Paving Tropical Ideals

Nicholas Anderson, Felipe Rincón

Queen Mary University of London

November 16, 2021

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

1/37

Background

Paving Tropical Ideals

Examples

References

<ロト <回 > < E > < E > E の Q (* 2/37)

1. $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ with operations $a \oplus b := \min\{a, b\}$ and $a \otimes b := a + b$ the **tropical semiring**

- 1. $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ with operations $a \oplus b := \min\{a, b\}$ and $a \otimes b := a + b$ the **tropical semiring**
- 2. $\mathbb{B} := \{0, \infty\} \subset \overline{\mathbb{R}}$ is the boolean semiring

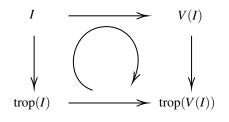
- 1. $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ with operations $a \oplus b := \min\{a, b\}$ and $a \otimes b := a + b$ the **tropical semiring**
- 2. $\mathbb{B} := \{0, \infty\} \subset \overline{\mathbb{R}}$ is the boolean semiring
- 3. Given a field K, we consider val : $K \to T$ a "non-archemedian field valuation"

- 1. $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ with operations $a \oplus b := \min\{a, b\}$ and $a \otimes b := a + b$ the **tropical semiring**
- 2. $\mathbb{B} := \{0, \infty\} \subset \overline{\mathbb{R}}$ is the boolean semiring
- 3. Given a field K, we consider val : $K \to T$ a "non-archemedian field valuation"
- 4. For this talk $val(a) = 0 \iff a \neq 0_K$, $val(0_K) = \infty$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

3/37

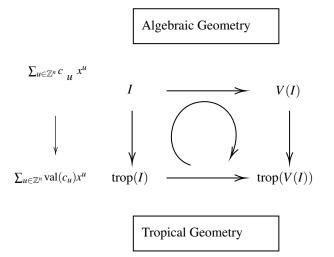
Algebraic Geometry

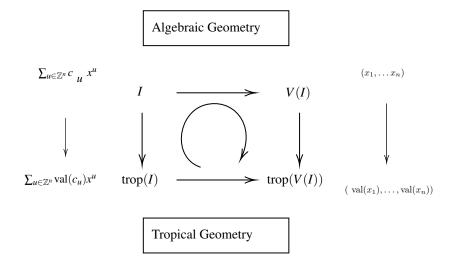


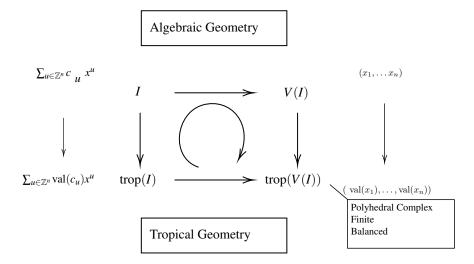
Tropical Geometry

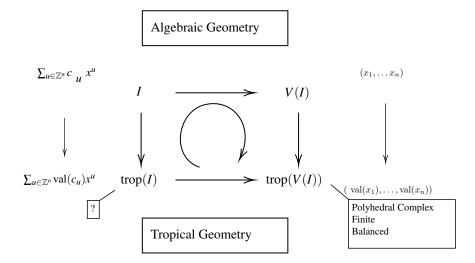
イロト イヨト イヨト イヨト 二日

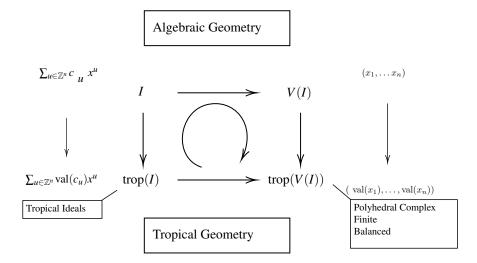
4/37











Motivation

▶ "Non-realizable" tropical ideals are hard to construct.

