MACHINE LEARNING THE DIMENSION OF A POLYTOPE
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AsstRACT. We use machine learning to predict the dimension of a lattice polytope directly
from its Ehrhart series. This is highly effective, achieving almost 100% accuracy. We also use
machine learning to recover the volume of a lattice polytope from its Ehrhart series, and to
recover the dimension, volume, and quasi-period of a rational polytope from its Ehrhart series.
In each case we achieve very high accuracy, and we propose mathematical explanations for
why this should be so.

1. INTRODUCTION

Let P c Z? ®; Q be a convex lattice polytope of dimension d, that is, let P be the convex
hull of finitely many points in Z? whose Q-affine combinations generate Q4. A fundamen-
tal invariant of P is the number of lattice points that it contains, |P N Z|. More generally,
let Lp(m) = |mP N Z%| count the lattice points in the mth dilation mP of P, where m € Z,.
Then Lp is given by a polynomial of degree d called the Ehrhart polynomial [15]. The corre-
sponding generating series, called the Ehrhart series and denoted by Ehrp, can be expressed
as a rational function with numerator a polynomial of degree at most 4 [29]:

0+ 01t + -+ 04t7
(1—t)d+1 4

Ehrp(t) := Z Lp(mytm = 2

m=>0

51'62.

The coefficients (8, 01, ..., 04) of this numerator, called the 6-vector or h*-vector of P, have
combinatorial meaning [14]:
@) 60=1;
(i) 61=|PNZ%-d-1;
(iii) 64 = |P° N Z%|, where P° = P \ 9P is the strict interior of P;
(iv) 69 +---+04 = Vol(P), where Vol(P) = d! vol(P) is the lattice-normalised volume of P.

The polynomial Lp can be expressed in terms of the 6-vector:

d .

d+m—i

Lp(m) = Z(; 51'( d )
1=

From this we can see that the leading coefficient of Lp is vol(P), the Euclidean volume of P.

Given d + 1 terms of the Ehrhart series, one can recover the 0-vector and hence the invari-
ants |P N Z%|, |P° N Z%), and Vol(P). This, however, assumes knowledge of the dimension 4.

Question 1. Given a lattice polytope P, can machine learning recover the dimension d of P from
sufficiently many terms of the Ehrhart series Ehrp?

There has been recent success using machine learning (ML) to predict invariants such
as Vol(P) directly from the vertices of P [4], and to predict numerical invariants from a
geometric analogue of the Ehrhart series called the Hilbert series [5]. As we will see in §§2.1—
2.3, ML is also extremely effective at answering Question 1. In §2.4 we propose a possible
explanation for this.
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1.1. The quasi-period of a rational convex polytope. Now let P be a convex polytope with ra-
tional vertices, and let k € Z.( be the smallest positive dilation of P such that kP is a lattice
polytope. One can define the Ehrhart series of P exactly as before:

Lp(m) = |mP nZ4.

In general Lp will no longer be a polynomial, but it is a quasi-polynomial of degree d and
period k [15,27]. That is, there exist polynomials fy, ..., fx-1, each of degree d, such that:

Lp(gk + 1) = f:(q), whenever 0 < r < k.

The leading coefficient of each f; is vol(kP), the Euclidean volume of the kth dilation of P.

It is sometimes possible to express Lp using a smaller number of polynomials. Let p
be the minimum number of polynomials needed to express Lp as a quasi-polynomial; p
is called the quasi-period of P, and is a divisor of k. Each of these p polynomials is of
degree d with leading coefficient vol(pP). When p < k we say that P exhibits quasi-period
collapse [7,8,16,23,26]. The Ehrhart series of P can be expressed as a rational function:

0o+ 01t +--- + 6p(d+1)_1tp(d+1)—1

Ehrp(t) = (1 —tp)d+l !

0, €”Z.

As in the case of lattice polytopes, the 6-vector carries combinatorial information about P [6,
7,20,21,25]. Given p(d + 1) terms of the Ehrhart series, one can recover the 6-vector. This,
however, requires knowing both the dimension d and the quasi-period p of P.

