\overline{\mathcal{M}}$  be a moduli stack of stable pairs or ideals sheaves on  $\overline{X}$  with the projection  $\pi_{\mathbb{G}_m} : \overline{\mathcal{M}} \to M$  which is a  $[*/\mathbb{G}_m]$  principal bundle. We have an inclusion  $\eta : \overline{\mathcal{M}} \to \mathcal{M}_{\overline{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\overline{X}}$  given on points by mapping  $[\overline{\mathcal{E}}] \mapsto ([\overline{\mathcal{E}}, \mathcal{O}_{\overline{X}}]).$

### Theorem

Let  $O_M^{\omega} \to M$  be the orientation bundle for M a moduli scheme of stable pairs or ideals sheaves of proper subschemes of X. There is a canonical isomorphism of  $\mathbb{Z}_2$ -bundles

$$\pi^*_{\mathbb{G}_m}(O^{\omega}_M) \cong \eta^*(O^{\vartheta_{\bowtie}}) \,.$$

In particular,  $O_M^{\omega} \to M$  is trivializable.



# $\mathbb{Z}_2$ -graded H-principal $\mathbb{Z}_2$ -bundles

• Spaces  $(\mathcal{M}_X)^{\text{top}}$ ,  $(\mathcal{M}_{\bar{X}} \times_{\mathcal{M}^D} \mathcal{M}_{\bar{X}})^{\text{top}}$ ,  $\mathcal{C}_X$ ,  $\mathcal{C}_{\bar{X}} \times_{\mathcal{C}_D} \mathcal{C}_{\bar{X}}$  are admissible H-spaces (in fact  $\Gamma$ -spaces/  $E_{\infty}$ -spaces), which are group-like

## Definition (Cao-Gross-Joyce(18'))

X an H-space. A weak *H*-principal  $\mathbb{Z}_2$ -bundle on X is a  $\mathbb{Z}_2$ -bundle  $P \to X$  with an isomorphism of  $\mathbb{Z}_2$ -bundles  $p: P \boxtimes_{\mathbb{Z}_2} P \to \mu_X^*(P)$ . A strong *H*-principal  $\mathbb{Z}_2$ -bundle on X is a pair (Q, q): trivializable  $\mathbb{Z}_2$ -bundle  $Q \to X$ , isomorphism of  $\mathbb{Z}_2$  bundles

$$q: Q \boxtimes_{\mathbb{Z}_2} Q \to \mu_X^*(Q) \,,$$

such that under the homotopy  $h: \mu_X \circ (\mathrm{id}_X \times \mu_X) \simeq \mu_X \circ (\mu_X \times \mathrm{id}_X):$ 

$$(\mathrm{id}_X \times \mu_X)^*(q) \circ (\mathrm{id} \times q) : Q \boxtimes_{\mathbb{Z}_2} Q \boxtimes_{\mathbb{Z}_2} Q \to (\mu_X \circ (\mathrm{id}_X \times \mu_X))^* Q$$

and

 $(\mu_X \times \mathrm{id}_X)^*(q) \circ (q \times \mathrm{id}) : Q \boxtimes_{\mathbb{Z}_2} Q \boxtimes_{\mathbb{Z}_2} Q \to (\mu_X \circ (\mu_X))$ 



- ▶ A  $\mathbb{Z}_2$ -bundle  $O \to X$  together with a continuous map deg $(O): X \to \mathbb{Z}_2$  is a  $\mathbb{Z}_2$ -graded  $\mathbb{Z}_2$ -bundle. If  $O_1, O_2$  are  $\mathbb{Z}_2$ -graded then the isomorphism  $O_1 \otimes_{\mathbb{Z}_2} O_2 \cong O_2 \otimes_{\mathbb{Z}_2} O_1$  differs by the sign  $(-1)^{\det(O_1)\deg(O_2)}$  from the naive one.
- ▶  $\mathbb{Z}_2$ -graded H-principal  $\mathbb{Z}_2$ -bundles combine the two definitions. Dual  $(O^*, p^*)$  defined by  $O^* = O$  and  $p^* = (-1)^{\deg(\pi_1^*(O))\deg(\pi_2^*(O))}p$ . Isomorphisms have to preserve grading.