Motivation

- ▶ "Non-realizable" tropical ideals are hard to construct.
- ▶ (Zajaczkowska 2018)[Zaj18]: Zero-dimensional, degree-2 homogeneous tropical ideals in $\mathbb{B}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ are in 1-1 correspondence with sublattices \mathbb{Z}^n

Contribution

1. Provide a simple way of constructing zero-dimensional tropical ideals of any degree.

Contribution

- 1. Provide a simple way of constructing zero-dimensional tropical ideals of any degree.
- 2. Understand the degree-2 sublattice correspondence from a combinatorial perspective, "generalizing" to higher degrees

Method/Synopsis

1. identify a subclass of tropical ideals that admits a well-defined notion of ideal generation (paving tropical ideals)

Method/Synopsis

- 1. identify a subclass of tropical ideals that admits a well-defined notion of ideal generation (paving tropical ideals)
- 2. study conditions on the generating set that controls the structure of the resulting ideal

Method/Synopsis

- 1. identify a subclass of tropical ideals that admits a well-defined notion of ideal generation (paving tropical ideals)
- 2. study conditions on the generating set that controls the structure of the resulting ideal
- 3. use these conditions to construct and study examples.

Matroids (Circuits)

Definition

A matroid presented by circuits is a set E along with a set system C on E such that

- 1. $\emptyset \notin \mathcal{C}$,
- 2. the elements of \mathcal{C} are finite,
- 3. C is a clutter, and
- 4. (Circuit Elimination Axiom) For each pair $C_1, C_2 \in C$, and each element $e \in C_1 \cap C_2$ there exists a $C_3 \in C$ such that

 $C_3 \subset (C_1 \cup C_2) \setminus e$

Matroids (Circuits)

Definition

A matroid presented by circuits is a set E along with a set system C on E such that

- 1. $\emptyset \notin \mathcal{C}$,
- 2. the elements of \mathcal{C} are finite,
- 3. C is a clutter, and
- 4. (Circuit Elimination Axiom) For each pair $C_1, C_2 \in C$, and each element $e \in C_1 \cap C_2$ there exists a $C_3 \in C$ such that

$$C_3 \subset (C_1 \cup C_2) \setminus e$$

Sets of *E* which do not contain a circuit are **independent**.

Matroids (Circuits)

Definition

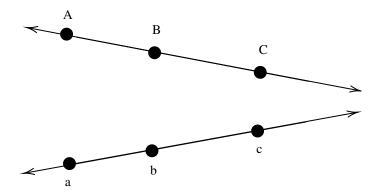
A matroid presented by circuits is a set E along with a set system C on E such that

- 1. $\emptyset \notin \mathcal{C}$,
- 2. the elements of \mathcal{C} are finite,
- 3. C is a clutter, and
- 4. (Circuit Elimination Axiom) For each pair $C_1, C_2 \in C$, and each element $e \in C_1 \cap C_2$ there exists a $C_3 \in C$ such that

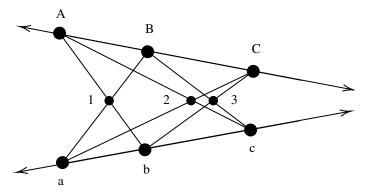
$$C_3 \subset (C_1 \cup C_2) \setminus e$$

- Sets of E which do not contain a circuit are **independent**.
- The size of a maximal independent set is the **rank** of the matroid.

Example: Points in Space

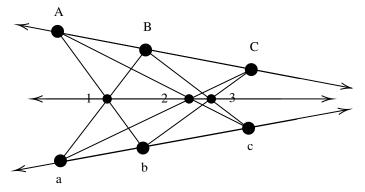


Example: Points in Space



This is a Matroid

Example: Points in Space



Pappus' Theorem: 1, 2, 3 must lie on a line in any vector space

▶ The polynomials in an ideal *I* with **minimal support** correspond to the circuits of a matroid.

Example: Ideals

▶ The polynomials in an ideal *I* with **minimal support** correspond to the circuits of a matroid.

$$\sum_{u\in\mathbb{Z}^n} c_u x^u \mapsto \{u\in\mathbb{Z}^n \mid c_u\neq 0\}$$

Example: Ideals

▶ The polynomials in an ideal *I* with **minimal support** correspond to the circuits of a matroid.

$$\sum_{u\in\mathbb{Z}^n} c_u x^u \mapsto \{u\in\mathbb{Z}^n \mid c_u\neq 0\}$$

► An ideal in K[x₁^{±1},...,x_n^{±1}] gives us a matroid on the set Zⁿ, called it's underlying matroid.

Tropical Ideals

Definition

A tropical ideal is an ideal in $\overline{\mathbb{R}}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ whose polynomials of minimal support form the circuits of a matroid.

