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Abstract. The Fine interior ∆FI of a d-dimensional lattice polytope ∆ is a rational subpolytope of ∆

which is important for constructing minimal birational models of non-degenerate hypersurfaces defined

by Laurent polynomials with Newton polytope ∆. This paper presents some computational results on

the Fine interior of all 674,688 three-dimensional canonical Fano polytopes.

1. Introduction

Let M ∼= Zd be a free abelian group of rank d. We set MQ := M ⊗Q and denote by N the dual group

Hom(M,Z) in the dual Q-linear vector space NQ := Hom(M,Q). Let 〈·, ·〉 : MQ×NQ → Q be the natural

pairing.

A convex compact d-dimensional polytope ∆ ⊆ MQ is called lattice d-tope if all vertices of ∆ belong

to the lattice M ⊆MQ, i.e., ∆ equals the convex hull conv(∆ ∩M) of all lattice points in ∆. The usual

interior ∆◦ of ∆ is the complement ∆ \∂∆, where ∂∆ is the boundary of ∆. Another interior of a lattice

polytope ∆ was introduced by J. Fine [Fin83,Rei87, Ish99,Bat17]:

Definition 1.1. Let ∆ ⊆MQ be a lattice d-tope. Denote by ord∆ the piecewise linear function NQ → Q
with

ord∆(y) := min
x∈∆
〈x, y〉 (y ∈ NQ).

Then the convex subset

∆FI :=
⋂

n∈N\{0}

{x ∈MQ | 〈x, n〉 ≥ ord∆(n) + 1}

is called Fine interior of ∆.

One can show that only finitely many linear inequalities 〈x, n〉 ≥ ord∆(n) + 1 are necessary to define

∆FI. Therefore, ∆FI is a convex hull of finitely many rational points p ∈ MQ. Moreover, any lattice

point p ∈ ∆◦ ∩M in the usual interior of ∆ is contained in ∆FI. Therefore, ∆FI contains the convex

hull of ∆ ∩ M , i.e., we get the inclusion conv(∆◦ ∩ M) ⊆ ∆FI. In particular, ∆FI is non-empty if

∆◦ ∩M is non-empty. Moreover, for any lattice polytope ∆ of dimension d ≤ 2 one has the equality

conv(∆◦ ∩M) = ∆FI [Bat17]. The Fine interior ∆FI of a lattice polytope ∆ of dimension d ≥ 3 may

happen to be strictly larger than the convex hull conv(∆◦ ∩M). The simplest famous example of such a

situation is due to M. Reid. Other similar examples based on hollow 3-topes can be found in Appendix

B:

Example 1.2 [Rei87, Example 4.15]. Let M ⊆ Q4 be 3-dimensional affine lattice defined by

M := {(m1,m2,m3,m4) ∈ Z4 |
4∑
i=1

mi = 5,

4∑
i=1

imi ≡ 0 (mod 5)}.

Consider the M -lattice 3-tope ∆ ⊆MQ defined as the convex hull of 4 lattice points

(5, 0, 0, 0), (0, 5, 0, 0), (0, 0, 5, 0), and (0, 0, 0, 5) ∈M.

Then conv(∆◦ ∩M) = ∅, but ∆FI is the 3-dimensional M -rational simplex

conv((2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2))

and ∆FI ∩M is empty.
1
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In this paper, we are interested in lattice d-topes ∆ ⊆ MQ obtained as Newton polytopes of Laurent

polynomials f∆ in d variables x1, . . . , xd, i.e.,

f∆(x) =
∑

m∈∆∩M
amxm,

where am ∈ C are sufficiently general complex numbers. The importance of Fine interior is explained by

the following theorem [Rei87, Ish99,Bat17]:

Theorem 1.3. Let Z∆ ⊆ Td be a non-degenerate affine hypersurface in the d-dimensional algebraic

torus Td defined by a Laurent polynomial f∆ with Newton d-tope ∆. Then the following conditions are

equivalent:

(i) a smooth projective compactification V∆ of Z∆ has non-negative Kodaira dimension, i.e., κ ≥ 0;

(ii) Z∆ is birational to a minimal model S∆ with abundance;

(iii) the Fine interior ∆FI of ∆ is non-empty.

Remark 1.4. By well known results of Khovanskii [Kho78], one has vanishing of the cohomology groups

hi(OV∆
) = 0 (1 ≤ i ≤ d− 2)

and the equation hd−1(OV∆) = |∆◦ ∩M |. The numbers hi(OV∆) are birational invariants of Z∆, because

they do not depend on a smooth projective compactification V∆ of Z∆. In particular, the number |∆◦∩M |
is the geometric genus pg of the affine hypersurface Z∆ ⊆ Td.

Smooth projective compactifications of non-degenerate hypersurfaces in Td can be obtained using the

theory of toric varieties [Kho78].

Let ∆ ⊆ MQ be a lattice d-tope. We consider the normal fan Σ∆ of ∆ in the dual space NQ,

i.e., Σ∆ :=
{
σθ
∣∣ θ � ∆

}
, where σθ is the cone generated by all inward-pointing facet normals of facets

containing the face θ � ∆ of ∆. One has dim(σθ) + dim(θ) = d for any face θ � ∆. We denote by X∆

the normal projective toric variety constructed via the normal fan Σ∆. In particular, the above function

ord∆ : NQ → Q is a piecewise linear function with respect to this fan defining an ample Cartier divisor

on X∆. In particular, the cones σθ ∈ Σ∆ are be defined as

σθ = {y ∈ NQ | ord∆(y) = 〈x, y〉 for all x ∈ θ} .

Remark 1.5. Using the normal fan Σ∆, one can compute the fundamental group π1(V∆) of a smooth

projective birational model V∆ of a non-degenerate affine hypersurface Z∆ (given as in Theorem 1.3).

The fundamental group π1(V∆) does not depend on the choice of the smooth birational model and it is

isomorphic to the quotient of the lattice N modulo the sublattice N ′ generated by all lattice points in

(d− 1)-dimensional cones σθ of the normal fan Σ∆ [BK06].

Example 1.6. The minimal model S∆ of a non-degenerate affine surface Z∆ defined by a Laurent

polynomial with the Newton polytope ∆ from Example 1.2 is a Godeaux surface. It is a surface of general

type with pg = q = 0, K2 = 1, and π1(S∆) ∼= Z/5Z.

Definition 1.7. A lattice d-tope ∆ is called canonical Fano d-tope if |∆◦ ∩M | = 1. Up to a shift by

a lattice vector, we will assume without loss of generality that 0 ∈ M is the single lattice point in the

interior ∆◦ of the canonical Fano d-tope ∆, i.e., ∆◦ ∩M = {0}.

All canonical Fano 3-topes have been classified [Kas10]. There exists exactly 674,688 canonical Fano

3-topes ∆. The aim of this paper is to present computational results of their Fine interiors ∆FI and some

related combinatorial invariants. These data are important for computing minimal smooth projective

surfaces S∆ with pg = 1 and q = 0 which are birational to affine non-degenerate hypersurfaces Z∆ ⊆
T3 ∼= (C×)3.

The simplest description of the minimal surface S∆ has been obtained when ∆ is a reflexive 3-

tope [Bat94].

Definition 1.8. A d-dimensional lattice polytope ∆ ⊆MQ containing the origin 0 ∈M in its interior is

called reflexive if the dual polytope

∆∗ := {y ∈ N | 〈x, y〉 ≥ −1 for all x ∈ ∆} ⊆ NQ

is a lattice polytope.
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There exists exactly 4,319 reflexive 3-topes classified by Kreuzer and Skarke [KS98] and they form a

small subset in the list of all 674,688 canonical Fano 3-topes [Kas10]. Reflexive 4-topes are also classified

by Kreuzer and Skarke [KS00]. There exist 473,800,776 reflexive 4-topes, but the complete list of all

canonical Fano 4-topes is unknown and expected to be much bigger.

If ∆ is a reflexive d-tope, then X∆ is a Gorenstein toric Fano d-fold and the Zariski closure Z∆ in X∆

is a Gorenstein Calabi-Yau (d − 1)-fold. If d = 3, then Z∆ is a K3-surface with at worst finitely many

Du Val singularities of type Ak. The minimal surface S∆ is a smooth K3-surface which is obtained as

the minimal (crepant) desingularization of Z∆ [Bat94].

One motivation for the present paper is due to Corti and Golyshev, who have found 9 interesting

examples of canonical Fano 3-simplices ∆ such that the affine surfaces Z∆ are birational to elliptic

surfaces of Kodaira dimension κ = 1 [CG11].

The computation of the Fine interior ∆FI for all canonical Fano 3-topes ∆ ⊆MQ has shown that the

dimension of the Fine interior ∆FI has only three values: 0, 1, and 3. It is rather surprising that there

are no canonical Fano 3-topes ∆ with dim(∆FI) = 2.

The condition dim(∆FI) = 0 holds if and only if ∆FI equals the lattice point 0 ∈ M . There exist

exactly 665,599 canonical Fano 3-topes with ∆FI = {0}, where 0 ∈ M is the only interior lattice point

of ∆. These polytopes are characterized in [Bat17, Proposition 3.4] by the condition that 0 ∈ N is an

interior lattice point of the 3-dimensional lattice polytope

[∆∗] := conv(∆∗ ∩N).

Remark 1.9. If ∆ is a canonical Fano 3-tope, then ∆FI = {0} if and only if the non-degenerate affine

surface Z∆ is birational to a K3-surface [Bat17, Theorem 2.26].

The case dim(∆FI) = 1 splits in two subcases. There exists exactly 20 canonical Fano 3-topes ∆ such

that 0 ∈ M is the midpoint of the Fine interior ∆FI. Therefore, we call this Fine interior symmetric.

Canonical Fano 3-topes with 1-dimensional symmetric Fine interior are characterized by the condition

that [∆∗] is a 2-dimensional reflexive polytope. The Fine interior of the remaining 9,020 canonical Fano

3-topes with dim(∆FI) = 1 contains 0 ∈M as a vertex. Therefore, we call this Fine interior asymmetric.

Canonical Fano 3-topes with 1-dimensional asymmetric Fine interior are combinatorially characterized

by the condition that 0 ∈ N is contained in the relative interior of a facet Θ � [∆∗] of the lattice 3-tope

[∆∗]. The minimal surfaces S∆ corresponding to canonical Fano 3-topes with 1-dimensional Fine interior

(symmetric and asymmetric) are elliptic surfaces of Kodaira dimension κ = 1.

There exist exactly 49 canonical Fano 3-topes with dim(∆FI) = 3. These polytopes are characterized

by the condition that 0 ∈ N is a vertex of the 3-dimensional lattice polytope [∆∗]. The surfaces S∆

corresponding to canonical Fano 3-topes ∆ with 3-dimensional Fine interior ∆FI are of general type (i.e.,

S∆ has maximal Kodaira dimension κ = dim(S∆) = 2).

Remark 1.10. The Fine interior computations were done using

∆FI =
⋂
θ�∆

⋂
n∈H(σθ)

{x ∈MQ | 〈x, n〉 ≥ ord∆(n) + 1} ,

where H(σθ) denotes the set of all irreducible elements in the monoid σθ∩N . It is the minimal generating

set of the monoid σθ ∩N and is called Hilbert basis of σθ ∩N .

In the next sections we consider examples and discuss additional properties of canonical Fano 3-topes ∆

in dependence of their Fine interiors ∆FI. All computations were done using the Graded Ring Database1,

including the data of all 674,688 canonical Fano 3-topes and MAGMA2. Therefore, all statements have

been checked by computer calculations. The canonical Fano 3-topes used as examples in this chapter

appear with an ID that is the example’s ID in the Graded Ring Database.3

1http://www.grdb.co.uk
2http://magma.maths.usyd.edu.au/magma/
3http://www.grdb.co.uk/forms/toricf3c

http://www.grdb.co.uk
http://magma.maths.usyd.edu.au/magma/
http://www.grdb.co.uk/forms/toricf3c
http://www.grdb.co.uk
http://magma.maths.usyd.edu.au/magma/
http://www.grdb.co.uk/forms/toricf3c
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2. Almost reflexive polytopes of dimension 3 and 4

Definition 2.1. A canonical Fano d-tope ∆ ⊆ MQ is called almost reflexive if the convex hull of all

N -lattice points in the dual polytope ∆∗ is reflexive.

It is easy to show the following statement:

Proposition 2.2. If a canonical Fano d-tope ∆ is almost reflexive, then

∆FI = {0}.

Proof. If [∆∗] is reflexive, then ∆ = (∆∗)∗ is contained in the dual reflexive polytope [∆∗]∗. Therefore,

the Fine interior of ∆ is contained in the Fine interior of the reflexive polytope [∆∗]∗ and ([∆∗]∗)FI = {0}.
Thus, ∆FI = {0}. �

The converse statement is not true in general for d ≥ 5, but there exist many equivalent characteriza-

tions of reflexive and almost reflexive d-topes among canonical Fano d-topes if d = 3 or d = 4.

Let us recall some combinatorial invariants of arbitrary lattice d-topes.

