Orientations for DT invariants on quasi-projective Calabi-Yau 4-folds

Arkadij Bojko
University of Oxford

- Solutions to this have been given independently by Borisov-Joyce(15') and Cao-Leung(for some cases), algebraic geometric construction of Oh-Thomas(20').
- One considers three terms instead: $\operatorname{Ext}^{1}(E, E), \operatorname{Ext}^{2}(E, E)$ and $\operatorname{Ext}^{3}(E, E)$. Using Serre duality, one has $\operatorname{Ext}^{1}(E, E) \cong\left(\operatorname{Ext}^{3}(E, E)\right)^{*}$ and a non-degenerate billinear form $q: \operatorname{Ext}^{2}(E, E) \times \operatorname{Ext}^{2}(E, E) \rightarrow \mathbb{C}$.
- Slogan: "Take half of everything". Taking $\operatorname{Ext}^{1}(E, E)$ we covered $\operatorname{Ext}^{3}(E, E)$. Equivalently one can take a real subspace in $V=\operatorname{Ext}^{1}(E, E) \oplus \operatorname{Ext}^{3}(E, E)$ invariant under the isomorphism above together with $\left(\operatorname{Ext}^{3}(E, E)\right)^{*} \cong \overline{\operatorname{Ext}^{3}(E, E)}$. Then $V_{\mathbb{R}}$ has a natural orientation compatible with the choice $\operatorname{Ext}^{1}(E, E)$ as an isotropic subspace.
- Problem: How to choose an isotropic subspace of $\operatorname{Ext}^{2}(E, E)$? Equivalently, how to choose orientation on $\operatorname{Ext}^{2}(E, E)_{\mathbb{R}}$? Can this choice be fit together continuously?
- Reformulate: Let $V_{\mathbb{R}} \subset V=\left(\operatorname{Ext}^{2}(E, E)\right)$ be the real subspace for a real structure $\nu: V \rightarrow V^{*} \cong \bar{V}$. Then an orientation on $V_{\mathbb{R}}$ is equivalent to an orientation on $\operatorname{det}_{\mathbb{R}}\left(V_{\mathbb{R}}\right) \subset \operatorname{det}(V)$, which is a choice of isomorphism $\operatorname{det}_{\mathbb{R}}\left(V_{\mathbb{R}}\right) \cong \mathbb{R}$.
- In other words, we are looking for $o: \operatorname{det}(V) \rightarrow \mathbb{C}$, such that

$$
o \otimes o=\left(\operatorname{det}(V)^{\otimes 2} \xrightarrow{\mathrm{id} \otimes \nu} \operatorname{det}(V) \operatorname{det}^{*}(V) \rightarrow \mathbb{C}\right) .
$$

Definition

$L \rightarrow S$ a complex line bundle over $S, \mu: L \rightarrow L^{*}$ an isomorphism, then one can define square root \mathbb{Z}_{2}-bundle associated with μ denoted by O^{μ}. This bundle is given by the sheaf of its sections:

$$
O^{\mu}(U)=\left\{o:\left.L\right|_{U} \xrightarrow{\sim} \mathbb{C}_{U}: o \otimes o=\left.\operatorname{ad}(\mu)\right|_{U}\right\} .
$$

- Let X be a quasi-projective Calabi-Yau 4 -fold and M a quasi-projective moduli scheme of stable compactly supported sheaves, Hilbert schemes of proper sub-schemes or stable pairs.
- Have obstruction theory $\mathbb{E}=\tau_{[-2,0]}(\operatorname{RHom}(\mathcal{E}, \mathcal{E})) \rightarrow \mathbb{L}_{M}$ resolved as

$$
\mathbb{E} \cong\left(T \rightarrow E \rightarrow T^{*}\right)=: E^{\bullet}
$$

- Natural $E^{\bullet} \cong E_{\bullet}[2]$ induced by (E, q). The $O(n, \mathbb{C})$ structure of E reduces to $S O(n, \mathbb{C})$ iff the square root \mathbb{Z}_{2}-bundle O^{M} associated with $i^{M}: \operatorname{det}(\mathbb{E}) \xrightarrow{\sim} \operatorname{det}(\mathbb{E})^{*}$ is orientable.

Theorem
Let M be a quasi-projective moduli scheme of stable compactly supported sheaves, Hilbert schemes of proper sub-schemes or stable pairs on a quasi-projective Calabi-Yau 4-fold, then O^{M} is trivializable.