• Consider
$$I := \langle x - y \rangle \subset \mathbb{C}[x, y].$$

- Consider $I := \langle x y \rangle \subset \mathbb{C}[x, y].$
- ▶ trop(I) ⊂ $\overline{\mathbb{R}}[x_1^{\pm 1}, x_2^{\pm 1}]$, is not finitely generated as $x^d y^d \in I$ hence $x^d \oplus y^d \in \text{trop}(I)$.
- Since no cancellation occurs naturally in $\overline{\mathbb{R}}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, no finite collection of $x^d \oplus y^d$ may be used to generate all such binomials.

- Consider $I := \langle x y \rangle \subset \mathbb{C}[x, y].$
- ▶ trop(I) ⊂ $\overline{\mathbb{R}}[x_1^{\pm 1}, x_2^{\pm 1}]$, is not finitely generated as $x^d y^d \in I$ hence $x^d \oplus y^d \in \text{trop}(I)$.
- Since no cancellation occurs naturally in $\overline{\mathbb{R}}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, no finite collection of $x^d \oplus y^d$ may be used to generate all such binomials.
- This makes it quite hard to construct nontrivial examples of tropical ideals: what can we do to specify an ideal with an infinite generating set?

Tropical Ideals are Nice

- 1. Variety is finite, balanced polyhedral complex
- 2. Satisfy ascending chain condition
- 3. Hilbert **polynomial** encodes meaningful combinatorial data
- 4. Weak Nulstellensatz holds.

Paving Matroids

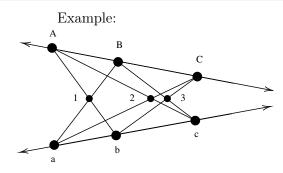
Definition

A **Paving Matroid** of rank r is a matroid (of rank r) whose circuits have size r or r + 1

Paving Matroids

Definition

A **Paving Matroid** of rank r is a matroid (of rank r) whose circuits have size r or r + 1



Generalized Partitions

Definition

Given a set E, a d-partition on E is a set system \mathcal{H} such that P1) $|\mathcal{H}| \ge 2$, P2) for all $H \in \mathcal{H}, |H| \ge d$, and

P3) each d-subset of E appears in a unique element of \mathcal{H} .

Elements of \mathcal{H} are called **blocks**.

From d-Partitions to Circuits

• *d*-partitions exactly encode paving matroids of rank d + 1

From d-Partitions to Circuits

- *d*-partitions exactly encode paving matroids of rank d + 1
- ► The circuits of size d + 1 are exactly the subsets of blocks of size at least d + 1.

From d-Partitions to Circuits

- *d*-partitions exactly encode paving matroids of rank d + 1
- The circuits of size d + 1 are exactly the subsets of blocks of size at least d + 1.
- ▶ The circuits of size d + 2 are implicit: take all d + 2 subsets of *E* not containing a circuit of size d + 1.

 \blacktriangleright We can generate *d*-partitions

- ▶ We can generate *d*-partitions
- Let S be a set system on E with elements of size at least d+1, and with pairwise intersections of size less than d.

- \blacktriangleright We can generate *d*-partitions
- Let S be a set system on E with elements of size at least d+1, and with pairwise intersections of size less than d.
- \blacktriangleright Just fill in the *d*-subsets not covered by *S*:

$$\mathcal{H} := S$$

- \blacktriangleright We can generate *d*-partitions
- Let S be a set system on E with elements of size at least d+1, and with pairwise intersections of size less than d.
- \blacktriangleright Just fill in the *d*-subsets not covered by *S*:

$$\mathcal{H} := S \cup \{ T \subset E \mid |T| = d \text{ and } T \not\subset S \text{ for all } S \in \mathcal{S} \}$$

Recap

- ► Tropical ideals are ideals in B[x₁^{±1},...,x_n^{±1}] that are matroids.
- ▶ Matroids, and thus tropical ideals, are very complicated
- d-Partitions provide a succinct way of describing the circuits of a paving matroid.
- ▶ d-Partitions can be generated

Definition

Definition

A zero-dimensional tropical ideal is called a **paving tropical** ideal if its underlying matroid $\underline{Mat}(I)$ is a paving matroid.