Definition 2.3. The Ehrhart power series of an arbitrary lattice d-tope ∆ ⊆MQ is defined as

P∆(t) :=
∑
k≥0

|k∆ ∩M | tk,

where |k∆ ∩M | denotes the number of lattice points in the k-th dilate k∆ of ∆.

This Ehrhart series is a rational function of the form

P∆(t) =
ψd(∆)td + · · ·+ ψ1(∆)t+ ψ0(∆)

(1− t)d+1
,

where ψi(∆) are non-negative integers for all 0 ≤ i ≤ d [Sta80] such that ψ0(∆) = 1 and ψ1(∆) =

|∆∩M |−d−1. Moreover,
∑d
i=0 ψi(∆) = v(∆), where v(∆) := d! ·vol(∆) denotes the normalized volume

of ∆.

One has the following characterization of reflexive d-topes:

Proposition 2.4 [BR15, Theorem 4.6]. A canonical Fano d-tope ∆ is reflexive if and only if

ψi(∆) = ψd−i(∆) (0 ≤ i ≤ d).

The Ehrhart reciprocity implies that the power series

Q∆(t) :=
∑
k≥1

|(k∆)◦ ∩M | tk

is a rational function

Q∆(t) =
ϕd+1(∆)td+1 + · · ·+ ϕ2(∆)t+ ϕ1(∆)t+ ϕ0(∆)

(1− t)d+1
,

where ϕ0(∆) = 0 and ϕ1(∆) = |∆◦ ∩M |. Using Serre duality, one obtains

ϕi(∆) = ψd+1−i(∆) (1 ≤ i ≤ d+ 1),

i.e., in particular

ψd(∆) = ϕ1(∆) = |∆◦ ∩M |
and

ψd−1(∆) = ϕ2(∆) = |2∆◦ ∩M | − (d+ 1)|∆◦ ∩M |
[DK86, Section 4, 5.11]. Therefore, the lattice d-tope ∆ is a canonical Fano d-tope if and only if

ψd(∆) = 1. Moreover,

ψd−1(∆) = |(2∆)◦ ∩M | − (d+ 1)

if ∆ is a canonical Fano d-tope.

Applying the above equations, one immediately obtains the following criterion for reflexivity of canon-

ical Fano d-topes in the case d = 3, 4:
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Proposition 2.5. Let ∆ ⊆MQ be a canonical Fano d-tope with d ∈ {3, 4}. Then for d = 3, one has

P∆(t) =
t3 + (|(2∆)◦ ∩M | − 4)t2 + (|∆ ∩M | − 4)t+ 1

(1− t)4

and for d = 4, one obtains

P∆(t) =
t4 + (|(2∆)◦ ∩M | − 5)t3 + ψ2(∆)t2 + (|∆ ∩M | − 5)t+ 1

(1− t)5
.

In particular, ∆ is reflexive if and only if

|∆ ∩M | = |(2∆)◦ ∩M | .

Proposition 2.6. Let ∆ ⊆MQ be a canonical Fano d-tope with d ∈ {3, 4} such that 0 ∈ N is an interior

lattice point of [∆∗]. Then [∆∗] is reflexive, i.e., ∆ is almost reflexive.

Proof. Let n ∈ N be an interior lattice point of [∆∗]. Then 〈x, n〉 ≥ 0 for all x ∈ ∆ ∩M because

∆∗ = {y ∈ NQ | 〈x, y〉 ≥ −1 for all x ∈ ∆}

and 〈x, n〉 is an integer. Since 0 ∈ ∆◦ ∩M , MQ is the set of all non-negative Q-linear combinations of

all lattice points in ∆∩M . This implies 〈x′, n〉 ≥ 0 for all x′ ∈MQ, i.e., n = 0. Therefore, [∆∗] has only

one interior lattice point 0 ∈ N , i.e., [∆∗] is a canonical Fano d-tope.

It is clear that [∆∗] is contained in the interior of 2[∆∗]. Therefore, we have [∆∗]∩N ⊆ (2[∆∗])◦ ∩N .

On the other hand, for any lattice point n ∈ (2[∆∗])◦, 〈x, n〉 > −2 for all x ∈ ∆ ∩M . Since 〈x, n〉 is an

integer, n ∈ ∆∗ ∩N , i.e.,

[∆∗] ∩N = (2[∆∗])◦ ∩N.

Using Proposition 2.5, [∆∗] is reflexive. �

Corollary 2.7. Let ∆ ⊆ MQ be a canonical Fano d-tope with d ∈ {3, 4} such that 0 ∈ N is an interior

lattice point of [∆∗]. Then [∆∗]∗ is the smallest (referring to inclusion) reflexive polytope containing ∆.

Proof. Let ∆′ ⊆ MQ be a reflexive d-tope such that ∆ ⊆ ∆′. Then (∆′)∗ ⊆ ∆∗. Since (∆′)∗ is a lattice

polytope, it is contained in [∆∗]. Thus, [∆∗]∗ is contained in ((∆′)∗)∗ = ∆′. �

Remark 2.8. If ∆ is a reflexive d-tope, then [2∆◦] = ∆. If ∆ is a canonical Fano d-tope with d ∈ {3, 4}
such that ∆FI = {0} and ∆ is contained in a reflexive d-tope ∆′, then [2∆◦] is contained in [(2∆′)◦] = ∆′.

Therefore, [2∆◦] is contained in the smallest reflexive polytope [∆∗]∗ containing ∆, i.e.,

[2∆◦] ⊆ [∆∗]∗.

Computations showed that among all 665,599 canonical Fano 3-topes ∆ with ∆FI = {0} there exist

exactly 211,941 canonical Fano 3-tops such that [2∆◦] is reflexive. For the remaining canonical Fano

3-topes ∆ the lattice 3-topes [2∆◦] are larger than ∆, but are not equal to the reflexive hull [∆∗]∗.

Remark 2.9. Let ∆ be an almost reflexive 3-tope. We denote by τ(∆) the lattice d-tope [2∆◦] . If

τ(∆) is not reflexive, then it is almost reflexive and we can consider the larger lattice d-tope τ2(∆) :=

τ(τ(∆)) ⊆ [∆∗]∗. After at morst five steps, τk(∆) is equal to the reflexive hull [∆∗]∗ of ∆.

In dimension 4, the situation is comparable:

Example 2.10. Let ∆ ⊆ R4 be the almost reflexive 4-tope defined by the inequalities xi ≥ −1 (1 ≤ i ≤
4), x1 ≤ 2, and x1 + x2 + x3 + x4 ≤ 1. Then ∆FI = {0} and the smallest reflexive 4-tope containing ∆

is the 4-simplex [∆∗]∗ defined by the inequalities xi ≥ −1 (1 ≤ i ≤ 4) and x1 + x2 + x3 + x4 ≤ 1. It is

easy to see that τ(∆) is not the reflexive 4-tope [∆∗]∗ because the vertex (4,−1,−1,−1) ∈ vert([∆∗]∗) is

not in 2∆◦. However, τ2(∆) = [∆∗]∗.
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(a) ID 547386.
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(b) ID 547385.

Figure 1. Canonical Fano 3-topes ∆ with ∆FI = {0}. Shaded faces are occluded

and the Fine interior {0} is coloured grey with a red margin. The whole polytope is the

canonical hull ∆can as well as the reflexive hull ∆ref and the grey coloured polytope is

∆. (a) Reflexive polytope ∆ = conv(v1, v2, v3, v4) with v1 = (1, 0, 0), v2 = (0, 1, 0), v3 =

(0, 0, 1), v4 = (−1,−1,−1), and ∆ref = ∆can = ∆. All facets of ∆ have lattice distance

1 to the origin. (b) Almost reflexive polytope ∆ = conv(v1, v2, v3, v4) with v1 = (1, 0, 0),

v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (−1,−1,−2), and ∆ref = ∆can = conv(v1, v2, v3, v4, v5)

with v5 = (0, 0,−1) reflexive. The dark grey coloured facet of ∆ has lattice distance 2

and all other facets have lattice distance 1 to the origin.

3. Canonical Fano 3-topes with ∆FI = {0}

We note that the set of all reflexive 3-topes forms a rather small part of the set of all canonical Fano

3-topes. The majority of canonical Fano 3-topes belongs to the subset of almost reflexive 3-topes. The

proof of the following statement is based on the result of Skarke [Ska96] and the explanations in the

previous section:

Proposition 3.1. A canonical Fano 3-tope ∆ is almost reflexive if one of the following equivalent con-

ditions is satisfied:

(i) ∆FI = {0};
(ii) 0 ∈ N is an interior lattice point of [∆∗];

(iii) ∆ is contained in some reflexive 3-tope;

(iv) τk(∆) is the reflexive 3-tope [∆∗]∗ for some sufficiently large k (1 ≤ k ≤ 5);

(v) the lattice 3-tope [2∆◦] has exactly one interior lattice point;

(vi) the non-degenerate affine hypersurface Z∆ defined by a Laurent polynomial with Newton polytope

∆ is birational to a smooth K3-surface.

Computations show that there exist exactly 665,599 almost reflexive canonical Fano 3-topes. The

set of almost reflexive 3-topes includes all 4,319 reflexive 3-topes. We have shown that for any almost

reflexive 3-tope ∆, the reflexive polytope ∆ref := [∆∗]∗ is the smallest reflexive 3-tope containing ∆.

We call ∆ref the reflexive hull of ∆. Thus we obtain a natural surjective map ∆ 7→ ∆ref from the set

of almost reflexive 3-topes to the set of reflexive 3-topes, which is the identity on the set of reflexive

3-topes. The minimal surface S∆ is a K3-surface if and only if ∆ is an almost reflexive 3-tope. If ∆ is an

almost reflexive 3-tope, but not reflexive, then the minimal surface S∆ is a crepant desingularization of

the Zariski closure of Z∆ in the Gorenstein toric Fano threefold X∆ref defined by the reflexive hull of ∆.

A generalization of the reflexive hull of almost reflexive 3-topes for arbitrary lattice d-topes with

non-empty Fine interior can be obtained using the notion of support of the Fine interior ∆FI.

http://www.grdb.co.uk/forms/toricf3c
http://www.grdb.co.uk/forms/toricf3c
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Definition 3.2. Let ∆ ⊆MQ a lattice d-tope with ∆FI 6= ∅. Then the set

supp(∆FI) := {n ∈ N | there exists x ∈ ∆FI with 〈x, n〉 = ord∆(n) + 1}

is called support of the Fine interior of ∆.

Example 3.3. If ∆ is a reflexive d-tope, then the support of the Fine interior of ∆ is the set of all

non-zero lattice points in ∆∗ ∩N .

Remark 3.4. It is easy to show that one always has

∆FI =
⋂

n∈supp(∆FI)

{x ∈MQ | 〈x, n〉 ≥ ord∆(n) + 1}.

Definition 3.5. Let ∆ ⊆MQ a lattice d-tope with ∆FI 6= ∅. Then the rational polytope

∆can :=
⋂

n∈supp(∆FI)

{x ∈MQ | 〈x, n〉 ≥ ord∆(n)}

contains ∆ and is called canonical hull of ∆.

Example 3.6. If ∆ is an almost reflexive 3-tope, then supp(∆FI) is the set (∆∗ ∩N) \ {0} of boundary

lattice points in the reflexive 3-tope [∆∗] and the canonical hull ∆can equals the reflexive hull ∆ref of the

polytope ∆, i.e., ∆can = ∆ref = [∆∗]∗. In particular, in this case ∆can is always a lattice 3-tope.

There exist a smooth projective toric variety XΣ defined by a fan Σ whose 1-dimensional cones are

generated by all lattice vectors from the finite set supp(∆FI). Then the minimal surface S∆ is a K3-surface

which is the Zariski closure of Z∆ in XΣ [Bat17].

Example 3.7. Let us consider the (almost) reflexive canonical Fano 3-tope ∆ = conv(v1, v2, v3, v4) ⊆MQ
(ID 547386, Figure 1(a)) with vertices

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), and v4 := (−1,−1,−1)

and ∆FI = {0}. Moreover,

∆ref = conv(2∆◦ ∩M) = conv(∆ ∩M) = ∆

and

∆can = [∆∗]∗ = (∆∗)∗ = ∆

because ∆ is reflexive, i.e., ∆ref = ∆can = ∆ reflexive (Figure 1(a)).

Example 3.8. Let us consider the almost reflexive canonical Fano 3-tope ∆ = conv(v1, v2, v3, v4) ⊆MQ
(ID 547385, Figure 1(b)) with vertices

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), and v4 := (−1,−1,−2)

and ∆FI = {0}. Moreover,

∆ref = conv((∆ ∩M) ∪ {v5}) = conv(v1, v2, v3, v4, v5)

and

∆can = [∆∗]∗ = conv(v1, v2, v3, v4, v5)

with v5 := (0, 0,−1) because ∆ is almost reflexive, i.e., ∆ref = ∆can = ∆ reflexive (Figure 1(b)).