- Oh-Thomas use this to construct an isotropic cone $C_{E} \bullet \subset E$ and define:

$$
[M]^{\text {vir }}=\sqrt{0_{E}^{!}}\left[C_{E} \cdot\right], \quad \hat{\mathcal{O}}_{M}^{\text {vir }}=\sqrt{0_{E}^{*}}\left[\mathcal{O}_{C_{E}}\right] \sqrt{\operatorname{det} T^{*}}
$$

- Example: If M smooth, we have an obstruction bundle $\mathrm{Ob}(M)$ then $[M]^{\mathrm{vir}}=e\left(\mathrm{Ob}_{\mathbb{R}}\right)=e(\Lambda)$ (if isotropic $\Lambda \subset \mathrm{Ob}$ exists).
- If X not compact still can construct $\hat{O}_{M}^{\text {vir }}$, if M compact have $[M]^{\mathrm{vir}}$. Otherwise use localization formula to define invariants.
- Let T be a torus acting on X preserving $\omega_{X}(\operatorname{dim}(T) \leq 3)$, then action lifts to M of sheaves and $M^{T} \hookrightarrow M$. Have $E^{\bullet}=\left\{T \rightarrow E \rightarrow T^{*}\right\} \rightarrow \mathbb{L}_{M}$, then $\left.E^{\bullet}\right|_{M^{T}}=E_{f}^{\bullet} \oplus\left(N^{\mathrm{vir}}\right)^{\vee}$.
- Under Serre-duality positive weights (with respect to some ordering) are paired with negative ones. Gives natural orientation on $\left(N^{\text {vir }}\right)^{\vee}$.
- Using orientations in the non-compact setting:

1. If $E_{f}^{\bullet} \neq 0$, then orientation on E^{\bullet} together with orientation of $\left(N^{\text {vir }}\right)^{\vee}$ induces one on E_{f}^{\bullet} giving $\left[M^{T}\right]^{\text {vir }}$.
2. If $E_{f}^{\bullet}=0$, then $\left(N^{\text {vir }}\right)^{\vee}=\left.E^{\bullet}\right|_{M^{T}}$ and use the global orientation of E^{\bullet} instead.

- Localization formulae:

$$
[M]^{\mathrm{vir}}=i_{*} \frac{\left[M^{T}\right]^{\mathrm{vir}}}{\sqrt{e_{T}}\left(N^{\mathrm{vir}}\right)}, \quad \hat{\mathcal{O}}_{M}^{\mathrm{vir}}=i_{*} \frac{\hat{\mathcal{O}}_{M^{\mathrm{vir}}}^{\mathrm{vir}}}{\sqrt{e_{T}}\left(N^{\text {vir }}\right)}
$$

- Used in the works of Cao, Kool, Maulik, Monavari, Nekrasov, Toda...
- Toën-Vaquié(07') defined a functor $\mathcal{M}_{(-)}$: dg-Cat \rightarrow Hsta ${ }_{\mathbb{C}}$. For X smooth quasi-projective $\mathcal{M}_{X}=\mathcal{M}_{L_{\mathrm{pe}}(X)}$, where $L_{p e}(X)$ the dg-category of perfect complexes. It classifies right proper object \leftrightarrow compactly supported perfect complexes.
\rightarrow We have $\mathbb{L}_{\mathcal{M}_{X}}$ the perfect cotangent complex. At a \mathbb{C}-point $\left[E^{\bullet}\right]$:

$$
H^{k}\left(\left.\mathbb{L}_{\mathcal{M}_{X}}\right|_{[E \bullet]}\right) \cong \operatorname{Ext}^{1-k}\left(E^{\bullet}, E^{\bullet}\right)
$$

- Brav-Dyckerhoff(18') (PTVV for compact X) prove that \mathcal{M}_{X} is -2 -shifted symplectic. Induces the Serre-duality isomorphism $\mathbb{L}_{\mathcal{M}_{X}} \xrightarrow{\sim} \mathbb{L}_{\mathcal{M}_{X}}[-2]$.
- Defining $K_{\mathcal{M}_{X}}=\operatorname{det}\left(\mathbb{L}_{\mathcal{M}_{X}}\right)$ and using Serre duality, we get $i^{\omega}: K_{\mathcal{M}_{X}} \rightarrow\left(K_{\mathcal{M}_{X}}\right)^{*}$. $O^{\omega} \rightarrow \mathcal{M}_{X}$ the square root \mathbb{Z}_{2}-bundle associated to i^{ω}.

Ambitious approach

Algebraic geometric	Differential geometric	
compactly supported perfect com-	compactly supported pseudo-	
plex $\left[E^{\bullet}\right]$		$\operatorname{differential~operator~} \Psi: \Gamma_{\mathrm{cs}}^{\infty}\left(V_{0}\right) \rightarrow$
	$=$	$\Gamma^{\infty}\left(V_{1}\right)$
$\operatorname{det}\left(\operatorname{RHom}\left(E^{\bullet}, E^{\bullet}\right)\right)$	$\operatorname{det}(\Psi)$	
$\bigotimes_{i \in \mathbb{Z}} \operatorname{det}^{(-1)^{i}}\left(\operatorname{Ext}^{i}\left(E^{\bullet}, E^{\bullet}\right)\right)$		$\operatorname{der}(\Psi)) \operatorname{det}^{*}\left(\operatorname{Ker}\left(\Psi^{*}\right)\right)$
Serre-duality		$\operatorname{Real} \operatorname{structure~} \Psi=\Psi_{\mathbb{R}} \otimes \mathrm{id}_{\mathbb{C}}$
$\operatorname{det}\left(\operatorname{RHom}\left(E^{\bullet}, E^{\bullet}\right)\right)$		
$\operatorname{det}\left(\operatorname{RHom}\left(E^{\bullet}, E^{\bullet}\right)\right)^{*}$		
$\left.\mathrm{O}^{\omega}\right\|_{\left[E^{\bullet}\right]}$	$\operatorname{or}\left(\operatorname{det}_{\mathbb{R}}\left(\Psi_{\mathbb{R}}\right)\right)$	