> <ロト < 回 ト < 直 ト < 直 ト < 直 ト 目 の Q () 19 / 37

Structural Observation

► A (tropical) ideal I gives us a matroid on Zⁿ called its' underlying matroid <u>Mat(I)</u> via the map

$$\sum_{u\in\mathbb{Z}^n} c_u x^u \mapsto \{u\in\mathbb{Z}^n \mid c_u\neq 0\}$$

Structural Observation

► A (tropical) ideal I gives us a matroid on Zⁿ called its' underlying matroid <u>Mat(I)</u> via the map

$$\sum_{u\in\mathbb{Z}^n} c_u x^u \mapsto \{u\in\mathbb{Z}^n \mid c_u\neq 0\}$$

▶ If $S \in \underline{Mat}(I)$, then the set $S + u := \{t + u \mid t \in S\}$ is also in $\underline{Mat}(I)$, as I is closed under multiplication by the monomial x^u .

Structural Observation

► A (tropical) ideal I gives us a matroid on Zⁿ called its' underlying matroid <u>Mat(I)</u> via the map

$$\sum_{u\in\mathbb{Z}^n} c_u x^u \mapsto \{u\in\mathbb{Z}^n \mid c_u\neq 0\}$$

▶ If $S \in Mat(I)$, then the set $S + u := \{t + u \mid t \in S\}$ is also in Mat(I), as I is closed under multiplication by the monomial x^u . Succinctly: Mat(I) is a matroid on \mathbb{Z}^n that is invariant under the action of \mathbb{Z}^n .

Invariance under Z^n action

Definition

We say that a *d*-partition \mathcal{H} of \mathbb{Z}^n is \mathbb{Z}^n -invariant if for each $\mathbf{u} \in \mathbb{Z}^n$ and $H \in \mathcal{H}, H + \mathbf{u} \in \mathcal{H}$.

・ロ ・ ・ 一 ・ ・ 言 ・ く 言 ・ こ ・ う へ (や 21 / 37

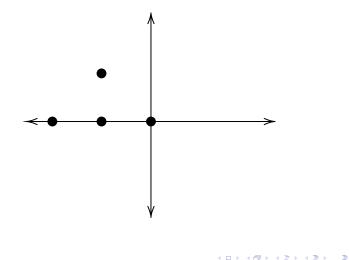
Correspondence Theorem

Theorem (Correspondence Theorem)

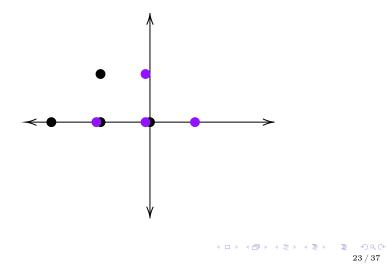
There is a natural one-to-one correspondence between tropical ideals $I \subset B[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ and \mathbb{Z}^n -invariant matroids on Z^n . In particular, there is a one-to-one correspondence between degree d+1 paving tropical ideals in $\mathbb{B}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ and \mathbb{Z}^n -invariant d-partitions of \mathbb{Z}^n .

Not just any subset of \mathbb{Z}^n can be a block in a paving tropical ideal; there is a geometric constraint.

Consider $S = \{(0,0), (-2,0), (-4,0), (-2,2)\}$ as a block in a 2-partition

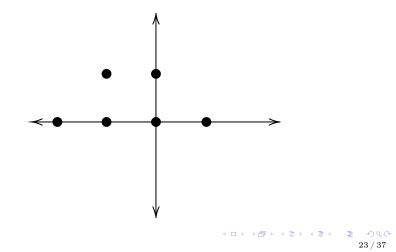


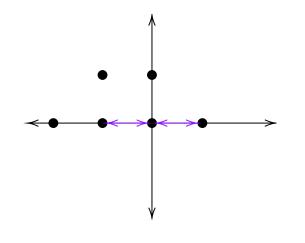
The set S+(2,0) is also a block in our paving tropical ideal



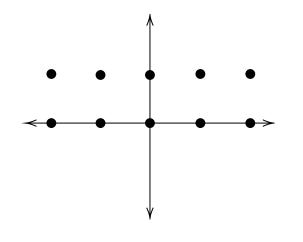
This is a problem because $S \cap S + (2,0) = \{(-2,0), (0,0)\}$, which has more than one element.