4. Asymmetric Fine interior of dimension 1

There exist exactly 9,020 canonical Fano 3-topes ∆ with 1-dimensional Fine interior such that 0 ∈ N
belongs to a facet Θ � [∆∗] of the lattice 3-tope [∆∗]. This class of canonical Fano 3-topes is characterized

by the property that the lattice 3-tope [2∆◦] has exactly 2 interior lattice points.

The corresponding minimal surfaces S∆ are simply connected (i.e., have trivial fundamental group

π1(S∆)) elliptic surfaces of Kodaira dimension κ = 1. We observed that the facet Θ � [∆∗] is a reflexive

2-tope corresponding to one of the three types pictured in Figure 2. All N -lattice points on the boundary

of Θ belong to supp(∆FI). It was checked that for all these 3-topes ∆ the canonical hull ∆can is again a

lattice 3-tope. Moreover, the Fine interior ∆FI is contained in the ray generated by the primitive lattice

http://www.grdb.co.uk/forms/toricf3c
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(a) (b) (c)

Figure 2. Reflexive Facets of ∆ Containing ±v∆. Three types of reflexive facets

θ± � ∆ of ∆ containing ±v∆ for all 9,020+20 canonical Fano 3-topes ∆ with dim(∆FI) =

1. Vertices are coloured black, boundary points that are not vertices grey, and the

origin light grey. (a) conv((1, 0), (0, 1), (−1,−1)). (b) conv((1, 0), (−1, 1), (−1,−1)).

(c) conv((±1, 0), (0,±1)).

vector v∆ ∈M which is the primitive inward-pointing facet normal of Θ, i.e., 〈x, y〉 = 0 for all x ∈ ∆FI,

y ∈ Θ. The lattice point 0 ∈M is a vertex of ∆FI. More precisely, one has

∆FI = conv(0, λv∆),

where λ ∈ {1/2, 2/3}. The primitive lattice vector v∆ is the unique interior lattice point on a reflexive

facet θ+ � ∆ of ∆ of one of the three possible types pictured in Figure 2. These three reflexive polygons

θ+ are characterized by the condition that the dual reflexive polygons θ∗+ are obtained from θ+ (Figure 3)

by enlarging the lattice Z2 in the following ways: Z2 + Z(1/3, 2/3) (Figure 3(a)), Z2 + Z(1/2, 0) (Figure

3(b)), and Z2 +Z(1/2, 1/2) (Figure 3(c)). Moreover, the reflexive facet θ+ of ∆ is isomorphic to the facet

Θ of [∆∗]. The projection M →M/Zv∆ of ∆ or of θ+ along v∆ is a reflexive polygon of one of the three

types pictured in Figure 3, which is dual to θ+ and Θ. The lattice vector v∆ defines a character of the

3-dimensional torus χ : T3 → C×. For almost all α ∈ C×, the fiber χ−1(α) is an affine elliptic curve

defined by a Laurent polynomial with the reflexive Newton polytope Θ∗ ∼= θ∗+ of one of the three types

pictured in Figure 3 with the distribution shown in Table 1. So χ defines birationally an elliptic fibration.

θ± θ∗± enlarged lattice #∆asym #∆sym

Figure 2(a) Figure 3(a) Z2 + Z(1/3, 2/3) 3,038 7

Figure 2(b) Figure 3(b) Z2 + Z(1/2, 0) 4,663 9

Figure 2(c) Figure 3(c) Z2 + Z(1/2, 1/2) 1,319 4

Table 1. Distribution of the Reflexive Facets of ∆ Containing ±v∆. Table

contains: Type of the reflexive facet θ± containing ±v∆, type of the dual reflexive facet

θ∗±, the enlarged lattice used to obtain θ∗± from θ±, the number of canonical Fano 3-topes

∆asym := {∆ | 1-dim. asym. ∆FI}, and the number of canonical Fano 3-topes ∆sym :=

{∆ | 1-dim. sym. ∆FI} with respect to the facet type of θ± pictured in Figure 2.

Example 4.1. Let ∆ ⊆MQ be a canonical Fano 3-tope given as the convex hull

v1 := (2, 3, 8), v2 := (1, 0, 0), v3 := (0, 1, 0), and v4 := (−1,−1,−1)

(ID 547324, Figure 4(a), Table A.1 and A.3). Then

∆FI = conv((0, 0, 0), (1/2, 1/2, 1)) = conv(0, 1/2 · v∆),

where v∆ = (1, 1, 2). One has v1 + 2v2 + v3 = 4v∆. Therefore, v∆ is the interior lattice point of the

reflexive facet θ+ of ∆ (Figure 2(b)) with vertices v1, v2, v3 and the images v1, v2, v3 of v1, v2, v3 in M/Zv∆

are vertices of the dual reflexive triangle θ∗+ (Figure 3(b)) satisfying the relation

v1 + 2v2 + v3 = 0.

http://www.grdb.co.uk/forms/toricf3c
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(a) (b) (c)

Figure 3. Reflexive Projection Polytopes. Three types of reflexive polytopes ob-

tained via a projection of ∆ along ±v∆ for all 9,020 + 20 canonical Fano 3-topes ∆ with

dim(∆FI) = 1 Vertices are coloured black, boundary points that are not vertices grey,

and the origin light grey. (a) conv((−1, 2), (−1,−1), (2,−1)). (b) conv((−2,−1), (0, 1),

(2,−1)). (c) conv((±1,±1)).

v1

v2
v3 v4

v5

(a) ID 547324

v1

v2

v3

v4

v5

(b) ID 547323

Figure 4. Canonical Fano 3-topes with Asymmetric Fine Interior of Di-

mension 1. Shaded faces are occluded. The Fine interior is coloured red, the ori-

gin grey with a red margin, and the facet θ+ grey dotted. (a) The whole poly-

tope is ∆ = conv(v1, v2, v3, v4) with v1 = (2, 3, 8), v2 = (1, 0, 0), v3 = (0, 1, 0),

v4 = (−1,−1,−1). Moreover, ∆FI = conv((0, 0, 0), (1/2, 1/2, 1)), θ+ = conv(v1, v2, v3),

and ∆can = conv(v1, v2, v3, v4, v5) with v5 = (0, 1, 4). (b) The whole polytope is

∆ = conv(v1, v2, v3, v4) with v1 = (−1, 1,−2), v2 = (1,−2, 3), v3 = (1, 0, 0), v4 =

(−2, 5,−3). Moreover, ∆FI = conv((0, 0, 0), (0, 2/3, 0)) and θ+ = conv(v2, v3, v4), and

∆can = conv(v1, v2, v3, v4, v5) with v5 = (−2, 4,−3).

To compute the canonical hull ∆can of ∆, we obtain supp(∆FI) = {si | 1 ≤ i ≤ 18} with s1 :=

(−1,−1, 1), s2 := (−1,−1, 2), s3 := (−1,−1, 3), s4 := (−1, 0, 1), s5 := (−1, 0, 2), s6 := (−1, 1, 0), s7 :=

(−1, 1, 1), s8 := (−1, 2, 0), s9 := (−1, 3,−1), s10 := (0,−1, 1), . . ., s18 := (−2,−2, 1), which leads to

∆can = conv(v1, v2, v3, v4, v5)

with v5 := (0, 1, 4) (Figure 4(a)).

Example 4.2. Let ∆ ⊆MQ be canonical Fano 3-tope given as the convex hull

v1 := (−1, 1,−2), v2 := (1,−2, 3), v3 := (1, 0, 0), and v4 := (−2, 5,−3)

(ID 547323, Figure 4(b), Table A.1 and A.3). Then

∆FI = conv((0, 0, 0), (0, 2/3, 0)) = conv(0, 2/3 · v∆),

http://www.grdb.co.uk/forms/toricf3c
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where v∆ = (0, 1, 0). One has v2 +v3 +v4 = 3v∆. Therefore, v∆ is the interior lattice point of the reflexive

facet θ+ of ∆ (Figure 2(a)) with vertices v2, v3, v4 and the images v2, v3, v4 of v2, v3, v4 in M/Zv∆ are

vertices of the dual reflexive triangle θ∗+ (Figure 3(a)) satisfying the relation

v2 + v3 + v4 = 0.

To compute the canonical hull ∆can of ∆, we obtain supp(∆FI) = {si | 1 ≤ i ≤ 20} with s1 :=

(−3,−3,−2), s2 := (−1, 0, 0), s3 := (−1, 0, 1), s4 := (−1, 1, 1), s5 := (−1, 2, 2), s6 := (−1, 3, 2), s7 :=

(−1, 4, 3), s8 := (−1, 6, 4), s9 := (0, 1, 1), s10 := (0, 2, 1), . . ., s20 := (4, 1,−1), which leads to

∆can = conv(v1, v2, v3, v4, v5)

with v5 := (−2, 4,−3) (Figure 4(b)).

Remark 4.3. The detailed information about a small selection of the 9,020 canonical Fano 3-topes with

dim(∆FI) = 1 and 0 ∈ vert(∆FI) can be found in Appendix A. To be precise, it is listed in Table A.1,

A.2, and A.3 and can be viewed in [Sch18, Appendix A, Figure A1].

5. Symmetric Fine interior of dimension 1

There exist exactly 20 canonical Fano 3-topes ∆ such that 0 is the center of 1-dimensional Fine interior

∆FI. In this case, S∆ is an elliptic surface of Kodaira dimension κ = 1 with non-trivial fundamental

group π1(S∆) of order 2 or 3. Computations show that one always has ∆ = ∆can and

∆FI = conv(−λv∆, λv∆)

with λ = 1
2 if and only if |π1(S∆)| = 2 and

∆FI = conv(−µv∆, µv∆)

with µ = 2
3 if and only if |π1(S∆)| = 3. The primitive lattice vectors ±v∆ are the two unique interior

lattice points in two reflexive facets θ± � ∆ of one of the three possible types pictured in Figure 2. The

reflexive facets θ± of ∆ are isomorphic to the facet Θ of [∆∗]. The projections M →M/Z(±v∆) of ∆ or

of θ± along ±v∆ reveal a reflexive polygon of one of the three types pictured in Figure 3, which is dual

to θ± and Θ. The lattice vector v∆ defines a character of the 3-dimensional torus χ : T3 → C×. For

almost all α ∈ C×, the fiber χ−1(α) is an affine elliptic curve defined by a Laurent polynomial with the

reflexive Newton polytope Θ∗ ∼= θ∗± of one of the three types pictured in Figure 3 with the distribution

shown in Table 1. So χ defines birationally an elliptic fibration. The vertex sets of ∆ and these reflexive

facets are related via vert(∆) = vert(θ+) ∪ vert(θ−). Moreover, every edge of ∆ is either an edge of θ+

or θ− of these two facets or it is parallel to v∆.

Example 5.1. Let ∆ ⊆MQ be canonical Fano 3-tope given as the convex hull

v1 := (0, 1, 0), v2 := (2, 1, 1), v3 := (−2,−3,−5), and v4 := (2, 1, 9)

(ID 547393, Figure 5(a), Table A.4 and A.5). Then

∆FI = conv((0, 0,−1/2), (0, 0, 1/2)) = (−λv∆, λv∆)

with λ = 1
2 , where v∆ = (0, 0, 1). One has 2v1 + v3 + v4 = 4v∆ and 2v1 + v2 + v3 = 4(−v∆). Therefore,

v∆ is the interior lattice point of the reflexive facet θ+ = θ134 of ∆ and −v∆ is the interior lattice point

of the reflexive facet θ− = θ123 of ∆ (Figure 2(b)). The images v1, v3, v4 of v1, v3, v4 in M/Zv∆ and the

images v1, v2, v3 of v1, v2, v3 in M/Z(−v∆) are vertices of the dual reflexive triangle θ∗± (Figure 3(b))

satisfying the relation

2v1 + v3 + v4 = 0

and

2v1 + v2 + v3 = 0,

respectively.

To compute the canonical hull ∆can of ∆, we obtain supp(∆FI) = {si | 1 ≤ i ≤ 6} with s1 := (−1,−2, 2),

s2 := (−1, 1, 0), s3 := (0,−1, 0), s4 := (1,−1, 0), s5 := (2,−1, 0), and s6 := (9,−2,−2), which leads to

∆can = ∆.
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v1

v2

v3

v4

(a) ID 547393

v1

v2
v3

v4

(b) ID 547409

Figure 5. Canonical Fano 3-topes with Symmetric Fine Interior of Dimension

1. Shaded faces are occluded. The Fine interior is coloured red, the origin grey with a red

margin, and the facets θ± grey dotted. (a) The whole polytope is ∆ = conv(v1, v2, v3, v4)

with v1 = (1, 0, 0), v2 = (2, 1, 1), v3 = (−2,−3,−5), v4 = (2, 1, 9). Moreover, ∆FI =

conv((0, 0,−1/2), (0, 0, 1/2)), θ+ = conv(v1, v3, v4), θ− = conv(v1, v2, v3), and ∆can = ∆.