- Blanc(12') defines $(-)^{\text {top }}:$ HSta $_{\mathbb{C}} \rightarrow$ Top
- For X a Hausdorff topological space, $\mathcal{C}_{X}=\operatorname{Map}\left(\left(X^{+},+\right),(B U \times \mathbb{Z}, 0)\right)$ classifies $K_{\text {cs }}^{0}(X)$.
- Think of \mathcal{C}_{X} as the differential geometric counter-part of $\left(\mathcal{M}_{X}\right)^{\text {top }}$ with a natural map $\Gamma_{X}:\left(\mathcal{M}_{X}\right)^{\text {top }} \rightarrow \mathcal{C}_{X}$.
- $K_{\mathrm{cs}}^{0}(X)$ can be expressed in terms of classes of $\left(V_{1}, V_{2}, \phi_{\infty}\right)$, motivating what follows.
- Take \bar{X} smooth projective compactification, s.t. $D=\bar{X} \backslash X$ is a strict normal crossing divisor.
- For any projective scheme Y define $\mathcal{M}^{Y}=\operatorname{Map}_{\mathbf{H S t a}}^{C}(Y$, Perf $)$.
- There is a natural map $\rho_{D}: \mathcal{M}_{\bar{X}} \rightarrow \mathcal{M}^{D}$ and we form $\mathcal{M}_{\bar{X}} \times{ }_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}}$.

Notation:

- $\mathcal{E} \mathrm{Xt}_{L}$ the complex on \mathcal{M}_{X} given at a point $\left[E^{\bullet}\right]$ by RHom ${ }^{\bullet}\left(E^{\bullet}, E^{\bullet} \otimes L\right)$ for some coherent sheaf L (not necessarily compactly supported).
- We then have the duality $\mathcal{E} \mathrm{Xt}_{L} \cong\left(\mathcal{E} \mathrm{Xt}_{K_{X} \otimes L^{\vee}}\right)^{\vee}[-4]$
- Set $\Lambda_{L}:=\operatorname{det}\left(\mathcal{E x t}_{L}\right)$, then

$$
\begin{equation*}
\Lambda_{L} \cong \Lambda_{K_{X} \otimes L^{\vee}}^{*} \tag{1}
\end{equation*}
$$

Definition

Let X be a smooth projective variety and K_{X} its canonical divisor. A divisor Θ, such that $2 \Theta=K_{X}$ is called a theta characteristic. We say that (X, Θ) for a given choice of a theta characteristic Θ is spin.
Applying (1) to the case $L=\Theta$, one obtains an isomorphism of line bundles $i^{\Theta}:=i_{\Theta}: K_{\mathcal{M}_{X}} \rightarrow K_{\mathcal{M}_{X}}^{*}$. We define the orientation \mathbb{Z}_{2}-bundle O^{Θ} on \mathcal{M}_{X} as the associated \mathbb{Z}_{2}-bundle to the isomorphism i^{Θ}.

Examples:

- $\mathbb{C}^{4} \subset \mathbb{P}^{1} \times \mathbb{P}^{3}$
- $\operatorname{Tot}(E \rightarrow V)$, s.t. $\operatorname{det}(E)=K_{V}$ and $\operatorname{rk}(E)$ odd, then take $\bar{X}=\mathbb{P}\left(E \oplus \mathcal{O}_{S}\right)$.
- $\operatorname{Tot}\left(L_{1} \oplus \mathrm{Ł}_{2} \rightarrow S\right) \subset \mathbb{P}\left(L_{1} \oplus \mathcal{O}_{S}\right) \times_{S} \mathbb{P}\left(L_{2} \oplus \mathcal{O}_{S}\right)$
- Doesn't work if $\operatorname{rk}(E)=2$ or for general toric CY 4 -fold and will most likely depend on a choice of \bar{X}.

General approach:

- Inclusion $\zeta: \mathcal{M}_{X} \rightarrow \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}},\left[E^{\bullet}\right] \mapsto\left[i_{*} E^{\bullet}, 0\right]$.

Proposition

For a choice of extension data \bowtie, there exist a natural isomorphism $\vartheta_{\bowtie}: \pi_{1}^{*}\left(\Lambda_{\mathcal{O}_{X}}\right) \otimes \pi_{2}^{*}\left(\Lambda_{\mathcal{O}_{X}}\right)^{*} \rightarrow \pi_{1}^{*}\left(\Lambda_{\mathcal{O}_{X}}\right)^{*} \otimes \pi_{2}^{*}\left(\Lambda_{\mathcal{O}_{X}}\right)$, such that its associated square root \mathbb{Z}_{2}-bundle $O^{\vartheta \bowtie} \rightarrow \mathcal{M}_{\bar{X}} \times \mathcal{M}^{D} \mathcal{M}_{\bar{X}}$ comes with a natural isomorphism $\zeta^{*}\left(O^{\vartheta \bowtie}\right) \cong O^{\omega}$ on \mathbb{Z}_{2}-bundles on \mathcal{M}_{X}.