Question 2. Given a rational polytope P, can machine learning recover the dimension d and quasi-
period p of P from sufficiently many terms of the Ehrhart series Ehrp?

ML again performs very well here — see §3. We propose a mathematical explanation for this,
in terms of forward differences and affine hyperplanes, in §3.4.

1.2. Some motivating examples.

Example 1.1. The 2-dimensional lattice polytope P = conv{(-1,-1),(-1,2),(2,-1)} has vol-
ume Vol(P) =9, |P N Z?%| = 10, and |P° N Z?| = 1. The Ehrhart polynomial of P is:

Lp(m) = gmz + gm +1,
and the Ehrhart series of P is generated by:
1+7t+12

(1 -ty

Example 1.2. The smallest dilation of the triangle P := conv{(5, -1), (-1, -1),(-1,1/2)} giving a
lattice triangle is 2P. Hence Lp can be written as a quasi-polynomial of degree 2 and period 2:

Ehrp(t) = =1+10t +28t> +55¢3 + 91t* + - - .

fo(q) =184 +9g+1,  fi(q) = 18¢* +27g + 10.

This is not, however, the minimum possible period. As in Example 1.1,

Lp(m) = gmz + gm +1

and thus P has quasi-period p = 1.

This striking example of quasi-period collapse is developed further in Example 4.1.
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1.3. Code and data availability. The datasets used in this work were generated with V2.25-4
of Magma [9]. We performed our ML analysis with scikit-learn [28], a standard machine
learning library for Python, using scikit-learn v0.24.1 and Python v3.8.8. All data, along
with the code used to generate it and to perform the subsequent analysis, is available from
Zenodo [10,11] under a permissive open source license (MIT for the code, CCO for the data).

2. QuesTtioN 1: DIMENSION

In this section we investigate whether machine learning can predict the dimension d of
a lattice polytope P from sufficiently many terms of the Ehrhart series Ehrp. We calculate
terms Lp(m) of the Ehrhart series, for 0 < m < 1100, and encode these in a logarithmic Ehrhart
vector:

(logyo,logy1,...,1og y1100), where v, = Lp(m).

We find that standard ML techniques are extremely effective, recovering the dimension of P
with almost 100% accuracy from the logarithmic Ehrhart vector. We then ask whether ML
can recover Vol(P) from this Ehrhart data; again, this is achieved with near 100% success.

2.1. Data generation. A dataset [11] containing 2918 distinct entries, with 2 < d < 8, was
generated using Algorithm 2.1 below. The distribution of this data is summarised in Table 1.

Algorithm 2.1.
Input: A positive integer d.
Output: A vector

(log vo,log y1, .. .,log y1100, d, Vol(P))
for a d-dimensional lattice polytope P, where y,, := Lp(m).
(i) Choose d + k lattice points {v1,...,v44x} uniformly at random in a box [-5,5]%,
where k is chosen uniformly at random in {1, ...,5}.
(ii) Set P := conv{vy,...,v44k}. If dim(P) # d return to step (i).
(iii) Calculate the coefficients y,, := Lp(m) of the Ehrhart series of P, for 0 < m < 1100.
(iv) Return the vector (log yo,logy1, ..., log y1i00, d, Vol(P)).

We deduplicated on the vector (log Yo,logy1,...,log y1100,4d, Vol(P)) to get a dataset with
distinct entries. In particular, two polytopes that are equivalent under the group of affine-
linear transformations GL4(Z) < Z? give rise to the same point in the dataset.

2.2. Machine learning the dimension. We reduced the dimensionality of the dataset by
projecting onto the first two principal components of the logarithmic Ehrhart vector. As
one would expect from Figure 1, a linear support vector machine (SVM) classifier trained
on these features predicted the dimension of P with 100% accuracy. Here we used a scikit-
learn pipeline consisting of a StandardScaler followed by an SVC classifier with linear kernel
and regularization hyperparameter C = 0.1, using 50% of the data for training the classifier
and tuning the hyperparameter, and holding out the remaining 50% of the data for model
validation.