(b) The whole polytope is ∆ = conv(v1, v2, v3, v4) with v1 = (−4, 2, 9), v2 = (1, 0, 0),

v3 = (0, 1, 0), v4 = (7,−6,−18). Moreover, ∆FI = conv((−2/3, 2/3, 2), (2/3,−2/3,−2)),

θ+ = conv(v1, v2, v3), θ− = conv(v1, v3, v4), and ∆can = ∆.

Example 5.2. Let ∆ ⊆MQ be canonical Fano 3-tope given as the convex hull

v1 := (−4, 2, 9), v2 := (1, 0, 0), v3 := (0, 1, 0), and v4 := (7,−6,−18)

(ID 547409, Figure 5(b), Table A.4 and A.5). Then

∆FI = conv((−2/3, 2/3, 2), (2/3,−2/3,−2)) = (−µv∆, µv∆)

with µ = 2
3 , where v∆ = (1,−1,−3). One has v1 + v2 + v3 = −3v∆ and v1 + v3 + v4 = −3(−v∆).

Therefore, v∆ is the interior lattice point of the reflexive facet θ+ = θ123 of ∆ and −v∆ is the interior

lattice point of the reflexive facet θ− = θ134 of ∆ (Figure 2(b)). The images v1, v2, v3 of v1, v2, v3 in

M/Zv∆ and the images v1, v3, v4 of v1, v3, v4 in M/Z(−v∆) are vertices of the dual reflexive triangle θ∗±
(Figure 3(b)) satisfying the relation

v1 + v2 + v3 = 0,

and

v1 + v3 + v4 = 0,

respectively.

To compute the canonical hull ∆can of ∆, we obtain supp(∆FI) = {si | 1 ≤ i ≤ 5} with s1 :=

(−3,−3,−1), s2 := (−1,−1, 0), s3 := (−1, 2,−1), s4 := (2,−1, 1), and s5 := (15,−3, 7), which leads

to ∆can = ∆.

Remark 5.3. The detailed information about all 20 canonical Fano 3-topes with dim(∆FI) = 1 and

0 ∈ (∆FI)
◦

can be found in Appendix A. To be precise, it is listed in Table A.4 and A.5 and can be

viewed in [Sch18, Appendix A, Figure A2].

6. Fine interior of dimension 3

There exist 49 canonical Fano 3-topes ∆ such that dim(∆FI) = 3. Exactly 3 of these polytopes ∆

define minimal surface S∆ with non-trivial fundamental group of order 2 and K2 = 2. For these 3

polytopes one has ∆ = ∆can. The surfaces S∆ were investigated by Todorov [Tod81] as well as Catanese

and Debarre [CD89].
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The remaining 46 canonical Fano 3-topes ∆ define simply connected minimal surfaces S∆ with K2 = 1.

These surfaces were investigated by Kanev [Kan77], Catanese [Cat79], and Todorov [Tod80]. Among these

46 canonical Fano 3-topes there exist exactly 26 polytopes ∆ such that ∆ = ∆can.

Example 6.1 [Kan77]. Let M ⊆ Q4 be the 3-dimensional affine lattice defined by

M := {(m1,m2,m3,m4) ∈ Z4 |m1 +m2 +m3 + 2m4 = 6, m2 + 2m3 ≡ 0 (mod 3)}

and ∆′ ⊆MQ be the convex hull of 4 lattice points

(6, 0, 0, 0), (0, 6, 0, 0), (0, 0, 6, 0), and (0, 0, 0, 3) ∈M.

Then (∆′)FI is the 3-dimensional rational simplex

conv((2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 3/2))

and (∆′)FI ∩M = {(2, 1, 1, 1)}.
The canonical Fano 3-tope ∆′ is the Newton polytope of the µ3-cyclic quotient Z∆′ of the projective

surface of degree 6 defined by the polynomial z6
1 + z6

2 + z6
3 + z3

4 = 0 in the weighted projective space

P(1, 1, 1, 2), where the cyclic group µ3 acts via (z1 : z2 : z3 : z4) 7→ (z1 : εz2 : ε2z3 : z4). The single

interior lattice point in ∆′ corresponds to the monomial z2
1z2z3z4. The surface Z∆′ has 3 cyclic quotient

singularities of type A2. The minimal desingularization S∆′ of Z∆′ is simply connected surface of general

type with K2 = 1.

One can identify ∆′ with the canonical Fano 3-simplex ∆ given as the convex hull

v1 := (1, 0, 0), v2 := (−2,−4,−5), v3 := (1, 2, 4), and v4 := (1, 4, 2)

(ID 547444, Figure 6(a), Table A.6, A.7, and A.8). The primitive inward-pointing facet normals of the

facets θ124, θ234, θ123, and θ134 � ∆ of this simplex ∆ are

n1 := (−2,−1, 2), n2 := (5,−1,−1), n3 := (−1, 2,−1), and n4 := (−1, 0, 0),

respectively. They satisfy the relation

n1 + n2 + n3 + 2n4 = 0.

To compute the canonical hull ∆can of ∆, we obtain supp(∆FI) = {si | 1 ≤ i ≤ 6} with s1 := (−2,−1, 2),

s2 := (−1, 0, 0), s3 := (−1, 2,−1), s4 := (1, 1,−1), s5 := (3, 0,−1), and s6 := (5,−1,−1), which leads to

∆can = ∆.

Example 6.2 [Tod81]. Let M ⊆ Q4 be the 3-dimensional affine lattice defined by

M := {(m1,m2,m3,m4) ∈ Z4 |m1 +m2 + 2m3 + 2m4 = 8, 3m2 +m3 + 3m4 ≡ 0 (mod 4)}

and ∆′ ⊆MQ be the convex hull of 4 lattice points

(8, 0, 0, 0), (0, 8, 0, 0), (0, 0, 4, 0), and (0, 0, 0, 4) ∈M.

Then (∆′)FI is the 3-dimensional rational simplex

conv((3, 1, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2))

and (∆′)FI ∩M = {(1, 1, 2, 1)}.
The canonical Fano 3-tope ∆′ is the Newton polytope of the µ4-cyclic quotient Z∆′ of the projective

surface of degree 8 defined by the polynomial z8
1 + z8

2 + z4
3 + z4

4 = 0 in the weighted projective space

P(1, 1, 2, 2), where the cyclic group µ4 acts via (z1 : z2 : z3 : z4) 7→ (z1 : i3z2 : iz3 : i3z4). The single

interior lattice point in this lattice simplex ∆′ corresponds to the monomial z1z2z
2
3z4. The projective

surface Z∆′ has two Gorenstein cyclic quotient singularities of type A3. The minimal desingularization

S∆′ of Z∆′ is a surface of general type with K2 and fundamental group π1(S∆) of order 2.

One can identify ∆′ with the canonical Fano 3-simplex ∆ given as the convex hull

v1 := (−3,−2,−2), v2 := (1, 0, 0), v3 := (1, 3, 1), and v4 := (1, 1, 3)

(ID 547465, Figure 6(b), Table A.6, A.7, and A.8). The primitive inward-pointing facet normals of the

facets θ123, θ124, θ234, θ134 � ∆ of this simplex ∆ are

n1 := (−1,−1, 3), n2 := (−1, 3,−1), n3 := (−1, 0, 0), and n4 := (2,−1,−1),
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Figure 6. Canonical Fano 3-topes with Fine Interior of Dimension 3.

Shaded faces are occluded. The Fine interior is coloured red and the origin

grey with a red margin. (a) The whole polytope is ∆ = conv(v1, v2, v3, v4)

with v1 = (1, 0, 0), v2 = (−2,−4,−5), v3 = (1, 2, 4), v4 = (1, 4, 2).

Moreover, ∆FI = conv((0, 0, 0), (−1/2,−1,−3/2), (0,−1/3,−2/3), (0, 1/3,−1/3)) and

∆can = ∆. (b) The whole polytope is ∆ = conv(v1, v2, v3, v4) with v1 =

(−3,−2,−2), v2 = (1, 0, 0), v3 = (1, 3, 1), v4 = (1, 1, 3). Moreover, ∆FI =

conv((0, 0, 0), (−1,−1/2,−1/2), (0, 3/4, 1/4), (0, 1/4, 3/4)) and ∆can = ∆.

respectively. They satisfy the relation

n1 + n2 + 2n3 + 2n4 = 0.

To compute the canonical hull ∆can of ∆, we obtain supp(∆FI) = {si | 1 ≤ i ≤ 9} with s1 := (−1,−1, 3),

s2 := (−1, 0, 0), s3 := (−1, 0, 1), s4 := (−1, 0, 2), s5 := (−1, 1, 0), s6 := (−1, 1, 1), s7 := (−1, 2, 0),

s8 := (−1, 3,−1), and s9 := (2,−1,−1), which leads to ∆can = ∆.

Remark 6.3. The detailed information about all 49 canonical Fano 3-topes with dim(∆FI) = 3 can

be found in the Appendix A. To be precise, it is listed in Table A.6, A.7, and A.8 and can be viewed

in [Sch18, Appendix A, Figure A3].
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Appendix A. Computational data

In all the tables, the canonical Fano 3-topes ∆ are given by their IDs used in the Graded Ring Database.

ID vert(∆) vert(∆FI) v∆ (wi)0≤i≤3

547324 (2, 3, 8), (1, 0, 0), (0, 1, 0), (−1,−1,−1) 0, 1/2 · v∆ (1, 1, 2) (1, 5, 6, 8)

547323 (−1, 1,−2), (1,−2, 3), (1, 0, 0), (−2, 5,−3) 0, 2/3 · v∆ (0, 1, 0) (1, 4, 7, 9)

547311 (−1, 4, 2), (−1,−1, 0), (0, 0,−1), (2, 0, 1) 0, 2/3 · v∆ (0, 1, 1) (2, 5, 8, 9)

547490 (1, 2, 4), (1, 0, 0), (1,−2, 3), (−1, 1,−2) 0, 1/2 · v∆ (0, 1, 0) (1, 5, 8, 14)

547321 (1,−2, 3), (0, 1, 0), (1, 0, 0), (−6, 3,−8) 0, 1/2 · v∆ (−1, 1,−2) (3, 7, 8, 10)

547305 (0, 1, 0), (1, 0, 0), (1, 2, 4), (−4,−6,−7) 0, 2/3 · v∆ (−1,−1,−1) (4, 7, 9, 10)

547526 (1, 0, 0), (0, 1, 0), (−2, 1, 5), (2,−4,−9) 0, 2/3 · v∆ (1,−1,−3) (5, 9, 8, 11)

547454 (2, 1, 7), (1, 0, 0), (0, 1, 0), (−2,−3,−3) 0, 1/2 · v∆ (0, 0, 1) (3, 7, 8, 18)

547446 (0, 1, 1), (−6, 7,−15), (1,−2, 3), (1, 0, 0) 0, 1/2 · v∆ (−1, 1,−2) (5, 8, 9, 22)

Table A.1. 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Di-

mension 1. Table contains: vertices vert(∆) of ∆, vertices vert(∆FI) of the Fine interior

∆FI, unique primitive lattice point v∆ ∈ θ+ in the reflexive facet θ+ � ∆, and weights

(wi)0≤i≤3 of the weighted projective 3-space P(w0, . . . , w3) appearing in [CG11].