Construction of $O^{\vartheta \bowtie}$, part 1

- Consider $\left[E^{\bullet}, F^{\bullet}, \phi\right] \in \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}}$. Use notation $\operatorname{det}\left(E^{\bullet}, F^{\bullet}\right)=\operatorname{det}\left(\operatorname{RHom}\left(E^{\bullet}, F^{\bullet}\right)\right)$.
- Isomorphism:

$$
\operatorname{det}\left(E^{\bullet}, E^{\bullet}\right) \operatorname{det}^{*}\left(F^{\bullet}, F^{\bullet}\right) \cong \operatorname{det}^{*}\left(E^{\bullet}, E^{\bullet} \otimes K_{\bar{X}}\right) \operatorname{det}\left(F^{\bullet}, F^{\bullet} \otimes K_{\bar{X}}\right)
$$

- express $K_{\bar{X}}=\sum_{i=1}^{N} a_{i} D_{i}$, where D_{i} smooth irreducible divisors, s.t. $D=\bigcup_{i=1}^{N} D_{i}$.
- For each line bundle L have $\left.0 \rightarrow L \xrightarrow{-s_{i}} L\left(D_{i}\right) \rightarrow L\left(D_{i}\right)\right|_{D_{i}} \rightarrow 0$ which gives

$$
\begin{aligned}
\operatorname{det}\left(E^{\bullet}, E^{\bullet} \otimes L\left(D_{i}\right)\right) & \operatorname{det}^{*}\left(F^{\bullet}, F^{\bullet} \otimes L\left(D_{i}\right)\right) \\
& \cong \operatorname{det}\left(E^{\bullet}, E^{\bullet} \otimes L\right) \operatorname{det}^{*}\left(F^{\bullet}, F^{\bullet} \otimes L\right)
\end{aligned}
$$

Construction of $O^{\vartheta_{\bowtie} \bowtie}$, part 2

- Repeat to obtain

$$
\vartheta_{\bowtie}: \operatorname{det}\left(E^{\bullet}, E^{\bullet}\right) \operatorname{det}^{*}\left(F^{\bullet}, F^{\bullet}\right) \cong \operatorname{det}^{*}\left(E^{\bullet}, E^{\bullet}\right) \operatorname{det}\left(F^{\bullet}, F^{\bullet}\right)
$$

- $\left.O^{\vartheta \bowtie}\right|_{[E \bullet, F \bullet, \phi]}$ square-root \mathbb{Z}_{2}-bundle associated to ϑ_{\bowtie}.
- Extension data \bowtie is collecting the data of the sections s_{i} and order of D_{i} used. One requires that $\Pi\left(s_{i}\right)^{a_{i}}$ is a meromorphic extension of ω.
Now prove $O^{\vartheta \bowtie}$ is trivializable and so $O^{\omega} \rightarrow \mathcal{M}_{X}$ is.
- Have the map $\Gamma:\left(\mathcal{M}_{\bar{X}} \times_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}}\right)^{\text {top }} \rightarrow \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_{D}} \mathcal{C}_{\bar{X}}$,

Theorem
Let X be a smooth Calabi-Yau 4-fold, \bar{X} its smooth projective compactification by a strictly normal crossing divisor D. For any extension data \bowtie the \mathbb{Z}_{2}-bundle

$$
\begin{equation*}
O^{\vartheta_{\bowtie}} \rightarrow \mathcal{M}_{\bar{X}} \times_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}} \tag{2}
\end{equation*}
$$

is trivializable. There exists a natural trivializable \mathbb{Z}_{2}-bundle $D_{O}^{\mathcal{C}} \rightarrow \mathcal{C}_{\bar{X}} \times{ }_{\mathcal{C}_{D}} \mathcal{C}_{\bar{X}}$ with a natural isomorphism

$$
\begin{equation*}
\mathfrak{I}^{\bowtie}: \Gamma^{*}\left(D_{O}^{\mathcal{C}}\right) \cong\left(O^{\vartheta \bowtie}\right)^{t o p} . \tag{3}
\end{equation*}
$$

Immediate Corollaries

Composing

$$
\Gamma \circ \zeta^{\mathrm{top}}:\left(\mathcal{M}_{X}\right)^{\mathrm{top}} \rightarrow \mathcal{C}_{\bar{X}} \times \times_{\mathcal{C}_{D}} \mathcal{C}_{\bar{X}}
$$

get a map that factors through $\Gamma_{X}:\left(\mathcal{M}_{X}\right)^{\text {top }} \rightarrow \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_{D}}\{0\}$, where

$$
\mathcal{C}_{\bar{X}} \times_{\mathcal{C}_{D}}\{0\}=\operatorname{Map}_{C^{0}}\left(\left(X^{+},+\right),(B U \times \mathbb{Z}, 0)\right)=\mathcal{C}_{X} .
$$