In §2.4 below we give a mathematical explanation for the structure observed in Figure 1,
and hence for why ML is so effective at predicting the dimension of P. Note that the discussion
in §3.4 suggests that one should also be able to extract the dimension using ML on the Ehrhart
vector

(Yo, Y1, - -, Y1100)
rather than the logarithmic Ehrhart vector

(log yo,log y1, ... ,log y1100)-
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Dimension 2 3 4 5 6 7 8

Total 431 787 812 399 181 195 113

Table 1. The distribution of the dimensions appearing in the dataset for Question 1.
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Figure 1. Projection onto the first two principal components of the logarithmic Ehrhart
vector coloured by the dimension of P.

This is indeed the case, although here it is important not to reduce the dimensionality of
the data too much'. A linear SVM classifier trained on the full Ehrhart vector predicts the
dimension of P with 98.7% accuracy, with a pipeline exactly as above except that C = 50000.
A linear SVM classifier trained on the first 30 principal components of the Ehrhart vector

(the same pipeline, but with C = 20) gives 93.7% accuracy, but projecting to the first two
components reduces accuracy to 43.3%.

2.3. Machine learning the volume. Tolearn the normalised volume of a lattice polytope from
its logarithmic Ehrhart vector, we used a scikit-learn pipeline consisting of a StandardScaler
followed by an SVR regressor with linear kernel and regularization hyperparameter C =
340. We restricted attention to the roughly 75% of the data with volume less than 10000,
thereby removing outliers. We used 50% of that data for training and hyperparameter tuning,
selecting the training set using a shuffle stratified by volume; this corrects for the fact that
the dataset contains a high proportion of polytopes with small volume. The regression had a
coefficient of determination (R?) of 0.432, and gave a strong hint (see Figure 2) that we should
repeat the analysis replacing the logarithmic Ehrhart vector with the Ehrhart vector.
Using the same pipeline (but with C = 1000) and the Ehrhart vector gives a regression
with R? = 1.000; see Figure 2. This regressor performs well over the full dataset, with volumes
ranging up to approximately 4.5 million: over the full dataset we still find R?> = 1.000. The

fact that Support Vector Machine methods are so successful in recovering the volume of P
from the Ehrhart vector is consistent with the discussion in §3.4.

2.4. Crude asymptotics for log y,. Since
Lp(m) = vol(P)m® + lower order terms in m

1This is consistent with the discussion in §3.4, which suggests that we should try to detect whether the Ehrhart
vector lies in a union of linear subspaces that have fairly high codimension.
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Figure 2. Plotting the true versus the predicted normalised volume.
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Figure 3. Contribution of log y,, to the first two principal components of the logarithmic
Ehrhart vector, as m varies.

we have that
log ym ~ dlogm + log vol(P).

For m > 0, therefore, we see that the different components log v, of the logarithmic Ehrhart
vector depend approximately affine-linearly on each other as P varies. It seems intuitively
plausible that the first two PCA components of the logarithmic Ehrhart vector should depend
non-trivially on log v, for m > 0, and in fact this is the case — see Figure 3. Thus the first
two PCA components of the logarithmic Ehrhart vector should vary approximately affine-
linearly as P varies, with constant slope and with a translation that depends only on the
dimension of P.

3. QUESTION 2: QUASI-PERIOD

Here we investigate whether ML can predict the quasi-period p of a d-dimensional rational
polytope P from sufficiently many terms of the Ehrhart vector of P. Once again, standard ML
techniques based on Support Vector Machines are highly effective, achieving classification
accuracies of up to 95.3%. We propose a potential mathematical explanation for this in §3.4.

3.1. Data generation. In this section we consider a dataset [10] containing 84 000 distinct
entries. This was obtained by using Algorithm 3.1 below to generate a larger dataset, followed
by random downsampling to a subset with 2000 datapoints for each pair (d, p) with d €
{2,3,4}and p € {2,3,...,15}.