ID (ni)1≤i≤4 vert(θ+) nθ+

547324 (−2,−2, 1), (−1,−1, 3), (2, 3, 8), (1, 0, 0), (0, 1, 0) (−2,−2, 1)

(−1, 3,−1), (7,−3,−1)

547323 (−3,−3,−2), (−1, 0, 1), (1,−2, 3), (1, 0, 0), (−2, 5,−3) (−3,−3,−2)

(−1, 6, 4), (17, 3,−5)

547311 (−1,−1, 1), (−1, 2, 1), (−1, 4, 2), (−1,−1, 0), (2, 0, 1) (1, 2,−5)

(1, 2,−5), (7,−2, 5)

547490 (−2,−2, 1), (−1, 0, 0), (1, 2, 4), (1, 0, 0), (−1, 1,−2) (−2,−2, 1)

(−1, 6, 4), (23, 2,−8)

547321 (−3,−3,−2), (−2,−2, 1), (0, 1, 0), (1, 0, 0), (−6, 3,−8) (−2,−2, 1)

(−1, 3, 2), (9,−5,−8)

547305 (−7,−7, 11), (−2,−2, 1), (0, 1, 0), (1, 2, 4), (−4,−6,−7) (7,−3,−1)

(−1, 2,−1), (7,−3,−1)

547526 (−5,−5,−2), (−3,−3, 1), (1, 0, 0), (0, 1, 0), (2,−4,−9) (−3,−3, 1)

(−1, 2,−1), (25,−8, 10)

547454 (−7,−7, 2), (−1,−1, 2), (2, 1, 7), (0, 1, 0), (−2,−3,−3) (7,−2,−2)

(−1, 1, 0), (7,−2,−2)

547446 (−9, 21, 14), (−5,−3,−2), (0, 1, 1), (−6, 7,−15), (1,−2, 3) (9, 1,−3)

(−1,−1, 0), (9, 1,−3)

Table A.2. 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Di-

mension 1. Table contains: primitive inward-pointing facet normals (ni)1≤i≤4 of ∆,

vertices vert(θ+) of the reflexive facet θ+ � ∆, and primitive inward-pointing facet nor-

mal nθ+ of the reflexive facet θ+ � ∆.

http://www.grdb.co.uk/forms/toricf3c
http://www.grdb.co.uk
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ID vert(Θ) supp(∆FI) vert(∆can)

547324 (−1, 3,−1), (−1,−1, 1), (1,−1, 0) (−2,−2, 1), (−1,−1, 1), S1 vert(∆), (0, 1, 4)

547323 (−1, 0, 1), (−1, 0, 0), (2, 0,−1) (−3,−3,−2), (−1, 0, 0), S2 vert(∆), (−2, 4,−3)

547311 (−1,−1, 1), (0, 1,−1), (1, 0, 0) (−1,−1, 1), (−1, 0, 1), S3 vert(∆), (−1, 2, 0)

547490 (−1, 0, 0), (−1, 0, 1), (3, 0,−1) (−2,−2, 1), (−1, 0, 0), S4 vert(∆), (1,−1, 4)

547321 (−1,−1, 0), (−1, 3, 2), (1,−1,−1) (−2,−2, 1), (−1,−1, 0), vert(∆), (1, 0, 1),

(−1, 0, 0), (−1, 1, 1), (0,−3, 4)

(−1, 3, 2), (0,−1,−1),

(1,−1,−1)

547305 (−1, 2,−1), (1,−1, 0), (0,−1, 1) (−1,−1, 1), (−1, 0, 0), vert(∆), (0,−2,−3),

(−1, 2,−1), (0,−1, 1), (1, 2, 2)

(1,−1, 0), (7,−3,−1)

547526 (−1,−1, 0), (−1, 2,−1), (2,−1, 1) (−3,−3, 1), (−1,−1, 0), vert(∆) \ {(−2, 1, 5)},
(−1, 2,−1), (0,−1, 0), (0, 1, 3), (−3, 1, 6)

(2,−1, 1)

547454 (−1, 1, 0), (0,−1, 0), (2,−1, 0) (−1,−1, 1), (−1,−1, 2), S5 vert(∆), (2, 1, 2)

547446 (−1,−1, 0), (0, 2, 1), (2, 0,−1) (−1,−1, 0), (−1, 0, 0), vert(∆), (1, 0,−1),

(0, 2, 1), (1, 1, 0), (1, 0, 3)

(2, 0,−1), (9, 1,−3)

Table A.3. 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Di-

mension 1. Table contains: vertices vert(Θ) of the reflexive facet Θ � [∆∗], support

supp(∆FI) of the Fine interior ∆FI, and vertices vert(∆can) of the canonical hull ∆can.

S1 :=(−1,−1, 2), (−1,−1, 3), (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), (−1, 1, 1), (−1, 2, 0), (−1, 3,−1), (0,−1, 1),

(0,−1, 2), (0, 0, 1), (0, 1, 0), (1,−1, 0), (1,−1, 1), (1, 0, 0), (2,−1, 0)

S2 :=(−1, 0, 1), (−1, 1, 1), (−1, 2, 2), (−1, 3, 2), (−1, 4, 3), (−1, 6, 4), (0, 1, 1), (0, 2, 1), (0, 3, 2), (0, 5, 3),

(1, 1, 0), (1, 2, 1), (1, 4, 2), (2, 0,−1), (2, 1, 0), (2, 3, 1), (3, 2, 0), (4, 1,−1)

S3 :=(−1, 1, 1), (−1, 2, 1), (0, 0, 1), (0, 1,−1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2,−5)

S4 :=(−1, 0, 1), (−1, 1, 1), (−1, 2, 2), (−1, 3, 2), (−1, 4, 3), (−1, 6, 4), (0, 1, 1), (0, 2, 1), (0, 3, 2), (0, 5, 3),

(1, 0, 0), (1, 1, 0), (1, 2, 1), (1, 4, 2), (2, 1, 0), (2, 3, 1), (3, 0,−1), (3, 2, 0), (4, 1,−1)

S5 :=(−1, 0, 1), (−1, 1, 0), (0,−1, 0), (0,−1, 1), (1,−1, 0), (2,−1, 0), (7,−2,−2)
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ID vert(∆)

547393 (0, 1, 0), (2, 1, 1), (−2,−3,−5), (2, 1, 9)

547409 (−4, 2, 9), (1, 0, 0), (0, 1, 0), (7,−6,−18)

547461 (0, 1, 0), (2, 1, 1), (−2,−3,−5), (0, 1, 4)

544442 (1, 0, 0), (0, 1, 0), (3,−6, 8), (1,−4, 4), (−5, 6,−12)

544443 (−1,−2, 0), (3,−6, 8), (0, 1, 0), (1, 0, 0), (−3, 4,−8)

544651 (−4, 1,−3), (4,−2, 3), (0, 1, 0), (1,−2, 3), (−1, 1,−3)

544696 (5,−4,−15), (1, 0, 0), (0, 1, 0), (−4, 2, 9), (−3, 1, 6)

544700 (−2,−3,−3), (0, 1, 0), (1, 0, 0), (−1,−4,−6), (2, 5, 9)

544749 (−6,−5,−8), (0, 1, 0), (1, 0, 0), (−2,−1, 0), (3, 2, 4)

520925 (0, 1, 0), (0, 0, 1), (−2,−1, 0), (−2, 0,−1), (8, 2, 3), (−2,−3,−2)

520935 (3, 4, 6), (2, 1, 2), (−3,−2,−2), (1, 0, 0), (0, 1, 0), (−6,−5,−8)

522056 (−1,−1, 0), (0, 1, 0), (1, 0, 0), (−1,−1,−3), (−5,−3,−6), (6, 4, 9)

522059 (2, 5, 6), (−2,−3,−3), (0, 1, 0), (1, 0, 0), (−1,−4,−6), (0, 1, 3)

522087 (1, 0,−3), (1, 0, 0), (0, 1, 0), (−4, 2, 9), (−3, 1, 6), (5,−4,−12)

522682 (2, 1, 4), (−3,−2,−4), (−2,−3,−4), (1, 2, 4), (1, 0, 0), (0, 1, 0)

522684 (−2,−1,−4), (3, 2, 4), (−2,−1, 0), (1, 0, 0), (0, 1, 0), (−4,−3,−4)

526886 (−3, 4,−6), (1, 0, 0), (0, 1, 0), (3,−6, 8), (0, 1,−2), (2,−5, 6)

439403 (1, 2, 2), (−1, 0, 0), (−1, 1,−1), (1, 0, 0), (−1,−2,−2), (1, 1, 3),

(1,−3,−1)

275525 (4, 1, 2), (0, 1, 0), (−2,−1, 0), (1, 1, 2), (−3,−1,−2), (−2,−1,−2),

(1, 1, 0), (1,−1, 0)

275528 (−1, 0,−1), (−3,−2, 1), (−2,−1, 2), (0,−1, 0), (0, 1, 0), (1, 0, 1),

(2, 1,−2), (3, 2,−1)

Table A.4. 20 Canonical Fano 3-topes with Symmetric Fine Interior of Di-

mension 1. Table contains: vertices vert(∆) of ∆.
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ID vert(∆FI) ±v∆ vert(θ±) supp(∆FI)

547393 ±1/2 · v∆ ±(0, 0, 1) (0, 1, 0), (2, 1, 1), (−2,−3,−5) (−1,−2, 2), (−1, 1, 0), (0,−1, 0),

(0, 1, 0), (−2,−3,−5), (2, 1, 9) (1,−1, 0), (2,−1, 0), (9,−2,−2)

547409 ±2/3 · v∆ ±(1,−1,−3) (−4, 2, 9), (1, 0, 0), (0, 1, 0) (−3,−3,−1), (−1,−1, 0), (−1, 2,−1),

(−4, 2, 9), (0, 1, 0), (7,−6,−18) (2,−1, 1), (15,−3, 7)

547461 ±1/2 · v∆ ±(0, 0, 1) (0, 1, 0), (2, 1, 1), (−2,−3,−5) (−3, 6,−2), (−1,−2, 2), (−1, 1, 0),

(2, 1, 1), (−2,−3,−5), (0, 1, 4) (0,−1, 0), (1,−1, 0), (2,−1, 0)

544442 ±1/2 · v∆ ±(1,−1, 2) (0, 1, 0), (1,−4, 4), (−5, 6,−12) (−2,−2,−1), (−1,−1, 0), (−1, 1, 1),

(1, 0, 0), (0, 1, 0), (3,−6, 8) (1,−1,−1), (3,−1,−2), (10,−2,−5)

544443 ±1/2 · v∆ ±(1,−1, 2) (−1,−2, 0), (0, 1, 0), (−3, 4,−8) (−2,−2,−1), (−1,−1, 0), (−1, 1, 1),

(3,−6, 8), (0, 1, 0), (1, 0, 0) (1,−1,−1), (3,−1,−2), (6,−2,−3)

544651 ±2/3 · v∆ ±(1, 0, 0) (−4, 1,−3), (0, 1, 0), (1,−2, 3) (−3,−3, 1), (0,−1,−1), (0,−1, 0),

(4,−2, 3), (0, 1, 0), (−1, 1,−3) (0, 2, 1), (3,−3,−4)

544696 ±2/3 · v∆ ±(1,−1,−3) (1, 0, 0), (0, 1, 0), (−4, 2, 9) (−3,−3,−1), (−3, 12,−4), (−1,−1, 0),

(5,−4,−15), (1, 0, 0), (−3, 1, 6) (−1, 2,−1), (2,−1, 1)

544700 ±2/3 · v∆ ±(1, 2, 3) (−2,−3,−3), (0, 1, 0), (−1,−4,−6) (−3,−3, 2), (−1,−1, 1), (−1, 2,−1),

(0, 1, 0), (1, 0, 0), (2, 5, 9) (2,−1, 0), (3,−3, 2)

544749 ±1/2 · v∆ ±(1, 1, 2) (−6,−5,−8), (0, 1, 0), (1, 0, 0) (−2,−2, 3), (−1,−1, 1), (−1, 1, 0),

(0, 1, 0), (−2,−1, 0), (3, 2, 4) (−1, 3,−1), (1,−1, 0), (2,−2,−1)

520925 ±1/2 · v∆ ±(2, 1, 1) (−2,−1, 0), (−2, 0,−1), (−2,−3,−2) (−1,−1, 3), (0,−1, 1), (0, 1,−1),

(0, 1, 0), (0, 0, 1), (8, 2, 3) (1,−2,−2), (1,−1,−1), (1, 0, 0)

520935 ±1/2 · v∆ ±(1, 1, 2) (1, 0, 0), (0, 1, 0), (−6,−5,−8) (−2,−2, 3), (−1,−1, 1), (−1, 1, 0),

(3, 4, 6), (2, 1, 2), (−3,−2,−2) (−1, 3,−1), (0, 4,−3), (1,−1, 0)

522056 ±2/3 · v∆ ±(2, 1, 3) (0, 1, 0), (−1,−1,−3), (−5,−3,−6) (−3, 6,−1), (−1,−1, 1), (−1, 2, 0),

(−1,−1, 0), (1, 0, 0), (6, 4, 9) (0,−3, 2), (2,−1,−1)

522059 ±2/3 · v∆ ±(1, 2, 3) (−2,−3,−3), (0, 1, 0), (−1,−4,−6) (−3, 3,−2), (−1,−1, 1), (−1, 2,−1),

(2, 5, 6), (1, 0, 0), (0, 1, 3) (2,−1, 0), (3,−3, 2)

522087 ±2/3 · v∆ ±(1,−1,−3) (1, 0, 0), (0, 1, 0), (−4, 2, 9) (−3,−3,−1), (−1,−1, 0), (−1, 2,−1),

(1, 0,−3), (−3, 1, 6), (5,−4,−12) (2,−1, 1), (9, 0, 4)

522682 ±1/2 · v∆ ±(1, 1, 2) (−3,−2,−4), (−2,−3,−4), (1, 0, 0), (0, 1, 0) (−2,−2, 1), (−2,−2, 3), (−1,−1, 1),

(2, 1, 4), (1, 2, 4), (1, 0, 0), (0, 1, 0) (−1, 1, 0), (1,−1, 0), (1, 1,−1)

522684 ±1/2 · v∆ ±(1, 1, 2) (−2,−1,−4), (1, 0, 0), (−4,−3,−4) (−2, 2, 1), (−1,−1, 1), (−1, 1, 0),

(3, 2, 4), (−2,−1, 0), (0, 1, 0) (−1, 3,−1), (1,−1, 0), (2,−2,−1)

526886 ±1/2 · v∆ ±(1,−1, 2) (−3, 4,−6), (0, 1,−2), (2,−5, 6) (−2,−2,−1), (−1,−1, 0), (−1, 1, 1),

(1, 0, 0), (0, 1, 0), (3,−6, 8) (0, 4, 3), (1,−1,−1), (3,−1,−2)