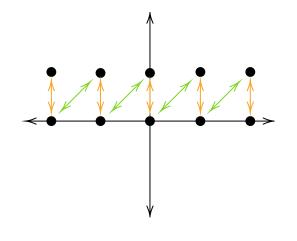
What if we try and fix this? The minimal block containing S contains S and S + (2, 0)



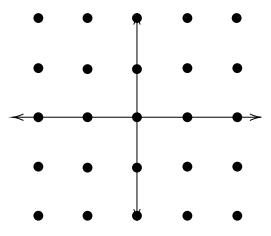


4回 ト 4日 ト 4 目 ト 4 目 ト 目 の Q () 23 / 37





The minimal block containing S is $(2\mathbb{Z})^2$



d-Sparsity

Definition

A subset $S \subset \mathbb{Z}^n$ is called *d*-sparse if there is no $\mathbf{u} \in \mathbb{Z}^n \setminus \mathbf{0}$ such that $|S \cap S + \mathbf{u}| \ge d$.

Proposition (A, Rincón, [AR21])

Suppose \mathcal{P} is a \mathbb{Z}^n -invariant d-partition of \mathbb{Z}^n . Then any block $S \in \mathcal{P}$ is either d-sparse or a non-trivial affine sublattice of \mathbb{Z}^n , *i.e.* it has the form $S = \mathbf{v} + L$ for $\mathbf{v} \in \mathbb{Z}^n$ and $\{\mathbf{0}\} \subsetneq L \subsetneq \mathbb{Z}^n$ a sublattice.

• Setting d = 1 we consider partitions of \mathbb{Z}^n .

- Setting d = 1 we consider partitions of \mathbb{Z}^n .
- Every subset of Z^n of size at least 2 intersects a translate of itself in one point.

- Setting d = 1 we consider partitions of \mathbb{Z}^n .
- Every subset of Z^n of size at least 2 intersects a translate of itself in one point.
- Every block in a degree 2 paving tropical ideal is the translate of a unique lattice L.

- Setting d = 1 we consider partitions of \mathbb{Z}^n .
- Every subset of Z^n of size at least 2 intersects a translate of itself in one point.
- Every block in a degree 2 paving tropical ideal is the translate of a unique lattice *L*.
- This is precisely the result of Zajaczkowska [Zaj18][Theorem 4.2.4]

Definition

Suppose \mathcal{A} is a collection of subsets of \mathbb{Z}^n satisfying: (A1) $\mathbb{Z}^n \notin \mathcal{A}$. (A2) $|A| \ge d + 1$ for all $A \in \mathcal{A}$. (A3) If $A_1, A_2 \in \mathcal{A}$ and $\mathbf{u} \in \mathbb{Z}^n$ satisfy $|A_1\mathcal{A}p(\mathbf{u} + A_2)| \ge d$ then $A_1 = \mathbf{u} + A_2$.

Define:

$$\mathcal{P}_d(\mathcal{A}) := (\mathbb{Z}^n + \mathcal{A}) \cup \mathcal{D},$$

where

$$\mathbb{Z}^n + \mathcal{A} := \{ \mathbf{u} + A : \mathbf{u} \in \mathbb{Z}^n \text{ and } A \in \mathcal{A} \}$$

and

$$\mathcal{D} := \{ S \subset \mathbb{Z}^n : |S| = d \text{ and } S \not\subset X \text{ for all } X \in \mathbb{Z}^n + \mathcal{A} \}.$$

We call $\mathcal{P}_d(\mathcal{A})$ the \mathbb{Z}^n -invariant *d*-partition of \mathbb{Z}^n generated by \mathcal{A} .

The key content of the previous frame

Given a collection of subsets of size at least d + 1, whose translations intersect in fewer than d points, we can generate a paving tropical ideal by simply considering \mathbb{Z}^n 's action on our set system, and then generating a d-partition as usual.

Lots of Paving Tropical Ideals

Proposition (A, Rincón)

There are uncountably many degree 3 paving tropical ideals in $\mathbb{B}[x^{\pm 1}]$.

Proof by Example

► To any $S \subset \mathcal{P}(\mathbb{N})$ of size at least 3 we associate the set $T_S := \{2^t \mid t \in S\}$

Proof by Example

- ► To any $S \subset \mathcal{P}(\mathbb{N})$ of size at least 3 we associate the set $T_S := \{2^t \mid t \in S\}$
- ▶ T_S is a 2-sparse set that is in 1-1 correspondence with S.