Theorem
Let (X, ω) be a quasi-projective Calabi-Yau 4-fold, then the \mathbb{Z}_{2}-bundle

$$
\begin{equation*}
O^{\omega} \rightarrow \mathcal{M}_{X} \tag{4}
\end{equation*}
$$

is trivializable. Moreover, there is a canonical isomorphism

$$
\mathfrak{I}:\left(\Gamma_{X}\right)^{*}\left(O^{c s}\right) \cong\left(O^{\omega}\right)^{t o p} .
$$

- Can extend by the structure sheaf on D to get orientability of stable pair moduli spaces and Hilbert schemes.
- Let $\overline{\mathcal{M}}$ be a moduli stack of stable pairs or ideals sheaves on \bar{X} with the projection $\pi_{\mathbb{G}_{m}}: \overline{\mathcal{M}} \rightarrow M$ which is a $\left[* / \mathbb{G}_{m}\right]$ principal bundle. We have an inclusion $\eta: \overline{\mathcal{M}} \rightarrow \mathcal{M}_{\bar{X}} \times \mathcal{M}^{D} \mathcal{M}_{\bar{X}}$ given on points by mapping $[\overline{\mathcal{E}}] \mapsto\left(\left[\overline{\mathcal{E}}, \mathcal{O}_{\bar{X}}\right]\right)$.

Theorem

Let $O_{M}^{\omega} \rightarrow M$ be the orientation bundle for M a moduli scheme of stable pairs or ideals sheaves of proper subschemes of X. There is a canonical isomorphism of \mathbb{Z}_{2}-bundles

$$
\pi_{\mathbb{G}_{m}}^{*}\left(O_{M}^{\omega}\right) \cong \eta^{*}\left(O^{\vartheta_{\bowtie}}\right) .
$$

In particular, $O_{M}^{\omega} \rightarrow M$ is trivializable.

- Spaces $\left(\mathcal{M}_{X}\right)^{\text {top }},\left(\mathcal{M}_{\bar{X}} \times_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}}\right)^{\text {top }}, \mathcal{C}_{X}, \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_{D}} \mathcal{C}_{\bar{X}}$ are admissible H -spaces (in fact Γ-spaces/ E_{∞}-spaces), which are group-like

Definition (Cao-Gross-Joyce(18'))

X an H-space. A weak H-principal \mathbb{Z}_{2}-bundle on X is a \mathbb{Z}_{2}-bundle $P \rightarrow X$ with an isomorphism of \mathbb{Z}_{2}-bundles $p: P \boxtimes_{\mathbb{Z}_{2}} P \rightarrow \mu_{X}^{*}(P)$. A strong H-principal \mathbb{Z}_{2}-bundle on X is a pair (Q, q) : trivializable \mathbb{Z}_{2}-bundle $Q \rightarrow X$, isomorphism of \mathbb{Z}_{2} bundles

$$
q: Q \boxtimes_{\mathbb{Z}_{2}} Q \rightarrow \mu_{X}^{*}(Q)
$$

such that under the homotopy $h: \mu_{X} \circ\left(\operatorname{id}_{X} \times \mu_{X}\right) \simeq \mu_{X} \circ\left(\mu_{X} \times \mathrm{id}_{X}\right)$:

$$
\left(\mathrm{id}_{X} \times \mu_{X}\right)^{*}(q) \circ(\mathrm{id} \times q): Q \boxtimes_{\mathbb{Z}_{2}} Q \boxtimes_{\mathbb{Z}_{2}} Q \rightarrow\left(\mu_{X} \circ\left(\mathrm{id}_{X} \times \mu_{X}\right)\right)^{*} Q
$$

and

$$
\left(\mu_{X} \times \operatorname{id}_{X}\right)^{*}(q) \circ(q \times \mathrm{id}): Q \boxtimes_{\mathbb{Z}_{2}} Q \boxtimes_{\mathbb{Z}_{2}} Q \rightarrow\left(\mu _ { X } \circ \left(\mu_{X}\right.\right.
$$