439403 ±1/2 · v∆ ±(0, 1, 1) (−1, 1,−1), (1, 0, 0), (−1,−2,−2), (1,−3,−1) (−2,−1, 3), (−1,−1, 1), (−1, 0, 0),

(1, 2, 2), (−1, 0, 0), (−1, 1,−1), (1, 1, 3) (1, 0, 0), (1, 1,−1), (2,−1,−1)

275525 ±1/2 · v∆ ±(1, 0, 0) (0, 1, 0), (−2,−1, 0), (1, 1, 2), (−3,−1,−2) (−2, 0, 3), (0,−1, 0), (0,−1, 1),

(4, 1, 2), (−2,−1,−2), (1, 1, 0), (1,−1, 0) ±(0, 1,−1), (0, 1, 0), (2,−2,−1)

275528 ±1/2 · v∆ ±(1, 1,−1) (−3,−2, 1), (−2,−1, 2), (0,−1, 0), (1, 0, 1) (−1, 1, 0), (−1, 2,−1), (0,−1,−1),

(−1, 0,−1), (0, 1, 0), (2, 1,−2), (3, 2,−1) (0, 1, 1), (1,−2, 1), (1,−1, 0)

Table A.5. 20 Canonical Fano 3-topes with Symmetric Fine Interior of Di-

mension 1. Table contains: vertices vert(∆FI) of the Fine interior ∆FI, unique primitive

lattice points ±v∆ ∈ θ± in the reflexive facets θ± � ∆, vertices vert(θ±) of the reflexive

facets θ± � ∆, and support supp(∆FI) of the Fine interior ∆FI (here: ∆can = ∆).
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ID vert(∆)

547444 (1, 0, 0), (−2,−4,−5), (1, 2, 4), (1, 4, 2)

547465 (−3,−2,−2), (1, 0, 0), (1, 3, 1), (1, 1, 3)

547524 (0, 2, 1), (−2,−3,−5), (2, 1, 1), (0, 0, 1)

547525 (0, 0, 1), (0, 1, 0), (2, 1, 1), (−2,−5,−7)

545317 (−3, 4,−6), (0, 1, 0), (1, 0, 0), (1,−2, 4), (3,−5, 6)

545932 (0,−1,−1), (1,−1,−3), (−2, 1, 5), (1, 0, 0), (1, 2,−2)

546013 (3,−5, 6), (1,−2, 4), (1, 0, 0), (−1, 1,−2), (−1, 3,−2)

546062 (0, 1, 3), (−2, 1,−1), (0, 1, 0), (1, 0, 0), (−1,−2,−2)

546070 (0,−2,−3), (0, 2, 1), (−2,−3,−5), (2, 1, 1), (0, 0, 1)

546205 (1, 2,−2), (−1, 0, 2), (1, 0, 0), (−2, 1, 5), (1,−1,−3)

546219 (1, 1, 1), (−3,−2,−2), (1, 0, 0), (1, 3, 1), (−1,−1, 1)

546663 (2,−3,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−2,−3,−3)

546862 (1, 0, 0), (0, 1, 0), (−2, 1, 5), (1,−1,−3), (1, 2,−2)

546863 (−1,−1, 1), (1, 3, 1), (0, 0, 1), (1, 0, 0), (−3,−2,−2)

547240 (−1, 1,−2), (0, 1, 0), (1, 0, 0), (1,−2, 4), (3,−5, 6)

547246 (0,−2,−3), (−2,−3,−5), (2, 1, 1), (0, 1, 0), (0, 0, 1)

532384 (1,−1,−3), (−2, 1, 5), (1, 0, 0), (1,−1,−2), (0,−1,−1), (1, 2,−2)

532606 (0,−1, 2), (−1,−1, 0), (0, 1, 0), (1, 0, 0), (2, 2,−3), (−2, 0,−3)

533513 (−1, 1, 2), (1, 0, 0), (0, 1, 0), (1, 1, 2), (−1,−2,−4), (−2,−3,−4)

534667 (1, 0, 3), (−1,−1,−1), (0, 1, 0), (1, 0, 0), (−1,−1, 0), (5, 2, 3)

534669 (1, 3, 0), (5, 3, 2), (−1,−1,−1), (0, 0, 1), (1, 0, 0), (−1,−1, 0)

534866 (−1,−1,−3), (1, 0, 0), (0, 1, 0), (1, 1, 1), (−1,−1, 0), (−3,−5,−3)

535952 (3,−5, 6), (1,−2, 4), (1, 0, 0), (0, 1, 0), (−1, 1,−2), (−1, 2,−2)

536013 (0, 1, 1), (0, 0, 1), (0, 1, 0), (2, 1, 1), (−2,−3,−5), (0,−2,−3)

536498 (1, 2,−2), (1,−1,−2), (1, 0, 0), (0, 1, 0), (−2, 1, 5), (1,−1,−3)

537834 (0, 0, 1), (1, 0, 0), (0, 1, 0), (−2, 1, 5), (1,−1,−3), (1, 2,−2)

538356 (−2,−3,−3), (−1,−3,−1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1,−1,−3)

539063 (−1, 1,−1), (1, 1, 3), (−3,−2,−2), (1, 0, 0), (0, 1, 0), (1, 1, 2)

539304 (1, 0, 1), (−3,−1,−2), (1, 1, 2), (−2,−1, 0), (1, 0, 0), (1, 2, 0)

539313 (1,−1,−2), (1, 1,−1), (−1, 2, 2), (1,−1,−3), (−2, 1, 5), (1, 0, 0)

540602 (0, 0, 1), (1, 0, 0), (−2, 1, 5), (1,−1,−3), (−1, 2, 2), (1, 1,−1)

540663 (1, 0, 0), (0, 1, 0), (1, 1, 2), (−3,−1,−2), (1, 1, 1), (−3,−2, 0)

474457 (−1, 2,−3), (1, 0, 2), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1,−1, 0), (−3,−2,−3)

481575 (3, 2, 4), (−1,−1,−2), (−3,−1,−2), (−2,−1, 0), (0, 1, 0), (1, 0, 0), (0, 0,−1)

483109 (3, 0, 2), (1,−2,−2), (0, 0,−1), (−1,−1, 0), (1, 1, 1), (0, 1, 0), (−1, 0, 0)

490478 (1,−1,−2), (1, 1,−1), (−1, 2, 2), (1,−1,−3), (−2, 1, 5), (1, 0, 0), (−1, 0, 2)

490481 (−3,−2, 0), (−5,−3,−2), (1, 0, 0), (0, 1, 0), (1, 1, 2), (−1,−1,−1), (2, 1, 1)

490485 (−1,−1, 0), (1, 2, 0), (1, 0, 0), (−2,−1, 0), (1, 1, 2), (−3,−1,−2), (1, 0, 1)

490511 (1, 0, 0), (0, 1, 0), (−2,−1, 0), (1, 1, 2), (2, 1, 1), (1, 0, 1), (−5,−2,−4)

495687 (0, 0,−1), (1, 1,−1), (−1, 2, 2), (1,−1,−3), (−2, 1, 5), (1, 0, 0), (0, 0, 1)

499287 (1, 1, 1), (−1,−1,−3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−3,−1), (−2,−3,−3)

499291 (−1,−1,−1), (−1,−1,−3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−3,−1),

(−2,−3,−3)

499470 (1, 0, 0), (0, 1, 0), (−2,−1, 0), (1, 1, 2), (0, 0, 1), (−5,−2,−4), (2, 1, 1)

501298 (3,−6, 8), (−1, 1,−2), (1,−2, 3), (0, 1, 0), (1, 0, 0), (0, 1,−1), (3,−5, 6)

501330 (1, 0, 0), (0, 1, 0), (−2,−1, 0), (1, 1, 2), (1, 1, 1), (0, 0, 1), (−5,−2,−4)

354912 (3, 1, 2), (1, 0, 0), (0, 1, 0), (−2,−1, 0), (1, 1, 2), (2, 1, 1), (1, 0, 1), (−5,−2,−4)

372528 (2, 1, 1), (−1,−1,−1), (1, 1, 2), (0, 1, 0), (1, 0, 0), (−5,−3,−2), (−3,−2, 0),

(1, 1, 0)

372973 (−5,−2,−4), (1, 0, 1), (2, 1, 1), (1, 1, 2), (−2,−1, 0), (0, 1, 0), (1, 0, 0), (2, 1, 2)

388701 (1, 1, 1), (−2,−3,−3), (−1,−3,−1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1,−1,−3),

(−1,−1,−1)

Table A.6. 49 Canonical Fano 3-topes with Fine Interior of Dimension 3.

Table contains: vertices vert(∆) of ∆.
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ID vert(∆FI)

547444 0, (−1/2,−1,−3/2), (0,−1/3,−2/3), (0, 1/3,−1/3)

547465 0, (−1,−1/2,−1/2), (0, 3/4, 1/4), (0, 1/4, 3/4)

547524 0, (0, 1/2, 0), (1/3, 1/3, 0), (−1/3,−1/3,−1)

547525 0, (0, 0,−1/2), (1/3, 0,−1/3), (−1/3,−1,−5/3)

545317 0, (1,−3/2, 2), (2/3,−2/3, 1), (1/2,−1/2, 1), (2/3,−1, 5/3)

545932 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

546013 0, (1,−3/2, 2), (0, 1/2, 0), (1/2,−1/4, 1/2), (1/2,−3/4, 3/2)

546062 0, (−1/2,−1/2,−1/2), (−2/3, 0,−1/3), (−1/3, 0, 1/3)

546070 0, (0, 1/2, 0), (1/2, 1/4, 0), (0,−1/2,−1), (−1/2,−3/4,−3/2)

546205 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

546219 0, (−1,−1/2,−1/2), (−1/3, 1/3, 0), (−2/3,−1/3, 0)

546663 0, (0,−1/2, 0), (1/3,−1,−1/3), (−1/3,−1,−2/3)

546862 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

546863 0, (−1,−1/2,−1/2), (−1/3, 1/3, 0), (−2/3,−1/3, 0)

547240 0, (1,−3/2, 2), (2/3,−2/3, 1), (1/2,−1/2, 1), (2/3,−1, 5/3)

547246 0, (0, 0,−1/2), (1/3, 0,−1/3), (0,−1/2,−1), (−1/3,−2/3,−4/3)

532384 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

532606 0, (0, 1/2,−1/2), (1/3, 2/3,−1), (−1/3, 1/3,−1)

533513 0, (−1/2,−1/2,−1), (−1/2, 0, 0), (−1/3, 0,−1/3), (−2/3,−2/3,−1)

534667 0, (1/2, 1/2, 1/2), (4/3, 2/3, 1), (2/3, 1/3, 1)

534669 0, (1/2, 1/2, 1/2), (4/3, 1, 2/3), (2/3, 1, 1/3)

534866 0, (0,−1/2,−1/2), (−1/3,−2/3,−1), (−2/3,−4/3,−1)

535952 0, (1,−3/2, 2), (2/3,−2/3, 1), (1/2,−1/2, 1), (2/3,−1, 5/3)

536013 0, (0, 0,−1/2), (1/3, 0,−1/3), (0,−1/2,−1), (−1/3,−2/3,−4/3)

536498 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

537834 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

538356 0, (0,−1/2,−1/2), (−1/3,−2/3,−1), (−1/3,−1,−2/3), (−1/2,−1,−1)

539063 0, (−1,−1/2,−1/2), (−2/3, 0,−1/3), (−1/3, 0, 1/3)

539304 0, (0, 1/2, 0), (−1/2, 0, 0), (0, 1/3, 1/3), (−2/3, 0,−1/3)

539313 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

540602 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

540663 0, (−1/2, 0, 0), (−1,−1/2, 0), (−1/3, 0, 1/3), (−1,−1/3,−1/3)

474457 0, (0, 0,−1/2), (−1/3, 1/3,−1), (−2/3,−1/3,−1)

481575 0, (−1/2, 0, 0), (1/2, 1/2, 1), (0, 1/3, 1/3), (−1/3, 0, 1/3)

483109 0, (0,−1/2, 0), (2/3,−1/3, 1/3), (1/3,−2/3,−1/3)

490478 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

490481 0, (−1/2, 0, 0), (−1,−1/2, 0), (−1/3, 0, 1/3), (−4/3,−2/3,−1/3)

490485 0, (0, 1/2, 0), (−1/2, 0, 0), (0, 1/3, 1/3), (−2/3, 0,−1/3)

490511 0, (−3/2,−1/2,−1), (−1/2, 0, 0), (−2/3, 0,−1/3), (−1,−1/3,−1/3)

495687 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

499287 0, (0,−1/2,−1/2), (−1/3,−2/3,−1), (−1/3,−1,−2/3), (−1/2,−1,−1)

499291 0, (0,−1/2,−1/2), (−1/3,−2/3,−1), (−1/3,−1,−2/3), (−1/2,−1,−1)

499470 0, (−3/2,−1/2,−1), (−1/2, 0, 0), (−2/3, 0,−1/3), (−1,−1/3,−1/3)

501298 0, (1/2,−1/2, 1), (2/3,−2/3, 1), (1,−3/2, 2), (1,−5/3, 7/3)

501330 0, (−3/2,−1/2,−1), (−1/2, 0, 0), (−2/3, 0,−1/3), (−1,−1/3,−1/3)

354912 0, (−3/2,−1/2,−1), (−1/2, 0, 0), (−2/3, 0,−1/3), (−1,−1/3,−1/3)

372528 0, (−1/2, 0, 0), (−1,−1/2, 0), (−1/3, 0, 1/3), (−4/3,−2/3,−1/3)

372973 0, (−3/2,−1/2,−1), (−1/2, 0, 0), (−2/3, 0,−1/3), (−1,−1/3,−1/3)

388701 0, (0,−1/2,−1/2), (−1/3,−2/3,−1), (−1/3,−1,−2/3), (−1/2,−1,−1)

Table A.7. 49 Canonical Fano 3-topes with Fine Interior of Dimension 3.