### Examples:

- $\phi^{\omega}: O^{\omega} \boxtimes_{\mathbb{Z}_2} O^{\omega} \to \mu^*_{\mathcal{M}_X}(O^{\omega}), \\ \phi^{\vartheta_{\bowtie}}: O^{\vartheta_{\bowtie}} \boxtimes_{\mathbb{Z}_2} O^{\vartheta_{\bowtie}} \to \mu^*_{\mathcal{M}_{\bar{X},D}}(O^{\omega}) \text{ making them into weak } \\ \text{H-principal } \mathbb{Z}_2\text{-bundles satisfying the associativity. }$
- ▶ Joyce–Tanaka–Upmeier(18') construct  $\mathbb{Z}_2$ -bundles  $O_{\mathcal{C}}^{\not{D}_+} \to \mathcal{C}_X$  for X compact spin



# Orientations via Dirac operators

- ► For any principal bundle *P* define the topological stack  $\mathcal{B}_P = [\mathcal{A}_P / \mathcal{G}_P], \mathcal{A}_P$  the space of connections,  $\mathcal{G}_P$  the gauge group
- ▶ If Y is compact and spin, let  $D_+$ :  $S_+ \to S_-$  be the positive Dirac operator.
- Define  $O_P^{\not{D}_+} \to \mathcal{B}_P$  by  $O_P^{\not{D}_+}|_{[\nabla_P]} = \operatorname{or}\left(\operatorname{det}_{\mathbb{R}}(D_{\operatorname{ad}(P)}^{\nabla})\right)$  giving  $O^{\not{D}_+} \to \mathcal{B}_Y = \bigcup_{[P]} \mathcal{B}_P.$
- ► There is a natural  $\Sigma$  :  $(\mathcal{B}_Y)^{\text{cla}} \to \mathcal{C}_Y$  which is a homotopy theoretic group completion of H-spaces. Using (weak) universality property get  $O_{\mathcal{C}}^{\not D} \to \mathcal{C}_Y$ .
- Cao-Gross-Joyce(18') prove that O<sup>D</sup><sub>C</sub> is a strong H-principal Z<sub>2</sub>-bundle.

► The grading:  $\deg(O_X^{\not D_+})|_{\mathcal{C}_{\alpha}} = \chi^{\not D_+}(\alpha, \alpha)$  where

$$\chi^{\not\!\!D_+}(E,E) = \operatorname{ind}(\not\!\!D^{\nabla_{\operatorname{ad}(P)}})$$



# Orientations on the double

- Let  $T \supset D$  be a tubular neighborhood (i.e. union of  $T_i \supset D_i$ ),  $K = X \setminus T, Y \subset X$  a manifold with a boundary containing K.
- $\tilde{Y} = Y \cup_Y (-Y)$  has a natural spin structure. Define  $\tilde{T} = \bar{T} \cup (-Y)$ .
- ► For each  $P, Q \to \tilde{Y}$  pair of U(n) bundles, s.t.  $P|_{\tilde{T}} \cong Q|_{\tilde{T}}$ . Consider  $\mathcal{A}_P \times \mathcal{A}_Q \times \mathcal{G}_{P,Q,\tilde{T}}$  with an obvious action of  $\mathcal{G}_P \times \mathcal{G}_Q$ .

► Get the topological stack  $\mathcal{B}_{P,Q,\tilde{T}} = [\mathcal{A}_P \times \mathcal{A}_Q \times \mathcal{G}_{P,Q,\tilde{T}} / \mathcal{G}_P \times \mathcal{G}_Q]$ 

$$\mathcal{B}_{\tilde{Y},\tilde{T}} = \bigcup_{\substack{[P],[Q]:\\[P|_{\tilde{T}}] = [Q|_{\tilde{T}}]}} \mathcal{B}_{P,Q,\tilde{T}} \, .$$

• Using  $\mathcal{B}_{\tilde{Y}} \xleftarrow{p_1}{\mathcal{B}_{\tilde{Y},\tilde{T}}} \xrightarrow{p_2}{\mathcal{B}_{\tilde{Y}}} define$ 

$$D_O(\tilde{Y}) = p_1^*(O^{\not D_+}) \boxtimes_{\mathbb{Z}_2} p_2^*((O^{\not D_+})^*),$$



# Transporting orientations back to $\bar{X}$

• Let 
$$\mathcal{V}_Y = \operatorname{Map}_{C^0}(Y, Gr^{\infty}(\mathbb{C}))$$
, then  $\mathcal{V}_{\tilde{Y}} \times_{\mathcal{V}_{\tilde{T}}} \mathcal{V}_{\tilde{Y}} \simeq (\mathcal{B}_{\tilde{Y}, \tilde{T}})^{\operatorname{cla}}$ .