- A \mathbb{Z}_{2}-bundle $O \rightarrow X$ together with a continuous map $\operatorname{deg}(O): X \rightarrow \mathbb{Z}_{2}$ is a \mathbb{Z}_{2}-graded \mathbb{Z}_{2}-bundle. If O_{1}, O_{2} are \mathbb{Z}_{2}-graded then the isomorphism $O_{1} \otimes_{\mathbb{Z}_{2}} O_{2} \cong O_{2} \otimes_{\mathbb{Z}_{2}} O_{1}$ differs by the $\operatorname{sign}(-1)^{\operatorname{det}\left(O_{1}\right) \operatorname{deg}\left(O_{2}\right)}$ from the naive one.
- \mathbb{Z}_{2}-graded H -principal \mathbb{Z}_{2}-bundles combine the two definitions. Dual $\left(O^{*}, p^{*}\right)$ defined by $O^{*}=O$ and $p^{*}=(-1)^{\operatorname{deg}\left(\pi_{1}^{*}(O)\right) \operatorname{deg}\left(\pi_{2}^{*}(O)\right)} p$. Isomorphisms have to preserve grading.
Examples:
- $\phi^{\omega}: O^{\omega} \boxtimes_{\mathbb{Z}_{2}} O^{\omega} \rightarrow \mu_{\mathcal{M}_{X}}^{*}\left(O^{\omega}\right)$,
$\phi^{\vartheta}: O^{\vartheta} \bowtie \boxtimes_{\mathbb{Z}_{2}} O^{\vartheta} \bowtie \mu_{\mathcal{M}_{\bar{X}, D}}^{*}\left(O^{\omega}\right)$ making them into weak
H-principal \mathbb{Z}_{2}-bundles satisfying the associativity.
- Joyce-Tanaka-Upmeier(18') construct \mathbb{Z}_{2}-bundles $O_{\mathcal{C}}^{\text {D}_{+}} \rightarrow \mathcal{C}_{X}$ for X compact spin
- For any principal bundle P define the topological stack $\mathcal{B}_{P}=\left[\mathcal{A}_{P} / \mathcal{G}_{P}\right], \mathcal{A}_{P}$ the space of connections, \mathcal{G}_{P} the gauge group
- If Y is compact and spin, let $\square_{+}: S_{+} \rightarrow S_{-}$be the positive Dirac operator.
- Define $O_{P}^{\not D_{+}} \rightarrow \mathcal{B}_{P}$ by $\left.O_{P}^{\not D_{+}}\right|_{\left[\nabla_{P}\right]}=\operatorname{or}\left(\operatorname{det}_{\mathbb{R}}\left(D_{\mathrm{ad}(P)}^{\nabla}\right)\right)$ giving $O^{\not D_{+}} \rightarrow \mathcal{B}_{Y}=\bigcup_{[P]} \mathcal{B}_{P}$.
- There is a natural $\Sigma:\left(\mathcal{B}_{Y}\right)^{\text {cla }} \rightarrow \mathcal{C}_{Y}$ which is a homotopy theoretic group completion of H -spaces. Using (weak) universality property get $O_{\mathcal{C}}^{\not D} \rightarrow \mathcal{C}_{Y}$.
- Cao-Gross-Joyce(18') prove that $O_{\mathcal{C}}^{\not D}$ is a strong H-principal \mathbb{Z}_{2}-bundle.
- The grading: $\left.\operatorname{deg}\left(O_{X}^{\not \phi_{+}}\right)\right|_{\mathcal{C}_{\alpha}}=\chi^{\not \phi_{+}}(\alpha, \alpha)$ where

$$
\chi^{\not D_{+}}(E, E)=\operatorname{ind}\left(\not D^{\nabla_{\mathrm{ad}(P)}}\right)
$$

- Let $T \supset D$ be a tubular neighborhood (i.e. union of $T_{i} \supset D_{i}$), $K=X \backslash T, Y \subset X$ a manifold with a boundary containing K.
- $\tilde{Y}=Y \cup_{Y}(-Y)$ has a natural spin structure. Define $\tilde{T}=\bar{T} \cup(-Y)$.
- For each $P, Q \rightarrow \tilde{Y}$ pair of $U(n)$ bundles, s.t. $\left.\left.P\right|_{\tilde{T}} \cong Q\right|_{\tilde{T}}$. Consider $\mathcal{A}_{P} \times \mathcal{A}_{Q} \times \mathcal{G}_{P, Q, \tilde{T}}$ with an obvious action of $\mathcal{G}_{P} \times \mathcal{G}_{Q}$.
- Get the topological stack $\mathcal{B}_{P, Q, \tilde{T}}=\left[\mathcal{A}_{P} \times \mathcal{A}_{Q} \times \mathcal{G}_{P, Q, \tilde{T}} / \mathcal{G}_{P} \times \mathcal{G}_{Q}\right]$

$$
\mathcal{B}_{\tilde{Y}, \tilde{T}}=\bigcup_{\substack{[P],[Q]: \\[P \mid \tilde{T}]=\left[\left.Q\right|_{\tilde{T}}\right]}} \mathcal{B}_{P, Q, \tilde{T}}
$$

- Using $\mathcal{B}_{\tilde{Y}} \stackrel{p_{1}}{\longleftrightarrow} \mathcal{B}_{\tilde{Y}, \tilde{T}} \xrightarrow{p_{2}} \mathcal{B}_{\tilde{Y}}$ define

$$
D_{O}(\tilde{Y})=p_{1}^{*}\left(O^{\mathscr{D}_{+}}\right) \boxtimes_{\mathbb{Z}_{2}} p_{2}^{*}\left(\left(O^{D_{+}}\right)^{*}\right),
$$

Let $\mathcal{V}_{Y}=\operatorname{Map}_{C^{0}}\left(Y, G r^{\infty}(\mathbb{C})\right)$, then $\mathcal{V}_{\tilde{Y}} \times \mathcal{V}_{\tilde{T}} \mathcal{V}_{\tilde{Y}} \simeq\left(\mathcal{B}_{\tilde{Y}, \tilde{T}}\right)^{\text {cla }}$.