Table contains: vertices vert(∆FI) of the Fine interior ∆FI.
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ID supp(∆FI) vert(∆can) |π1(S∆)|

547444 (−2,−1, 2), (−1, 0, 0), (−1, 2,−1), (1, 1,−1), (3, 0,−1), vert(∆) 1

(5,−1,−1)

547465 (−1,−1, 3), (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), vert(∆) 2

(−1, 1, 1), (−1, 2, 0), (−1, 3,−1), (2,−1,−1)

547524 (−1,−2, 2), (−1, 1, 0), (−1, 2,−1), (0, 0,−1), (0, 1,−1), vert(∆), (0,−1,−1) 1

(0, 2,−1), (1, 0,−1), (1, 1,−1), (2, 0,−1), (3, 0,−1)

547525 (−1,−2, 2), (−1, 2,−1), (0,−1, 0), (0, 0,−1), (0, 1,−1), vert(∆), (1, 1, 1), 1

(1,−1,−1), (1,−1, 0), (1, 0,−1), (1, 1,−1), (2,−1,−1), (−1,−2,−3)

(2,−1, 0), (2, 0,−1), (3,−1,−1), (3,−1, 0), (3, 0,−1),

(4,−1,−1), (4, 0,−1), (5,−1,−1), (6,−1,−1)

545317 (−2,−2,−1), (−1,−1, 0), (−1, 2, 2), (1,−1,−1), (1, 2, 1), vert(∆) 1

(3, 2, 0)

545932 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (0, 1, 0), (1, 1, 0), vert(∆), (1,−1,−2), 1

(2, 0, 1), (3, 0, 1), (5,−1, 2) (1, 0,−3)

546013 (−2,−2,−1), (−1, 0, 1), (−1, 2, 2), (0, 1, 1), (1, 0, 0), vert(∆) 2

(1, 2, 1), (2, 1, 0), (3, 0,−1), (3, 2, 0)

546062 (−1,−1, 0), (−1,−1, 1), (−1,−1, 2), (−1, 0, 0), (−1, 0, 1), vert(∆) 1

(−1, 1, 0), (−1, 2,−1), (0,−1, 0), (2, 1,−1)

546070 (−1,−2, 2), (−1, 2,−1), (0, 0,−1), (0, 1,−1), (0, 2,−1), vert(∆) 2

(1, 0,−1), (1, 1,−1), (2, 0,−1), (3, 0,−1)

546205 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (−1, 3,−1), (0, 1, 0), vert(∆) 1

(1, 1, 0), (1, 2, 0), (2, 0, 1), (3, 0, 1), (3, 1, 1),

(5,−1, 2), (5, 0, 2), (7,−1, 3)

546219 (−1,−1, 3), (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), (−1, 1,−1), vert(∆) 1

(−1, 1, 0), (−1, 1, 1), (−1, 2, 0), (0, 0,−1), (2,−1,−1)

546663 (−1,−1,−1), (−1,−1, 0), (−1,−1, 1), (−1,−1, 2), (−1, 0,−1), vert(∆), (−1,−1,−1) 1

(0,−1,−1), (0,−1, 0), (0,−1, 1), (0, 0,−1), (1,−1,−1),

(1,−1, 0), (1, 0,−1), (1, 2,−2), (2,−1,−1), (2,−1, 0),

(2, 0,−1), (3,−1,−1)

546862 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (−1, 3,−1), (0, 1, 0), vert(∆), (0, 0, 1) 1

(0, 4,−1), (1, 1, 0), (1, 2, 0), (2, 0, 1), (2, 3, 0),

(3, 0, 1), (3, 1, 1), (4, 2, 1), (5,−1, 2), (5, 0, 2),

(6, 1, 2), (7,−1, 3), (8, 0, 3), (10,−1, 4)

546863 (−1,−1, 3), (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), (−1, 1,−1), vert(∆) \ {(0, 0, 1)}, 1

(−1, 1, 0), (−1, 1, 1), (−1, 2, 0), (0, 0,−1), (2,−1,−1) (1, 1, 1)

547240 (−2,−2,−1), (−1,−1, 0), (−1, 0, 1), (−1, 2, 2), (0,−1, 0), vert(∆), (0, 1,−1), 1

(0, 1, 1), (1,−1,−1), (1, 0, 0), (1, 2, 1), (2,−1,−1), (0, 0, 1)

(2, 1, 0), (3, 0,−1), (3, 2, 0)

547246 (−1,−2, 2), (−1, 2,−1), (0,−1, 0), (0, 0,−1), (0, 1,−1), vert(∆), (1, 1, 1), 1

(0, 2,−1), (1,−1,−1), (1,−1, 0), (1, 0,−1), (1, 1,−1), (−1,−1,−2)

(2,−1,−1), (2,−1, 0), (2, 0,−1), (3,−1,−1), (3, 0,−1),

(4,−1,−1)

532384 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (0, 1, 0), (1, 1, 0), vert(∆), (1, 0,−3) 1

(2, 0, 1), (3, 0, 1), (5,−1, 2)

Table A.8. 49 Canonical Fano 3-topes with Fine Interior of Dimension 3.

Table contains: support supp(∆FI) of the Fine interior ∆FI, vertices vert(∆can) of the

canonical hull ∆can, and order of fundamental group |π1(S∆)| of the minimal model S∆.
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Table A.8

ID supp(∆FI) vert(∆can) |π1(S∆)|

532606 (−1,−1,−1), (−1, 1, 0), (−1, 2, 1), (0,−1,−1), (0, 1, 0), vert(∆), (0,−1, 1) 1

(1,−2, 0), (1,−1,−1), (2,−1,−1)

533513 (−1,−1, 1), (−1, 0, 0), (−1, 1, 0), (−1, 2,−1), (0,−1, 0), vert(∆), (1, 1, 1), 1

(0, 1,−1), (0, 3,−2), (2,−2, 1) (0,−1,−1)

534667 (−1,−1, 2), (−1,−1, 3), (−1, 0, 2), (−1, 1, 1), (−1, 2, 0), vert(∆) 1

(0,−1, 1), (0,−1, 2), (0, 0, 1), (0, 1, 0), (1,−2,−1),

(1,−1, 0), (1,−1, 1), (1, 0, 0), (2,−1,−1), (2,−1, 0)

534669 (−1, 0, 2), (−1, 1, 1), (−1, 2,−1), (−1, 2, 0), (0, 0, 1), vert(∆) 1

(0, 1,−1), (0, 1, 0), (1,−1,−2), (1, 0,−1), (1, 0, 0),

(2,−1,−1), (2,−1, 0)

534866 (−2, 1, 1), (−1,−1, 1), (−1, 0, 0), (−1, 1,−1), (−1, 2,−2), vert(∆) 1

(0,−1, 0), (0, 0,−1), (0, 1,−2), (1,−1,−1), (1,−1, 0),

(1, 0,−2), (1, 0,−1), (2,−1,−2), (2,−1,−1), (2,−1, 0)

535952 (−2,−2,−1), (−1,−1, 0), (−1, 0, 1), (−1, 2, 2), (0, 1, 1), vert(∆) 1

(1,−1,−1), (1, 0, 0), (1, 2, 1), (2, 1, 0), (3, 0,−1),

(3, 2, 0)

536013 (−1,−2, 2), (−1, 2,−1), (0,−1, 0), (0, 0,−1), (0, 1,−1), vert(∆) 1

(0, 2,−1), (1,−1, 0), (1, 0,−1), (1, 1,−1), (2,−1, 0),

(2, 0,−1), (3, 0,−1)

536498 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (0, 1, 0), (1, 1, 0), vert(∆) 1

(1, 2, 0), (2, 0, 1), (2, 3, 0), (3, 0, 1), (3, 1, 1),

(4, 2, 1), (5,−1, 2), (5, 0, 2), (6, 1, 2), (7,−1, 3),

(8, 0, 3), (10,−1, 4)

537834 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (−1, 3,−1), (0, 1, 0), vert(∆) 1

(0, 4,−1), (1, 1, 0), (1, 2, 0), (2, 0, 1), (2, 3, 0),

(3, 0, 1), (3, 1, 1), (4, 2, 1), (5,−1, 2), (5, 0, 2),

(6, 1, 2), (7,−1, 3), (8, 0, 3), (10,−1, 4)

538356 (−2, 1, 1), (−1,−1,−1), (−1,−1, 0), (−1,−1, 1), (−1, 0,−1), vert(∆), (−1,−1,−1) 1

(−1, 0, 0), (−1, 1,−1), (0,−1,−1), (0,−1, 0), (0, 0,−1),

(1,−1,−1), (1,−1, 0), (1, 0,−1), (2,−1,−1), (2,−1, 0),

(2, 0,−1), (3,−1,−1)

539063 (−1,−1, 1), (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), vert(∆) \ {(0, 1, 0), (1, 1, 2)}, 1

(−1, 1, 1), (−1, 2, 0), (−1, 3,−1), (0,−1, 0), (2,−1,−1) (1, 1, 1)

539304 (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), (−1, 1, 1), vert(∆), (−2,−1,−1) 1

(−1, 2, 0), (−1, 2, 1), (−1, 3, 0), (0, 1,−1), (0, 1, 0),

(2,−2,−1)

539313 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (0, 1, 0), (1,−1, 1), vert(∆), (−1, 1, 2) 1

(1, 1, 0), (1, 2, 0), (2, 0, 1), (2, 3, 0), (3, 0, 1),

(3, 1, 1), (4, 2, 1), (5, 0, 2), (6, 1, 2)

540602 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (−1, 3,−1), (0, 1, 0), vert(∆), (−1, 1, 2) 1

(0, 4,−1), (1,−1, 1), (1, 1, 0), (1, 2, 0), (2, 0, 1),

(2, 3, 0), (3, 0, 1), (3, 1, 1), (4, 2, 1), (5, 0, 2),

(6, 1, 2)

540663 (−1,−1, 1), (−1,−1, 2), (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), vert(∆), (−1, 0,−1) 1

(−1, 1, 0), (−1, 1, 1), (−1, 2,−1), (−1, 2, 0), (−1, 2, 1),

(0,−1, 0), (0,−1, 1), (2,−2,−1)

474457 (−2, 1, 2), (−1,−1, 0), (−1, 0, 0), (−1, 1, 0), (−1, 2, 0), vert(∆) 1

(1,−1,−1), (1, 0,−1), (2,−1,−1)

481575 (−1,−1, 1), (−1, 0, 1), (−1, 1, 0), (−1, 2, 0), (−1, 3,−1), vert(∆), (−1,−1,−1) 1

(0,−1, 1), (0, 1, 0), (2,−2,−1)
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Table A.8

ID supp(∆FI) vert(∆can) |π1(S∆)|

483109 (−1,−1, 1), (0,−1, 0), (0,−1, 1), (0, 2,−1), (1,−1,−1), vert(∆) 1

(1,−1, 0), (1,−1, 1), (1, 0,−2), (1, 0,−1), (1, 0, 0),

(1, 0, 1)

490478 (-2, -1, -1),(-1, 0, 0),(-1, 2, -1),(0, 1, 0),(1, -1, 1), vert(∆) 1

(1, 1, 0), (1, 2, 0), (2, 0, 1), (3, 0, 1), (3, 1, 1),

(5, 0, 2)

490481 (−1,−1, 2), (−1,−1, 3), (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), vert(∆) 1

(−1, 1, 1), (−1, 2,−1), (−1, 2, 0), (0,−1, 0), (0,−1, 1),

(0,−1, 2), (2,−2,−1)

490485 (−1, 0, 0), (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), (−1, 1, 1), vert(∆) 1

(−1, 2, 0), (−1, 2, 1), (0, 1,−1), (0, 1, 0), (2,−2,−1)

490511 (−1,−1, 2), (−1, 0, 1), (−1, 1, 0), (−1, 1, 1), (−1, 2, 0), vert(∆), (2, 1, 2) 1

(−1, 3, 0), (0,−1, 0), (0, 1,−1), (2,−2,−1)