• Using a homotopy theoretic group completion  $\mathcal{V}_{\tilde{Y}} \times_{\mathcal{V}_{\tilde{T}}} \mathcal{V}_{\tilde{Y}} \to \mathcal{C}_{\tilde{Y}} \times_{\mathcal{C}_{\tilde{T}}} \mathcal{C}_{\tilde{Y}} \text{ get } D_{O}^{\mathcal{C}}(\tilde{Y}) \text{ on the latter.}$ 

 $\blacktriangleright \text{ Define } G_{\tilde{Y}}: \mathcal{V}_{\bar{X}} \times_{\mathcal{V}_{D}} \mathcal{V}_{\bar{X}} \to \mathcal{V}_{\tilde{Y}} \times_{\mathcal{V}_{\tilde{T}}} \mathcal{V}_{\tilde{Y}}, \, [E, F, \phi] \mapsto [\tilde{E}, \tilde{F}, \tilde{\phi}]$ 



• Pullback  $D_O(\tilde{Y})$  and  $D_O^{\mathcal{C}}(\tilde{Y})$  to get  $D_O, D_O^{\mathcal{C}}$ .



- ► For a scheme Z the moduli Ind-scheme of vector bundles generated by global sections  $\mathcal{T}_Z = \operatorname{Map}_{\operatorname{IndSch}_{\mathbb{C}}}(Z, \operatorname{Gr}(\mathbb{C}^\infty))$ ,
- ▶ Have the homotopy commutative diagram of H-spaces

•  $\Delta^{\text{top}}$  and  $\Omega$  are homotopy theoretic group completions  $\implies$  only need to construct a natural isomorphism  $\Lambda^*(D_O) \cong (\Delta^{\text{top}})^*(O^{\vartheta_{\bowtie}})$  and show it is a strong H-principal  $\mathbb{Z}_2$ -bundle isomorphism to get  $\Gamma^*(D_O^{\mathcal{C}}) \cong O^{\vartheta_{\bowtie}}$ 



### Differential geometric side:

- Given by  $D_O|_{[E,F,\phi]} = \operatorname{or}\left(\operatorname{det}_{\mathbb{R}}(\mathcal{D}_+^{\nabla_{\operatorname{ad}}(\tilde{P})})\right) \otimes_{\mathbb{Z}_2} \operatorname{or}\left(\operatorname{det}_{\mathbb{R}}^*(\mathcal{D}_+^{\nabla_{\operatorname{ad}}(\tilde{Q})})\right),$ where  $\tilde{P}, \tilde{Q}$  associated U(n) bundles to  $\tilde{E}, \tilde{F}$ .
- ► Symbol map (Atiyah–Singer(71'))  $\sigma: \Psi DO_m(E_0, E_1) \to \operatorname{Sym}_m(E_0, E_1), \text{ then}$  $\sigma(\not{\!\!D}_+^{\nabla_{\operatorname{ad}(P)}}) = \sigma(\not{\!\!D}_+) \otimes \operatorname{id}_{\pi^*(\operatorname{ad}(P))}, \text{ where } \pi: T\tilde{Y} \to \tilde{Y}.$
- ► Elliptic symbols of degree m:  $\operatorname{Ell}_m(E_0, E_1)$ . There is a map  $(-)_0 : \operatorname{Ell}_m(E_0, E_1) \to \operatorname{Ell}_0(E_0, E_1)$ .
- ▶ or(-) depends only on  $\sigma(D)$  and  $\operatorname{or}(\sigma(D)) = \operatorname{or}((\sigma(D))_0)$
- Using deformation of symbols in families (Upmeier(19'), Donaldson–Kronheimer) get

$$\operatorname{or}(\Psi_{\mathbb{R}}) = \operatorname{or} \begin{pmatrix} \chi \sigma(\not{\!\!D}_{+})_{0} \otimes \operatorname{id}_{\pi^{*}(\operatorname{ad}(P))} & (1-\chi)\operatorname{ad}(\phi)^{-1} \\ (1-\chi)\operatorname{ad}(\phi) & -\chi \big(\sigma(\not{\!\!D}_{+})_{0} \otimes \operatorname{id}_{\pi^{*}(\operatorname{ad}(Q))}\big)^{*} \end{pmatrix}$$