- Using a homotopy theoretic group completion $\mathcal{V}_{\tilde{Y}} \times \mathcal{V}_{\tilde{T}} \mathcal{V}_{\tilde{Y}} \rightarrow \mathcal{C}_{\tilde{Y}} \times \mathcal{C}_{\tilde{T}} \mathcal{C}_{\tilde{Y}}$ get $D_{O}^{\mathcal{C}}(\tilde{Y})$ on the latter.
- Define $G_{\tilde{Y}}: \mathcal{V}_{\bar{X}} \times \mathcal{V}_{D} \mathcal{V}_{\bar{X}} \rightarrow \mathcal{V}_{\tilde{Y}} \times \mathcal{V}_{\tilde{T}} \mathcal{V}_{\tilde{Y}},[E, F, \phi] \mapsto[\tilde{E}, \tilde{F}, \tilde{\phi}]$

- Pullback $D_{O}(\tilde{Y})$ and $D_{O}^{\mathcal{C}}(\tilde{Y})$ to get $D_{O}, D_{O}^{\mathcal{C}}$.
- For a scheme Z the moduli Ind-scheme of vector bundles generated by global sections $\mathcal{T}_{Z}=\operatorname{Map}_{\text {IndSch }_{\mathrm{C}}}\left(Z, \operatorname{Gr}\left(\mathbb{C}^{\infty}\right)\right)$,
- Have the homotopy commutative diagram of H -spaces

$$
\begin{align*}
& \left(\mathcal{T}_{\bar{X} \times \tau_{D}} \mathcal{T}_{\bar{X}}\right)^{\text {an }} \xrightarrow{\Lambda} \mathcal{V}_{\bar{X}} \times \mathcal{V}_{D} \mathcal{V}_{\bar{X}} \\
& \downarrow \Delta^{\text {top }} \tag{5}\\
& \left(\mathcal{M}_{\bar{X}} \times_{\mathcal{M}^{D}} \mathcal{M}_{\bar{X}}\right)^{\text {top }} \xrightarrow{\Gamma} \mathcal{C}_{\bar{X}} \times_{\mathcal{C}_{D}} \mathcal{C}_{\bar{X}}
\end{align*}
$$

- $\Delta^{\text {top }}$ and Ω are homotopy theoretic group completions \Longrightarrow only need to construct a natural isomorphism $\Lambda^{*}\left(D_{O}\right) \cong\left(\Delta^{\mathrm{top}}\right)^{*}\left(O^{\vartheta \bowtie}\right)$ and show it is a strong H-principal \mathbb{Z}_{2}-bundle isomorphism to get $\Gamma^{*}\left(D_{O}^{\mathcal{C}}\right) \cong O^{\vartheta} \bowtie$

Differential geometric side:

- Given by $\left.D_{O}\right|_{[E, F, \phi]}=\operatorname{or}\left(\operatorname{det}_{\mathbb{R}}\left(D_{+}^{\nabla_{\text {ad }(\tilde{P})}}\right)\right) \otimes_{\tilde{\mathbb{Z}_{2}}} \operatorname{or}\left(\operatorname{det}_{\mathbb{R}}^{*}\left(D_{+}^{\nabla_{\mathrm{ad}(\tilde{Q})}}\right)\right)$, where \tilde{P}, \tilde{Q} associated $U(n)$ bundles to \tilde{E}, \tilde{F}.
- Symbol map (Atiyah-Singer(71'))
$\sigma: \Psi D O_{m}\left(E_{0}, E_{1}\right) \rightarrow \operatorname{Sym}_{m}\left(E_{0}, E_{1}\right)$, then
$\sigma\left(\not D_{+}^{\nabla_{\mathrm{ad}(P)}}\right)=\sigma\left(\not D_{+}\right) \otimes \mathrm{id}_{\pi^{*}(\operatorname{ad}(P))}$, where $\pi: T \tilde{Y} \rightarrow \tilde{Y}$.
- Elliptic symbols of degree m : $\operatorname{Ell}_{m}\left(E_{0}, E_{1}\right)$. There is a map $(-)_{0}: \operatorname{Ell}_{m}\left(E_{0}, E_{1}\right) \rightarrow \operatorname{Ell}_{0}\left(E_{0}, E_{1}\right)$.
- or $(-)$ depends only on $\sigma(D)$ and or $(\sigma(D))=\operatorname{or}\left((\sigma(D))_{0}\right)$
- Using deformation of symbols in families (Upmeier(19'), Donaldson-Kronheimer) get

$$
\operatorname{or}\left(\Psi_{\mathbb{R}}\right)=\operatorname{or}\left(\begin{array}{cc}
\chi \sigma\left(\not D_{+}\right)_{0} \otimes \operatorname{id}_{\pi^{*}(\operatorname{ad}(P)} & (1-\chi) \operatorname{ad}(\phi)^{-1} \\
(1-\chi) \operatorname{ad}(\phi) & -\chi\left(\sigma\left(\not D_{+}\right)_{0} \otimes \operatorname{id}_{\pi^{*}(\operatorname{ad}(Q)}\right)^{*}
\end{array}\right)
$$