6 T. COATES, J]. HOFSCHEIER, AND A. M. KASPRZYK

Algorithm 3.1.
Input: A positive integer d.
Output: A vector

(log yo,logyi, ..., logy1100, 4, p)
for a d-dimensional rational polytope P with quasi-period p, where y,, := Lp(m).

(i) Choose r € {2,3,...,15} uniformly at random.
(ii) Choose d + k lattice points {v1, ..., v4+k} uniformly at random in a box [-57, 5r]4,
where k is chosen uniformly at random in {1, ...,5}.

(iii) Set P := conv{vy,...,v44k}. If dim(P) # d return to step (ii).

(iv) Choose a lattice pointv € PNZ? uniformly at random and replace P with the transla-
tion P —v. (We perform this step to ensure that the resulting rational polytope always
contains a lattice point; this avoids complications when taking log in step (viii).)

(v) Replace P with the dilation P/r.

(vi) Calculate the coefficients y,, := Lp(m) of the Ehrhart series of P, for 0 < m < 1100.
(vii) Calculate the quasi-period p.
(viii) Return the vector (log vo,logy1,...,log yi100,d, p).

As before, we deduplicated the dataset on the vector (log yo,logy1, ..., logyi100,d, p).

3.2. Recovering the dimension and volume. Figure 4 shows the first two principal compo-
nents of the logarithmic Ehrhart vector. As in §2.2, this falls into widely-separated linear
clusters according to the value of dim(P), and so the dimension of the rational polytope P can
be recovered with high accuracy from its logarithmic Ehrhart vector. Furthermore, as in §2.3,
applying a linear SVR regressor (with C = 1000) to the Ehrhart vector predicts the volume of
a rational polytope P with high accuracy (R? = 1.000).

3.3. Machine learning the quasi-period. To learn the quasi-period of a rational polytope
from its Ehrhart vector, we used a scikit-learn pipeline consisting of a StandardScaler fol-
lowed by a LinearSVC classifier. We fixed a dimension d € {2,3,4}, moved to PCA co-
ordinates, and used 50% of the data (N = 14000) for training the classifier and hyperparam-
eter tuning, holding out the remaining 50% of the data for model validation. Results are
summarised on the left-hand side of Table 2, with learning curves in the left-hand column of
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Figure 4. Projection onto the first two principal components of the logarithmic Ehrhart
vector data coloured by the dimension of P.
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Ehrhart vector log Ehrhart vector
Dimension = C  Accuracy Dimension C Accuracy
2 0.01 80.6% 2 1 797%
3 0.001  94.0% 3 1 852%
4 0.001  95.3% 4 1 832%

Table 2. The regularization hyperparameter C and accuracy for a LinearSVC classifier
predicting the quasi-period from the Ehrhart vector and logarithmic Ehrhart vector of
rational polytopes P.

Figure 5 and confusion matrices in the left-hand column of Figure 6. The confusion matrices
hint at some structure in the misclassified data.

One could also use the same pipeline but applied to the logarithmic Ehrhart vector rather
than the Ehrhart vector. Results are summarised on the right-hand side of Table 2, with
learning curves in the right-hand column of Figure 5 and confusion matrices in the right-hand
column of Figure 6. Using the logarithmic Ehrhart data resulted in a less accurate classifier,
but the learning curves suggest that this might be improved by adding more training data.
Again there are hints of structure in the misclassified data.

3.4. Forward differences. Let y denote the sequence (y,);,_,. Recall the forward difference
operator A defined on the space of sequences:

Ay = (]/m+1 - ym)zzo-
A sequence y depends polynomially on m, that is

d

Ym =ao+aym+---+agm for some ag, ..., a4 € R,

if and only if y lies in the kernel of A%*!. Furthermore, in this case, A%y is the constant
sequence with value d!a,.