495687 (−2,−1,−1), (−1, 0, 0), (−1, 2,−1), (−1, 3,−1), (0, 1, 0), vert(∆) 1

(0, 4,−1), (1,−1, 1), (1, 1, 0), (1, 2, 0), (2, 0, 1),

(2, 3, 0), (3, 0, 1), (3, 1, 1), (4, 2, 1)

499287 (−2, 1, 1), (−1,−1, 1), (−1, 0, 0), (−1, 1,−1), (0,−1, 0), vert(∆), (−1,−1,−1) 1

(0, 0,−1), (1,−1,−1), (1,−1, 0), (1, 0,−1), (2,−1,−1),

(2,−1, 0), (2, 0,−1), (3,−1,−1)

499291 (−2, 1, 1), (−1,−1,−1), (−1,−1, 0), (−1,−1, 1), (−1, 0,−1), vert(∆) 1

(−1, 0, 0), (−1, 1,−1), (0,−1,−1), (0,−1, 0), (0, 0,−1),

(1,−1,−1), (1,−1, 0), (1, 0,−1), (2,−1,−1), (2,−1, 0),

(2, 0,−1), (3,−1,−1)

499470 (−1,−1, 2), (−1, 0, 1), (−1, 1, 0), (−1, 1, 1), (−1, 2,−1), vert(∆) 1

(−1, 2, 0), (−1, 3,−1), (−1, 3, 0), (0,−1, 0), (0, 1,−1),

(2,−2,−1)

501298 (−2,−2,−1), (−1,−1, 0), (−1, 0, 1), (−1, 2, 2), (0,−1, 0), vert(∆) 1

(0, 1, 1), (1,−1,−1), (1, 0, 0), (1, 2, 1), (2,−1,−1),

(2, 1, 0), (3,−1,−2), (3, 0,−1), (4,−1,−2), (5, 0,−2),

(6,−1,−3)

501330 (−1,−1, 1), (−1,−1, 2), (−1, 0, 0), (−1, 0, 1), (−1, 1, 0), vert(∆) 1

(−1, 1, 1), (−1, 2,−1), (−1, 2, 0), (−1, 3,−1), (−1, 3, 0),

(0,−1, 0), (0, 1,−1), (2,−2,−1)

354912 (−1,−1, 2), (−1, 0, 1), (−1, 1, 1), (−1, 2, 0), (−1, 3, 0), vert(∆) 1

(0,−1, 0), (0, 1,−1), (2,−2,−1)

372528 (−1, 0, 1), (−1, 0, 2), (−1, 1, 0), (−1, 1, 1), (−1, 2,−1), vert(∆) 1

(−1, 2, 0), (0,−1, 0), (0,−1, 1), (0,−1, 2), (2,−2,−1)

372973 (−1,−1, 2), (−1, 0, 1), (−1, 1, 0), (−1, 1, 1), (−1, 2, 0), vert(∆) 1

(−1, 3, 0), (0,−1, 0), (0, 1,−1), (2,−2,−1)

388701 (−2, 1, 1), (−1,−1, 1), (−1, 0, 0), (−1, 1,−1), (0,−1, 0), vert(∆) 1

(0, 0,−1), (1,−1,−1), (1,−1, 0), (1, 0,−1), (2,−1,−1),

(2,−1, 0), (2, 0,−1), (3,−1,−1)
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Appendix B. Hollow 3-topes with Non-empty Fine Interior

A lattice polytope ∆ ⊆ MQ is called hollow if it has no interior lattice points in its relative interior,

i.e., ∆◦ ∩ M = ∅. By a Theorem 1.3 in [Tre19], any 3-dimensional hollow lattice polytope can be

projected to the unimodular 1-simplex, to the double unimodular 2-simplex, or is an exceptional hollow

3-tope, whereas up to unimodular transformation there exist only a finite number of these. This theorem

implies that a hollow 3-tope with non-empty Fine interior has to be exceptional because the unimodular

1-simplex and the double unimodular 2-simplex have empty Fine interior. Treutlein has found 9 maximal

exceptional hollow polytopes, which was not an complete list. Averkov et al. [AWW11, AKW17] have

found the complete list consisting of 12 maximal exceptional hollow 3-topes ∆i (1 ≤ i ≤ 12) (Table

B.1, Figure B.1). Computations show that exactly 9 of 12 maximal exceptional hollow 3-topes ∆i have

non-empty Fine interior ∆FI
i (Table B.1). Moreover, no one of these 9 polytopes contains a proper

lattice 3-subpolytope with non-empty Fine interior. Thus, there exist exactly 9 hollow 3-topes ∆i with

non-empty Fine interior ∆FI
i .

i vert(∆i) w(∆i) dim(∆FI
i ) vert(∆FI

i ) |π1(S∆)|

1 (0, 0, 0), (6, 0, 0), (3, 3, 0), (4, 0, 2) 2 −1 ∅ 1

2 (0, 0, 0), (4, 0, 0), (0, 4, 0), (2, 0, 2) 2 −1 ∅ 1

3 (0, 0, 0), (3, 0, 0), (0, 3, 0), (3, 0, 3) 3 −1 ∅ 1

4 (0, 0, 0), (4, 0, 0), (2, 4, 0), (3, 0, 2) 2 0 1/2 · (5, 1, 2) 2

5 (0, 0, 0), (2, 2, 0), (1, 1, 2), (3,−1, 2) 2 0 1/2 · (3, 1, 2) 2

6 (0, 0, 0), (2, 2, 0), (4, 0, 0), (2,−2, 0), 2 0 1/2 · (5, 1, 2) 2

(3, 1, 2)

7 (0, 0, 0), (1, 1, 0), (2,−2, 0), (3,−1, 0), 2 0 1/2 · (3,−1, 2) 2

(1,−1, 2), (2, 0, 2)

8 (0, 0, 0), (1, 1, 0), (1,−1, 0), (2, 0, 0), 2 0 1/2 · (3,−1, 2) 2

(1,−1, 2), (2, 0, 2), (2,−2, 2), (3,−1, 2)

9 (0, 0, 0), (3, 0, 0), (1, 3, 0), (2, 0, 3) 3 1 (4/3, 1, 1), (5/3, 1, 1) 3

10 (0, 0, 0), (1, 2, 0), (1,−1, 0), (3, 0, 0), 3 1 (4/3, 2/3, 1), (5/3, 1/3, 1) 3

(2, 1, 3)

11 (0, 0, 0), (1, 1, 0), (3, 0, 0), (2,−1, 0), 3 1 (5/3, 2/3, 1), (7/3, 1/3, 1) 3

(4, 1, 3), (2, 2, 3)

12 (−1, 0, 0), (0, 1,−2), (1, 2, 1), (2,−2,−1) 3 3 (1/5, 1/5,−2/5), (2/5, 2/5,−4/5), 5

(3/5, 3/5,−1/5), (4/5,−1/5,−3/5)

Table B.1. 12 Maximal Hollow 3-topes. Table contains: index i of the maximal

hollow 3-tope ∆i, vertices vert(∆i) of ∆i, lattice width w(∆i)
1of ∆i, dimension dim(∆FI

i )

of Fine interior ∆FI
i , vertices vert(∆FI

i ) of ∆FI
i , and order of fundamental group |π1(S∆)|

of the minimal model S∆i .

It is remarkable that all minimal surfaces S∆i corresponding to these 9 hollow 3-topes ∆i have non-

trivial fundamental group π1(S∆) of order 2, 3, or 5 (Table B.1). There exist exactly 5 hollow 3-topes

∆i with 0-dimensional Fine interior ∆FI
i = {R}, where R ∈ 1

2M \M is a rational point (Table B.1).

The normal fans Σ∆i of these 5 hollow polytopes ∆i define 5 toric Fano threefolds XΣ∆i with at worst

canonical singularities (Table B.2). These Fano threefolds can be obtained as quotients of Gorenstein

toric Fano threefolds XΣ∆′′ in the following 5 ways:

(i) P(1, 1, 2, 4) with a µ2-action given by (x0, x1, x2, x3) 7→ (x0,−x1,−x2,−x3);

(ii) P3 with a µ4-action given by (x0, x1, x2, x3) 7→ (x0, ix1,−x2,−ix3);

(iii) {x1x2−x3x4 = 0} ⊆ P(2, 1, 1, 1, 1) with a µ2-action given by (xi)0≤i≤4 7→ (−x0,−x1,−x2, x3, x4);

(iv) P1 × P(1, 1, 2) with a µ2-action given by (x0, x1, y0, y1, y2) 7→ (x0,−x1, y0,−y1,−y2);

(v) P1 × P1 × P1 with a µ2-action given by (x0, x1, y0, y1, z0, z1) 7→ (x0,−x1, y0,−y1, z0,−z1).

1The lattice width w(∆) of a lattice polytope ∆ is defined as the infimum of maxx∈∆〈x, u〉−minx∈∆〈x, u〉 for all non-zero

integer lattice directions u.
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i Σ∆i(1) ID(∆′) Σ∆′(1) ID(∆′′) XΣ∆′′

4 (2,−1,−3), (0, 0, 1), (0, 1, 0), 547354 (−2,−3,−5), (2, 1, 1), (0, 1, 0), 547363 (i)

(−2,−1,−1) (0, 0, 1)

5 (1,−1, 0), (1, 1,−1), (−1, 1, 2), 547364 (0, 0, 1), (0, 2, 1), (2, 1, 0), 547367 (ii)

(−1,−1,−1) (−2,−3,−2)

6 (0, 0, 1), (1, 1,−2), (1,−1,−1), 544353 (1, 0, 0), (0, 1, 0), (−2,−1, 0), 544357 (iii)

(−1,−1, 0), (−1, 1,−1) (1, 1, 2), (−3,−1,−2)

7 (0, 0, 1), (−1, 1,−1), (1,−1,−1), 544310 (−1,−1,−2), (1, 1, 2), (−2,−1, 0), 544342 (iv)

(1, 1, 0), (−1,−1, 0) (0, 1, 0), (1, 0, 0)

8 (−1, 1, 1), (0, 0,−1), (−1,−1, 0), 520134 (1, 0, 0), (0, 1, 0), (1, 1, 2), 520140 (v)

(1, 1, 0), (1,−1,−1), (0, 0, 1) (−1, 0, 0), (0,−1, 0), (−1,−1,−2)

Table B.2. 5 Hollow 3-topes with 0-dimensional Fine Interior. Table contains:

index i of the maximal hollow 3-tope ∆i, rays of the normal fan Σ∆i corresponding to

∆i, ID2of the canonical Fano 3-tope ∆′ such that Σ∆i ∼= Σ∆′ , rays of the spanning fan

Σ∆′ , ID of the reflexive canonical Fano 3-tope ∆′′ used to construct the Gorenstein toric

Fano threefold XΣ∆′′ and obtain the toric Fano threefold XΣ∆′ with at worst canonical

singularities as a µ2 quotient, and reference to the corresponding Gorenstein toric Fano

threefold XΣ∆′′ including the precise µ2 action on page 23.

In addition, Table B.3 contains the support supp(∆FI
i ) of the Fine interior ∆FI

i and the vertices of the

canonical hull ∆can
i for all 9 hollow polytopes ∆i with non-empty Fine interior ∆FI

i .

i supp(∆FI
i ) vert(∆can

i )

4 (−2,−1,−1), (0,−1,−2), (2,−1,−3), (0, 0, 1), (0, 0,−1), (0, 1, 0) vert(∆i)

5 (1,−1, 0), (1, 1,−1), (0, 0, 1), (0, 0,−1), (−1,−1,−1), (−1, 1, 2) vert(∆i)

6 (1, 1,−2), (1,−1,−1), (−1,−1, 0), (−1, 1,−1), (0, 0, 1), (0, 0,−1) vert(∆i)

7 (1, 1, 0), (1,−1,−1), (−1,−1, 0), (−1, 1,−1), (0, 0, 1), (0, 0,−1) vert(∆i)

8 (1, 1, 0), (1,−1,−1), (−1,−1, 0), (0, 0, 1), (0, 0,−1), (−1, 1, 1) vert(∆i)

9 (0,−1,−1), (0, 0, 1), (3,−1,−2), (0, 1, 0), (−3,−2,−1) vert(∆i)

10 (−1, 2,−1), (1, 1,−1), (−1,−1, 0), (2,−1,−1), (0, 0, 1) vert(∆i)

11 (1,−1, 0), (0, 0, 1), (−1,−2, 1), (−1, 1, 0), (1, 2,−2) vert(∆i)

12 (1, 1, 1), (1,−1, 0), (−2,−1, 1), (0, 1,−2) vert(∆i)

Table B.3. 9 Hollow 3-topes with Non-empty Fine Interior. Table contains:

index i of the maximal hollow 3-tope ∆i, support supp(∆FI
i ) of ∆FI

i , and vertices of the

canonical hull ∆can
i .

2ID used in the Graded Ring Database.

http://www.grdb.co.uk/forms/toricf3c
http://www.grdb.co.uk/forms/toricf3c
http://www.grdb.co.uk
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Figure B.1. 12 Maximal Hollow 3-topes. Shaded faces are occulded. The Fine

interior is coloured red.
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