Algebraic geometric side:

- For simplicity assume $K_{\bar{X}}=D_{1}$
- Recall that we used
$\left.0 \rightarrow \operatorname{End}(E) \xrightarrow{\cdot s_{i}} \operatorname{End}(E)\left(D_{1}\right) \rightarrow \operatorname{End}(E)\left(D_{1}\right)\right|_{D_{1}} \rightarrow 0$ (+same for $\operatorname{End}(F))$.
- Replace $\left.\operatorname{End}(E)\left(D_{1}\right)\right|_{D_{1}}$ by a common resolutions:
$\operatorname{End}(E) \oplus \operatorname{End}(F) \rightarrow K$, where
$K=\operatorname{ker}\left(\left.\operatorname{End}(E)\left(D_{1}\right) \oplus \operatorname{End}(F)\left(D_{1}\right) \rightarrow \operatorname{End}(E)\left(D_{1}\right)\right|_{D_{1}}\right)$
- Express everything using vector bundles and their Dolbeault resolutions.

Comparing both sides

- Use deformation of complex determinant line bundles of symbols up to (contractible) isotopy to deform symbols of Dolbeault operator into compactly supported Ψ and express their the algebraic isomorphism as a real structure $\Psi_{\mathbb{R}}$ (see https://arxiv.org/abs/2008.08441)
- \mathcal{C}_{α} connected component of \mathcal{C}_{X} corresponding to $\alpha \in K_{\mathrm{cs}}^{0}(X)$ and $O_{\alpha}^{\text {cs }}=O^{\text {cs }} \mid \mathcal{C}_{\alpha}$
- $\mu_{\mathcal{C}}: \mathcal{C}_{X} \times \mathcal{C}_{X} \rightarrow \mathcal{C}_{X}$
- There are natural isomorphisms $\tau^{\mathrm{cs}}: O^{\mathrm{cs}} \boxtimes_{\mathbb{Z}_{2}} O^{\mathrm{cs}} \rightarrow \mu_{\mathcal{C}}^{*}\left(O^{\mathrm{cs}}\right)$ and $\phi^{\omega}: O^{\omega} \boxtimes_{\mathbb{Z}_{2}} O^{\omega} \rightarrow \mu_{\mathcal{M}_{X}}^{*}\left(O^{\omega}\right)$.
- Could choose trivializations $o_{\alpha}^{\text {cs }}$ of $O_{\alpha}^{\text {cs }}$. These induce $o_{\alpha}^{\omega}=\Im\left(\left(\Gamma^{\mathrm{cs}}\right)^{*}\left(o_{\alpha}^{\mathrm{cs}}\right)\right)$ orientations of O_{α}^{ω} which is the restriction of O^{ω} to $\mathcal{M}_{\alpha}=\Gamma^{-1}\left(\mathcal{C}_{\alpha}\right)$.
- We can ask about how these orientations behave under addition : Important for constructing natural orientations and Joyce's vertex algebra used to express WCF.

Theorem

For all $\alpha, \beta \in K_{c s}^{0}(X): \tau_{\beta, \alpha}^{c s}=(-1)^{\bar{\chi}(\alpha, \alpha) \bar{\chi}(\beta, \beta)+\bar{\chi}(\alpha, \beta)} \tau_{\alpha, \beta}^{c s}$, where
$\bar{\chi}: K_{c s}^{0}(X) \times K_{c s}^{0}(X) \rightarrow \mathbb{Z}$ is the compactly supported Euler form. For
all $\alpha \beta \in K_{c s}^{0}(X)$, then there are $\epsilon_{\alpha, \beta} \in\{-1,1\}$, defined by
$\tau_{\alpha, \beta}^{c s}\left(o_{\alpha}^{c s} \boxtimes_{\mathbb{Z}_{2}} o_{\beta}^{c s}\right)=\epsilon_{\alpha, \beta} \mu_{c s}^{*}\left(o_{\alpha+\beta}^{c s}\right)$, such that they satisfy
$\epsilon_{\beta, \alpha}=(-1)^{\bar{\chi}(\alpha, \alpha) \bar{\chi}(\beta, \beta)+\bar{\chi}(\alpha, \beta)} \epsilon_{\alpha, \beta}$.
Same can be said for o_{α}^{ω}.

Summary

- All reasonable moduli spaces (compactly supported perfect complexes, Hilbert schemes, stable pairs) are orientable.
- These orientations are pullbacks of differential geometric ones which are compactly supported in X.
- They satisfy relations under sums which make them compatible with the vertex algebras on $H_{*}\left(\mathcal{M}_{X}\right)$.