Thus a sequence (ym);,_, is quasi-polynomial of degree d and period k, in the sense of §1.1,
if and only if it lies in the kernel of A‘Z“ where Ay is the k-step forward difference operator,

Ay ((]/m);::()) = (]/m+k - ]/m)zzoz

and (ym)zz0 does not lie in the kernel of Ai. Furthermore, in this case, we can determine
the leading coefficients of the polynomials fo, ..., fr-1 by examining the values of the k-
periodic sequence Aiy. When y arises as the Ehrhart series of a rational polytope P, all of
these constant terms equal the volume of kP, and so the value of the constant sequence Aiy
determines the normalised volume Vol(P).

This discussion suggests that an SVM classifier with linear kernel should be able to learn the
quasi-period and volume with high accuracy from the Ehrhart vector of a rational polytope,
at least if we consider only polytopes of a fixed dimension d. Having quasi-period k amounts
to the Ehrhart vector lying in (a relatively open subset of) a certain subspace ker Az“ ; these
subspaces, being linear objects, should be easily separable using hyperplanes. Similarly,
having fixed normalised volume amounts to lying in a given affine subspace; such affine
subspaces should be easily separable using affine hyperplanes.

From this point of view it is interesting that an SVM classifier with linear kernel also
learns the quasi-period with reasonably high accuracy from the logarithmic Ehrhart vec-
tor. Passing from the Ehrhart vector to the logarithmic Ehrhart vector replaces the linear
subspaces ker A‘]f“ by non-linear submanifolds. But our experiments above suggest that
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Figure 5. Quasi-period learning curves for a linear SVM classifier, for both the Ehrhart
vector (left-hand column) and the logarithmic Ehrhart vector (right-hand column).

these non-linear submanifolds must nonetheless be close to being separable by appropriate
collections of affine hyperplanes.

4. A REMARK ON THE (GORENSTEIN INDEX

In this section we discuss a geometric question where machine learning techniques failed.
This involves a more subtle combinatorial invariant called the Gorenstein index, and was the
question that motivated the rest of the work in this paper. We then suggest why in retrospect
we should not have expected to be able to answer this question using machine learning (or
at all).
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Dimension 2, Ehrhart vector Dimension 2, log Ehrhart vector
N 0.11 0.02 0.06 0.01 0.03 0.01 0.02 0.00 0.02 0.00 0.02 0.01 10 N 0.09 0.02 0.04 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 10
o 0.01 0.13 0.01 0.01 0.05 0.00 0.01 0.03 0.01 0.01 0.02 o 0.01 0.11 0.01 0.00 0.04 0.01 0.00 0.02 0.01 0.01 0.01
~ 0.06 0.02 0.01 0.09 0.00 0.01 0.01 0.07 0.00 0.01 0.01 0.8 < 0.10 0.03 0.01 0.08 0.00 0.01 0.00 0.05 0.01 0.01 0.01 0.8
w 002 001 0.01 0.01 0.01 0.00 0.13 0.01 0.01 0.01 0.01 0.07 w 001 001 0.00 0.01 0.01 0.00 0.11 0.01 0.01 0.01 0.01 0.06
«© 0.03 007 002 0.02 0.01 0.02 0.00 0.13 0.01 0.01 0.02 © 005 012 0.02 0.01 0.01 0.01 0.00 0.09 0.00 0.01 0.01
~ 001 001 0.01 0.02 0.01 k& 0.00 0.01 0.01 0.00 0.01 0.01 0.15 0.01 0.6 N~ 000 0.00 0.01 001 0.01 001 0.01 0.01 0.01 0.01 0.01 0.12 0.00 0.6
© ¢ 001 001 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 @ c 001 0.00 0.06 0.00 0.01 0.01 0.00 0.02 0.01 0.02 0.01
"_3— o 0.00 0.01 0.00 0.00 0.01 0.00 0.00 [e& X 0.00 0.00 0.00 Ig o 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00
‘Q 0.01 0.00 0.01 0.06 0.01 0.01 0.01 0.00 0.00 0.01 0.4 ‘C_> 0.01 0.00 0.01 0.10 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.4
= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 = 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
O 001 002 0.04 0.01 0.05 0.01 0.02 001 O 001 002 004 0.00 0.0 0.01 0.01 001 001 0.01
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< 001 001 001 0.01 0,01 0,06 0.01 0.00 001 0.00 < 001 000 001 0.01 0,01 0.10 0.01 0.00 0.00 0.00
Q 0.00 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.00 Q 0.00 0.01 0.00 0.05 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.00
-0.0 -0.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predicted Predicted
Dimension 3, Ehrhart vector Dimension 3, log Ehrhart vector
o~ 0.09 0.01 0.02 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 10 o~ 0.06 0.02 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 10
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@© co 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 @® o 000 000 005 001 001 0.01 0.00 0.01 001 000 0.01
E(ﬁ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 E o 0.00 002 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00
g 0.00 0.00 0.00 0.01 0.00 0.00 0.00 el 0.00 0.00 0.00 0.00 0.4 ‘9 0.01 000 0.01 0.04 001 0.01 0.00 0.00 0.01 0.01 0.01 0.4
= 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .00 0.00 0.00 0.00 = 000 000 0.01 0,00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 6. Row-normalised confusion matrices for a linear SVM classifier for the quasi-
period, for both the Ehrhart vector (left-hand column) and the logarithmic Ehrhart vector
(right-hand column).