### Algebraic geometric side:

- For simplicity assume  $K_{\bar{X}} = D_1$
- ▶ Recall that we used  $0 \to \operatorname{End}(E) \xrightarrow{\cdot s_i} \operatorname{End}(E)(D_1) \to \operatorname{End}(E)(D_1)|_{D_1} \to 0$  (+same for  $\operatorname{End}(F)$ ).
- Replace  $\operatorname{End}(E)(D_1)|_{D_1}$  by a common resolutions:  $\operatorname{End}(E) \oplus \operatorname{End}(F) \to K$ , where  $K = \ker \left( \operatorname{End}(E)(D_1) \oplus \operatorname{End}(F)(D_1) \to \operatorname{End}(E)(D_1)|_{D_1} \right)$
- Express everything using vector bundles and their Dolbeault resolutions.

## Comparing both sides

▶ Use deformation of complex determinant line bundles of symbols up to (contractible) isotopy to deform symbols of Dolbeault operator into compactly supported  $\Psi$  and express their the algebraic isomorphism as a real structure  $\Psi_{\mathbb{R}}$  (see https://arxiv.org/abs/2008.08441)



- $C_{\alpha}$  connected component of  $C_X$  corresponding to  $\alpha \in K^0_{cs}(X)$  and  $O^{cs}_{\alpha} = O^{cs}|_{\mathcal{C}_{\alpha}}$
- $\blacktriangleright \ \mu_{\mathcal{C}}: \mathcal{C}_X \times \mathcal{C}_X \to \mathcal{C}_X$
- There are natural isomorphisms  $\tau^{cs} : O^{cs} \boxtimes_{\mathbb{Z}_2} O^{cs} \to \mu^*_{\mathcal{C}}(O^{cs})$  and  $\phi^{\omega} : O^{\omega} \boxtimes_{\mathbb{Z}_2} O^{\omega} \to \mu^*_{\mathcal{M}_X}(O^{\omega})$ .
- Could choose trivializations  $o_{\alpha}^{cs}$  of  $O_{\alpha}^{cs}$ . These induce  $o_{\alpha}^{\omega} = \Im((\Gamma^{cs})^*(o_{\alpha}^{cs}))$  orientations of  $O_{\alpha}^{\omega}$  which is the restriction of  $O^{\omega}$  to  $\mathcal{M}_{\alpha} = \Gamma^{-1}(\mathcal{C}_{\alpha})$ .
- ▶ We can ask about how these orientations behave under addition : Important for constructing natural orientations and Joyce's vertex algebra used to express WCF.



### Theorem

For all  $\alpha, \beta \in K_{cs}^0(X)$ :  $\tau_{\beta,\alpha}^{cs} = (-1)^{\bar{\chi}(\alpha,\alpha)\bar{\chi}(\beta,\beta)+\bar{\chi}(\alpha,\beta)}\tau_{\alpha,\beta}^{cs}$ , where  $\bar{\chi}: K_{cs}^0(X) \times K_{cs}^0(X) \to \mathbb{Z}$  is the compactly supported Euler form. For all  $\alpha\beta \in K_{cs}^0(X)$ , then there are  $\epsilon_{\alpha,\beta} \in \{-1,1\}$ , defined by  $\tau_{\alpha,\beta}^{cs}(o_{\alpha}^{cs}\boxtimes_{\mathbb{Z}_2}o_{\beta}^{cs}) = \epsilon_{\alpha,\beta}\,\mu_{cs}^*(o_{\alpha+\beta}^{cs})$ , such that they satisfy  $\epsilon_{\beta,\alpha} = (-1)^{\bar{\chi}(\alpha,\alpha)\bar{\chi}(\beta,\beta)+\bar{\chi}(\alpha,\beta)}\epsilon_{\alpha,\beta}$ . Same can be said for  $\sigma_{\alpha}^{\omega}$ .

#### Summary

- ► All reasonable moduli spaces (compactly supported perfect complexes, Hilbert schemes, stable pairs) are orientable.
- ▶ These orientations are pullbacks of differential geometric ones which are compactly supported in *X*.
- ▶ They satisfy relations under sums which make them compatible with the vertex algebras on  $H_*(\mathcal{M}_X)$ .