Proof by Example

- ► To any $S \subset \mathcal{P}(\mathbb{N})$ of size at least 3 we associate the set $T_S := \{2^t \mid t \in S\}$
- ▶ T_S is a 2-sparse set that is in 1-1 correspondence with S.
- ▶ The \mathbb{Z} invariant 2-partition generated by $\{T_S\}$ is in 1-1 correspondence with S.

Proof by Example

- ► To any $S \subset \mathcal{P}(\mathbb{N})$ of size at least 3 we associate the set $T_S := \{2^t \mid t \in S\}$
- ▶ T_S is a 2-sparse set that is in 1-1 correspondence with S.
- ▶ The \mathbb{Z} invariant 2-partition generated by $\{T_S\}$ is in 1-1 correspondence with S.
- ▶ There are uncountably many such S

Short Corollary

Corollary (A, Rincón)

Most zero-dimensional tropical ideals are not representable.

Proof.

Only countably many zero-dimensional tropical ideals are representable [Sil21]

All Rank 2 matroids are realizable

All Rank 2 matroids are realizable

 Degree 2 paving tropical ideals are "everywhere a rank-2 matroid"

- All Rank 2 matroids are realizable
- Degree 2 paving tropical ideals are "everywhere a rank-2 matroid"
- Degree 2 paving tropical ideals in one variable are realisable [Zaj18, Theorem 5.1.5].

- All Rank 2 matroids are realizable
- Degree 2 paving tropical ideals are "everywhere a rank-2 matroid"
- Degree 2 paving tropical ideals in one variable are realisable [Zaj18, Theorem 5.1.5].
- ▶ Question: Are all degree 2 paving tropical ideals realisable.

- All Rank 2 matroids are realizable
- Degree 2 paving tropical ideals are "everywhere a rank-2 matroid"
- Degree 2 paving tropical ideals in one variable are realisable [Zaj18, Theorem 5.1.5].
- ▶ Question: Are all degree 2 paving tropical ideals realisable.
- ▶ Answer: No

Lemma (Proposition 5.2.9, Zajaczkowska)

The degree 2 paving tropical ideal associated to the lattice (2n, 2m) is not realisable except in characteristic 2

Lemma (Proposition 5.2.9, Zajaczkowska)

The degree 2 paving tropical ideal associated to the lattice (2n, 2m) is not realisable except in characteristic 2

It should suffice to find a tropical ideal that is not realisable in characteristic 2.

Not Characteristic Two

Lemma

The (homogeneous) tropical ideal associated to $4\mathbb{Z}$ is not realisable in characteristic two.

Not Characteristic Two

Lemma

The (homogeneous) tropical ideal associated to $4\mathbb{Z}$ is not realisable in characteristic two.

Proof: a simple proof by contradiction

Gluing

Proposition

If I is a paving tropical ideal in $\mathbb{B}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ and J is a paving tropical ideal in $\mathbb{B}[x_1^{\pm 1}, \ldots, x_m^{\pm 1}]$, then The d-partition \mathcal{H} of \mathbb{Z}^{n+m} generated by $\mathcal{H}(\underline{Mat}(I)) \cup \mathcal{H}(\underline{Mat}(J))$ is defined and $\mathcal{H}|_{\mathbb{Z}^n} = \mathcal{H}(\underline{Mat}(I))$ and $\mathcal{H}|_{\mathbb{Z}^m} = \mathcal{H}(\underline{Mat}(J))$.

Proof: Any translation of Z^m intersects Z^n in exactly one point and vice versa; the case where d = 1 is the exception, but the generators in this case form the basis of a lattice and are linerally independent by definition. The degree 2 tropical ideal associated to the lattice (4x, 2y, 2z) is not realisable over any field.

References I

- Nicholas Anderson and Felipe Rincón, *Paving tropical ideals*, arXiv preprint arXiv:2102.09848 (2021).
- Rob Silversmith, The matroid stratification of the Hilbert scheme of points on \mathbb{P}^1 , Manuscripta Math. (2021).
- Magdalena Anna Zajaczkowska, *Tropical ideals with Hilbert function two*, Ph.D. thesis, University of Warwick, 2018.