4.1. The Gorenstein index. Fix a rank d lattice N = Z9, write Ng =N®zQ,andlet P C Ng
be a lattice polytope. The polar polyhedron of P is given by

Pr={ueM®zQ|u(v)>-1forallv e P}

where M = Hom(N, Z) = 7% is the lattice dual to N. The polar polyhedron P* is a convex
polytope with rational vertices if and only if the origin lies in the strict interior of P. In this
case, (P*)* = P. The smallest positive integer kp such that kpP" is a lattice polytope is called
the Gorenstein index of P.



10 T. COATES, J]. HOFSCHEIER, AND A. M. KASPRZYK

e l\
Figure 7. The mutation from P 1 1) to P(1,1,2) gives a scissors congruence between the
polar polytopes.

The Gorenstein index arises naturally in the context of Fano toric varieties, and we will
restrict our discussion to this setting. Let P C Ng be a lattice polytope such that the vertices
of P are primitive lattice vectors and that the origin lies in the strict interior of P; such
polytopes are called Fano [22]. The spanning fan Zp of P — that is, the complete fan whose
cones are generated by the faces of P — gives rise to a Fano toric variety Xp [12,17]. This
construction gives a one-to-one correspondence between GL;(Z)-equivalence classes of Fano
polytopes and isomorphism classes of Fano toric varieties. Let P C Ng be a Fano polytope that
corresponds to a Fano toric variety X := Xp. The polar polytope P* C Mg then corresponds
to a divisor on X called the anticanonical divisor, which is denoted by —Kx. In general —Kx is
an ample Q-Cartier divisor, and X is Q-Gorenstein. The Gorenstein index kp of P is equal to
the smallest positive multiple k of the anticanonical divisor such that —kKx is Cartier.

Under the correspondence just discussed, the Ehrhart series Ehrp- of the polar polytope P*
coincides with the Hilbert series Hilbx(—Kx). The Hilbert series is an important numerical
invariant of X, and it makes sense to ask whether the Gorenstein index of X is determined
by the Hilbert series. Put differently:

Question 3. Given a Fano polytope P, can ML recover the Gorenstein index kp of P from sufficiently
many terms of the Ehrhart series Ehrp- of the polar polytope P*?

There are good reasons, as we discuss below, to expect the answer to Question 3 to be ‘no’.
But part of the power of ML in mathematics is that it can detect or suggest structure that
was not known or expected previously (see e.g. [13]). That did not happen on this occasion:
applying the techniques discussed in §2 and §3 did not allow us to predict the Gorenstein
index of P from the Ehrhart series of the polar polytope Ehrp-.

4.2. Should we have expected this? The Hilbert series is preserved under an important class
of deformations called gG-deformations [24]. But the process of mutation [2] can transform a
Fano polytope P to a Fano polytope Q with Ehrp: = Ehrg-. Mutation gives rise to a qG-
deformation from Xp to Xq [1], but need not preserve the Gorenstein index: kp need not be
equal to kg. Thus the Gorenstein index is not invariant under qG-deformation. It might have
been unrealistic to expect that a qG-deformation invariant quantity (the Hilbert series) could
determine an invariant (the Gorenstein index) which can vary under qG-deformation.

Quasiperiod collapse. Although the phenomenon of quasi-period collapse remains largely
mysterious from a combinatorial view-point, in the context of toric geometry one possible
explanation arises from mutation and qG-deformation [23]. The following example revisits
Examples 1.1 and 1.2 from this point of view, and illustrates why Question 3 cannot have a
meaningful positive answer.

Example 4.1. Let P, ) C Ngq denote the 2-dimensional Fano polytope associated with weighted
projective space P(a?, b2, ¢?), where a, b, ¢ are pairwise coprime positive integers. Then P 1) =
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conv{(1,0),(0,1), (=1, —1)} is the Fano polygon associated with P2, with polar polygon P
the lattice triangle appearing in Example 1.1.

The graph of mutations of Py 1,1y has been completely described [3,19]. Up to GLy(Z)-equivalence,
there is exactly one mutation from P 1 1): this gives Py 1) corresponding to P(1,1,4). The polar
polygon P(*1,1,2) is the rational triangle in Example 1.2. As Figure 7 illustrates, a mutation between
polytopes gives rise to a scissors congruence [18] between polar polytopes. Mutation therefore preserves
the Ehrhart series of the polar polytope, and this explains why we have quasi-period collapse in this
example.

We can mutate P 1) in two ways that are distinct up to the action of GLo(Z): one returns
us to Py 1,1), whilst the other gives P(1 5. Continuing to mutate, we obtain an infinite graph of
triangles P, y oy, where the (a, b, c) are the Markov triples, that is, the positive integral solutions to
the Markov equation:

Z1,1,1) C Mg

3xyz = x* + y* + 22
The Gorenstein index of P, ) is abc. In particular, the Gorenstein index can be made arbitrarily

large whilst the Ehrhart series, and hence quasi-period, of L fixed. See [23] for details.

5. CONCLUSION

We have seen that Support Vector Machine methods are very effective at extracting the
dimension and volume of a lattice or rational polytope P, and the quasi-period of a rational
polytope P, from the initial terms of its Ehrhart series. We have also seen that ML methods
are unable to reliably determine the Gorenstein index of a Fano polytope P from the Ehrhart
series of its polar polytope P*. The discussions in §2.4, §3.4, and §4.2 suggest that these results
are as expected: that ML is detecting known and understood structure in the dimension,
volume, and quasiperiod cases, and that there is probably no structure to detect in the
Gorenstein index case. But there is a more useful higher-level conclusion to draw here too:
when applying ML methods to questions in pure mathematics, one needs to think carefully
about methods and results. Questions 2 and 3 are superficially similar, yet one is amenable
to ML and the other is not. Furthermore, applying standard ML recipes in a naive way
would have led to false negative results. For example, since the Ehrhart series grows so fast,
it would have been typical to suppress the growth rate by taking logarithms, and also to
pass to principal components. Taking logarithms is a good idea for some of our questions
but not for others; this reflects the mathematical realities underneath the data, and not just
whether the vector-components y,, involved grow rapidly with m or not. Passing to principal
components is certainly a useful tool, but naive feature extraction would have retained only
the first principal component, which is responsible for more than 99.999% of the variation (in
both the logarithmic Ehrhart vector and the Ehrhart vector). This would have left us unable
to detect the positive answers to Questions 1 and 2, in the former case because projection to
one dimension amalgamates clusters (see Figure 1) and in the latter case because we need to
detect whether the Ehrhart vector lies in a certain high-codimension linear subspace and that
structure is destroyed by projection to a low-dimensional space.
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